首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mesoporous activated carbon (MAC) derived from rice husk is used for the immobilization of acidic lipase (ALIP) produced from Pseudomonas gessardii. The purified acidic lipase had the specific activity and molecular weight of 1473 U/mg and 94 kDa respectively. To determine the optimum conditions for the immobilization of lipase onto MAC, the experiments were carried out by varying the time (10–180 min), pH (2–8), temperature (10–50 °C) and the initial lipase activity (49 × 103, 98 × 103, 147 × 103 and 196 × 103 U/l in acetate buffer). The optimum conditions for immobilization of acidic lipase were found to be: time—120 min; pH 3.5; temperature—30 °C, which resulted in achieving a maximum immobilization of 1834 U/g. The thermal stability of the immobilized lipase was comparatively higher than that in its free form. The free and immobilized enzyme kinetic parameters (Km and Vmax) were found using Michaelis–Menten enzyme kinetics. The Km values for free enzyme and immobilized one were 0.655 and 0.243 mM respectively. The immobilization of acidic lipase onto MAC was confirmed using Fourier Transform-Infrared Spectroscopy, X-ray diffraction analysis and scanning electron microscopy.  相似文献   

2.
《Process Biochemistry》2010,45(10):1683-1691
Beef tallow, a slaughter house waste was used as a substrate for lipase production, employing Pseudomonas gessardii. The strain, P. gessardii was isolated from the beef tallow acclimatized soil. The crude lipase activity at 139 U/ml by volume was obtained at optimized conditions of pH 5.0 and temperature of 37 °C. After purification, a 7.59-fold purity of lipase with specific activity of 1120 U/mg protein and molecular mass of 92 kDa was obtained. The purified lipase showed maximum activity and stability at pH 5.0 and 30 °C. Ca2+ had a stimulatory effect on the lipase activity compared to the other metal ions studied. The relative activity was enhanced with the addition of Triton X-100 with lower hydrophilic–lipophilic balance (HLB) value as 13.0 and DMSO with the lowest partition coefficient (log P) value, as 1.378. The amino acid composition and the functional groups of lipase were confirmed by HPLC and FT-IR spectroscopy. The purified lipase had the highest hydrolytic activity towards slaughterhouse wastes and vegetable oils. This work provides a potential biocatalyst for the wide applications in oleochemical and biotechnological industries.  相似文献   

3.
This work investigates the enzyme-support equilibrium behaviour in immobilised lipase biocatalysts. Equilibrium data determines the maximum enzyme up-take by unit weight of support. Four lipases were immobilised on two polymeric supports, respectively. They were Lipase PS from Pseudomonas, Lipolase 100L from Humicola, SP871 from Rhizomucor miehel and QL from Alcaligenes. The supports were Accurel EP100 (a polypropylene material) and 45SAA (a polypropylene/silica composite). Experimentally, equilibrium was expressed in terms of lipase loading (LU/g support) versus residual lipase concentration (LU/dm3). Activity, efficiency and operational stability of the immobilised lipases were assayed by solvent-free esterification of oleic acid and octanol.Equilibrium data were modelled by the Langmuir, Freundlich and Redlich–Peterson formulae. It was found that Lipolase 100L/Accurel, PS/45SAA and SP871/45SAA systems conformed to the Langmuir behaviour, while Lipase PS/Accurel and SP871/Accurel systems followed the Freundlich behaviour and Lipolase 100L/45SAA, QL/45SAA and QL/Accurel EP100 resembled Redlich–Peterson behaviour. Whereas immobilisation on Accurel EP100 resulted in classical equilibrium isotherms with all four lipases, immobilisation on support 45SAA resulted in two-plateau equilibrium curves which included a step change in the isotherm for all lipases studied, except for SP871. Quantitatively, for 1 g lipase, Accurel and 45SAA had a maximum capacity of 140 and 260 kLU for PS, 112 and 550 kLU for Lipolase 100L, 320 and 800 kLU for SP871 and 18 and 29 kLU for QL, respectively.  相似文献   

4.
Uniform and monodispersed silica nanoparticles were synthesized with a mean diameter of 100 ± 20 nm as analyzed by Transmission Electron Microscopy (TEM). Glutaraldehyde was used as a coupling agent for efficient binding of the lipase onto the silica nanoparticles. For the hydrolysis of pNPP at pH 7.2, the activation energy within 25–40 °C for free and immobilized lipase was 7.8 and 1.25 KJ/mol, respectively. The Vmax and Km of immobilized lipase at 25 °C for pNPP hydrolysis were found to be 212 μmol/min/mg and 0.3 mM, whereas those for free lipase were 26.17 μmol/min and 1.427 mM, respectively. The lower activation energy of immobilized lipase in comparison to free lipase suggests a change in conformation of the enzyme leading to a requirement for lower energy on the surface of the nanoparticles. A better yield (7 fold higher) of ethyl isovalerate was observed using lipase immobilized onto silica nanoparticles in comparison to free lipase.  相似文献   

5.
This study deals with the surface functionalization of mesoporous activated carbon, using ethylenediamine and glutaraldehyde to facilitate the strong immobilization of acidic lipase (AL) onto MAC. The AL was produced from Pseudomonas gessardii by using slaughterhouse lipid waste as the substrate. The AL immobilized on functionalized mesoporous activated carbon (ALFMAC) was applied for the hydrolysis of waste cooked oil (WCO). The optimum conditions for the immobilization of AL onto functionalized mesoporous activated carbon (FMAC) were 90 min; pH 3.5; and 35 °C; which resulted at the maximum immobilization of 5440 U/g of FMAC (3.693 mg of AL/g of FMAC or the yield 2.7% or the expressed activity 103.7% or the activity per unit area of FMAC 1.08 mg of AL/m2). The ALFMAC showed better thermal and storage stabilities than the free AL. The ALFMAC retained a 98% and a 92% initial activity at 40 °C and 50 °C, respectively, while the AL showed the thermal stability (residual activities) 65% and 38%, respectively. The storage stability of ALFMAC at 4 °C showed 100% initial activity up to 15 days from the initial day of the storage, whereas AL showed only 88% initial activity up to 15 days. The FMAC and ALFMAC were characterized by using scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectroscopy, and X-ray diffraction (XRD) analysis. The Km values of the ALFMAC and AL were 0.112 mM and 0.411 mM, respectively. The vmax values of the ALFMAC and AL were 1.26 mM/min and 0.53 mM/min, respectively. Immobilization of AL onto FMAC obeyed the Freundlich and Redlich–Peterson isotherm models. The non-linear models of pseudo first, and second order, intra-particle diffusion, Bangham, and Boyd plot were also performed to understand the dynamic mechanism of immobilization. ALFMAC showed a 100% hydrolysis of WCO up to 21 cycles of reuse, and 60% up to 45 cycles. The hydrolysis of WCO was confirmed by using FT-IR spectra.  相似文献   

6.
Three different functionalized bentonites including acid activated bentonite (Ba), organically modified bentonite with cetyltrimethyl ammonium bromide (BCTMAB) and the composite by acid activation and organo-modification (Ba-CTMAB) were prepared, and used for immobilization of lipase from bovine pancreatic lipase by adsorption. The amount of lipase adsorbed on the functionalized bentonites was in the following sequence: Ba > BCTMAB > Ba-CTMAB, showing the strongest affinity of Ba for lipase among the three supports. However, the immobilized lipase on Ba-CTMAB showed the highest activity in the hydrolysis of olive oil by 1.67 times of activity of free lipase due to the hydrophobically interfacial activation and enlarged catalytic interface. While, the activity of immobilized lipase on Ba was lower than 20% of free lipase’s activity due to the absence of hydrophobic activation and negative impact of excessive hydrogen ions on the surface. The Km values for the immobilized lipase on Ba-CTMAB (0.054 g/mL) and BCTMAB (0.074 g/mL) were both lower than that of free lipase (0.115 g/mL), and the Vmax values were higher for the immobilized lipases, exhibiting a higher affinity of the immobilized lipase toward olive oil than free lipase. In comparison to free lipase, the better resistance to heating inactivation, storage stability and reusability of the immobilized lipases on Ba-CTMAB and BCTMAB were also obtained. The results show that the efficient and stable biocatalysts for industrial application can be prepared by using the low-cost bentonite mineral as the supports.  相似文献   

7.
Lipase from Mucor miehei immobilised by adsorption on microporous, asymmetric hollow fibre membrane reactors was used to hydrolyse two different oils, namely, palm and olive oils. The hydrolysis reaction was carried out at a temperature of 40 °C, an average transmembrane pressure (TMP) of 115 mmHg and oil and aqueous flow rates of 2.5 and 3.0 ml min−1, respectively. It was experimentally proven that adsorption of lipase increased with temperature and was higher on hydrophobic membranes than hydrophilic ones. The effluent concentrations of fatty acid products were measured using gas chromatograph with FID detector. Hydrolysis experimental results were fitted to a multisubstrate kinetic model derived from the Ping Pong Bi Bi mechanism. The final model expression is useful for predicting the free fatty acid profile of the enzymatic hydrolysis of palm and olive oils for different substrate flow rates and enzyme loading.  相似文献   

8.
The oxygen-tolerant, NAD+-reducing soluble hydrogenase (SH) from Ralstonia eutropha H16 is a promising catalyst for cofactor regeneration in enzyme-catalysed reduction processes. The technical use of the isolated enzyme, however, is limited by its relatively low stability under operational conditions such as agitation, elevated temperature or addition of co-solvents. The maximum half-life at a reaction temperature of 35 °C and pH 8.0 was only 5.3 h. In order to enhance the stability of the enzyme, it was immobilised onto the anionic resin Amberlite™ FPA54. At an immobilisation yield of 93.4% for adsorptive and 100% for covalent attachment, corresponding activities of 48.9 and 39.3%, respectively, were obtained. Covalent binding always yielded superior stabilisation. At elevated temperature and under agitation, stabilisation was further increased by modification of the covalently bound SH with methoxy-poly(ethylene) glycol (mPEG). A comparable effect was not achieved when SH modification was performed before immobilisation. In stationary aqueous solution, half-lives of up to 161 h at 25 °C and 32 h at 35 °C were obtained. In presence of the technically relevant co-solvents DMSO, DMF, 2-propanol and [EMIM][EtSO4] half-lives of 14–29 h can now be achieved.  相似文献   

9.
Sporopollenin is a natural polymer obtained from Lycopodium clavatum, which is highly stable with constant chemical structure and has high resistant capacity to chemical attack. In this study, the Candida rugosa lipase (CRL) was encapsulated within a chemically inert sol–gel support prepared by polycondensation with tetraethoxysilane (TEOS) and octyltriethoxysilane (OTES) in the presence and absence of sporopollenin and activated sporopollenin as additive. The catalytic properties of the immobilized lipases were evaluated into model reactions, i.e. the hydrolysis of p-nitrophenylpalmitate (p-NPP), and the enantioselective hydrolysis of rasemic Naproxen methyl ester that was studied in aqueous buffer solution/isooctane reaction system. The results indicated that the sporopollenin based encapsulated lipase particularly had higher conversion and enantioselectivity compared to the sol–gel free lipase. In this study, excellent enantioselectivity (E > 400) has been noticed for most lipase preparations (E = 166 for the free enzyme) with an ee value ~98% for S-Naproxen. Moreover, (S)-Naproxen was recovered from the reaction mixture with 98% optical purity.  相似文献   

10.
Trypsin (E.C. 3.4.21.4) was covalently immobilised onto a membrane of a cellulosic exopolysaccharide produced by Zoogloea sp. in sugarcane molasses. Carbonyl groups were introduced into the matrix by sodium metaperiodate oxidation and the enzyme was immobilised either directly or through bovine serum albumin (BSA) as a spacer. The trypsin-membrane and trypsin–BSA-membrane retained, respectively, 37.2% and 9.16% of the specific activity of the native enzyme acting on N-benzoil-dl-arginine-p-nitroanilide (BAPNA). No activity decrease was observed in both preparations after seven reutilisations as well as they showed to be more thermal stable than the native enzyme. The trypsin–BSA-membrane presented the same initial activity (99%) after 54 days stored in 0.1 M Tris–HCl buffer, pH 8.0, at 4 °C but the trypsin-membrane lost 15% of activity. Furthermore, the trypsin–BSA-membrane lost 31% of activity after reuse at 9 days interval during 54 days of storage at 4 °C whereas the trypsin-membrane lost 69% of activity under the same conditions. These results showed an additional application for this biofilm, namely, to act as a reusable matrix for trypsin immobilisation and the presence of BSA improved the derivative performance.  相似文献   

11.
Bacillus macerans cyclodextrin glycosyltransferase (CGTase) (EC 2.4.1.19) was covalently immobilised on Eupergit C and used in a packed-bed reactor to investigate the continuous production of long-carbohydrate-chain alkyl glycosides from α-cyclodextrin (α-CD) and n-dodecyl-(1,4)-β-maltopyranoside (C12G2β). The effects of buffer ion strength and pH, and enzyme loading on the immobilisation yield and the enzyme activity were evaluated. Approximately 98% of the protein and 33% of the total activity were immobilised. At pH 5.15, the enzymatic half-life was 132 min at 60 °C and 18 min at 70 °C. The immobilised enzyme maintained 60% of its initial activity after 28 days storage at 4 °C. The degree of conversion was controlled by simple regulation of the flow rate through the reactor, making it possible to optimise the product distribution. It was possible to achieve a yield of the primary coupling product n-dodecyl-(1,4)-β-maltooctaoside (C12G8β) of about 50%, with a ratio between the primary and the secondary coupling product of about 10. Thermoanaerobacter sp. CGTase (Toruzyme 3.0 L) immobilised on Eupergit C had good operational stability at 60 and 70 °C thus showing the advantages of using more thermostable enzymes in biocatalysis. However, this enzyme was unsuitable for the production of C12G8β due to extensive disproportionation reactions, giving a broad product range.  相似文献   

12.
A biocatalyst with high activity retention of lipase was fabricated by the covalent immobilization of Candida rugosa lipase on a cellulose nanofiber membrane. This nanofiber membrane was composed of nonwoven fibers with 200 nm nominal fiber diameter. It was prepared by electrospinning of cellulose acetate (CA) and then modified with alkaline hydrolysis to convert the nanofiber surface into regenerated cellulose (RC). The nanofiber membrane was further oxidized by NaIO4. Aldehyde groups were simultaneously generated on the nanofiber surface for coupling with lipase. Response surface methodology (RSM) was applied to model and optimize the modification conditions, namely NaIO4 content (2–10 mg/mL), reaction time (2–10 h), reaction temperature (25–35 °C) and reaction pH (5.5–6.5). Well-correlating models were established for the residual activity of the immobilized enzyme (R2 = 0.9228 and 0.8950). We found an enzymatic activity of 29.6 U/g of the biocatalyst was obtained with optimum operational conditions. The immobilized lipase exhibited significantly higher thermal stability and durability than equivalent free enzyme.  相似文献   

13.
This study aimed at isolation, purification and characterization of a chitosanase from Mucor circinelloides mycelium. The latter contains also a mycelium-bound lipase and lipids. The chitosanase and lipase were extracted from defatted M. circinelloides mycelium with a detergent and purified through a two-step procedure comprising chromatography on bacitracin–CNBr-Sepharose 4B and gel filtration on Sephadex G-100. Purification degree of the chitosanase (endo-type enzyme) and lipase was 23 and 12, respectively. These enzymes were optimally active at pH of 5.5–6.0 (chitosanase) and 7.2 (lipase in olive oil hydrolysis) and at 37 °C. Both purified enzymes were activated by Ca2+ and Mg2+ ions. The preferred substrates of chitosanase were chitosan preparations with a high degree of deacetylation. This enzyme showed no activity for colloidal chitin, Na-CMC and starch. SDS–PAGE of both purified enzymes showed two bands with molecular masses of 42 and 43 kDa. Our results suggest that M. circinelloides synthesizes an oligomeric (bifunctional) lipase which also efficiently depolymerizes chitosan.  相似文献   

14.
Enzymatic hydrolysis of triglycerides of soy deodorized distillate (DOD), using immobilized Candida rugosa lipase under supercritical carbon dioxide (SC-CO2) medium, was carried out. Optimization of the reaction parameters using response surface methodology based on Box-Behnken model at three levels of pressure (120–180 bar), temperature (40–60 °C) and moisture content (40–80% of triglyceride content) for maximum hydrolysis of triglycerides was arrived by multilinear regression of the experimental results. The optimum conditions for maximum degree of triglyceride hydrolysis (94%) were found to be: pressure of 180 bar, temperature of 43 °C and moisture content of 40% to the triglyceride content. Maximum degree of hydrolysis was achieved with short incubation time of 1.5 h under SC-CO2. Whereas conventional method of hydrolysis in hexane under similar reaction conditions of temperature, moisture and enzyme concentration, needs 5 h to achieve 88% of triglyceride hydrolysis.  相似文献   

15.
The immobilisation of lipase from Pseudomonas stutzeri (Lipase TL®) by different entrapment protocols (sol–gel, static emulsion-silicone and direct entrapment in silicone spheres) is described for the first time. As this not very common commercial lipase has been recently reported as able to catalyse the dynamic kinetic resolution of benzoins (1,2-diaryl-2-hydroxyethanone structures) combined with a transition metal catalyst, although suffering a deactivation at high temperatures, the different immobilisation methodologies were tested with the aim of enhance lipase activity and stability in the above mentioned process. The enzyme immobilisation by silicone spheres entrapment was the most appropriate method, resulting in a considerable activation of this lipase. Furthermore, the high stability of this immobilised lipase at 60 °C, allowed the development of a “one pot” benzoin DKR process, reaching high conversions in short time, with a 30-fold increase of the productivity of the process due to the possibility of recycling and reuse of the catalyst.  相似文献   

16.
《Process Biochemistry》2004,39(11):1347-1361
The aim of this investigation was to obtain an efficiently immobilized intracellular lipase from Rhizomucor miehei and Yarrowia lipolytica. The activity of intracellular lipases from R. miehei and Y. lipolytica was enhanced by the addition of waste fats (beef tallow or poultry fat) to the medium and by cell immobilization on biomass support particles (BSPs, cubic particle of polypropylene or polyurethane foams). The highest intracellular activity of lipases was obtained after adding 20 and 50 BSPs to the medium of R. miehei (130.5 U) and Y. lipolytica (90.3 U), respectively. The best carrier for immobilizing intracellular lipases was polyurethane foam and the lipolytic activity of immobilized lipases was 2.1–4.3-times higher than the activity of lipases obtained from free biomass. The properties of the immobilized enzymes were very similar to the free enzymes but the immobilized intracellular lipases were more useful for the hydrolysis of waste fats. The highest reaction ratio (72%) and content of free fatty acids (68% (w/w)) in the reaction mixture was obtained after 72 h for beef tallow hydrolysis in a batch reaction with the immobilized lipases from R. miehei.  相似文献   

17.
In this article we report a selective urea electrochemical biosensor based on electro-co-deposited zirconia-polypropylene imine dendrimer (ZrO2-PPI) nanocomposite modified screen printed carbon electrode (SPCE). ZrO2 nanoparticles, prepared by modified sol–gel method were dispersed in PPI solution, and electro-co-deposited by cyclic voltammetry onto a SPCE surface. The material and the modified electrodes were characterised using FTIR, electron microscopy and electrochemistry. The synergistic effect of the high active surface area of both materials, i.e. PPI and ZrO2 nanoparticles, gave rise to a remarkable improvement in the electrocatalytic properties of the biosensor and aided the immobilisation of the urease enzyme. The biosensor has an ampereometric response time of ∼4 s in urea concentration ranging from 0.01 mM to 2.99 mM with a correlation coefficient of 0.9985 and sensitivity of 3.89 μA mM−1 cm−2. The biosensor was selective in the presence of interferences. Photochemical study of the immobilised enzyme revealed high stability and reactivity.  相似文献   

18.
《Process Biochemistry》2007,42(4):518-526
An alkaline lipase from Burkholderia multivorans was produced within 15 h of growth in a 14 L bioreactor. An overall 12-fold enhanced production (58 U mL−1 and 36 U mg−1 protein) was achieved after medium optimization following the “one-variable-at-a-time” and the statistical approaches. The optimal composition of the lipase production medium was determined to be (% w/v or v/v): KH2PO4 0.1; K2HPO4 0.3; NH4Cl 0.5; MgSO4·7H2O 0.01; yeast extract 0.36; glucose 0.1; olive oil 3.0; CaCl2 0.4 mM; pH 7.0; inoculum density 3% (v/v) and incubation time 36 h in shake flasks. Lipase production was maximally influenced by olive oil/oleic acid as the inducer and yeast extract as the additive nitrogen. Plackett–Burman screening suggested catabolite repression by glucose. Amongst the divalent cations, Ca2+ was a positive signal while Mg2+ was a negative signal for lipase production. RSM predicted that incubation time, inoculum density and oil were required at their higher levels (36 h, 3% (v/v) and 3% (v/v), respectively) while glucose and yeast extract were required at their minimal levels for maximum lipase production in shake flasks. The production conditions were validated in a 14 L bioreactor where the incubation time was reduced to 15 h.  相似文献   

19.
《Process Biochemistry》2010,45(4):593-597
This paper reports a simple method for producing macroporous silica-monoliths with controllable porosity that can be used for the immobilization of lipases to generate an active and stable micro-reactor for biocatalysis. A range of commercially available lipases has been examined using the hydrolysis reactions of 4-nitrophenyl butyrate in water–decane media. The kinetic studies performed have identified that a similar value for kcat is obtained for the immobilized Candida antarctica lipase A (0.13 min−1) and the free lipase in solution (0.12 min−1) whilst the immobilized apparent Michaelis constant Km (3.1 mM) is 12 times lower than the free lipase in solution (38 mM). A 96% conversion was obtained for the immobilized C. antarctica lipase A compared to only 23% conversion for the free lipase. The significant higher conversions obtained with the immobilized lipases were mainly attributed to the formation of a favourable biphasic system in the continuous flowing micro-reactor system, where a significant increase in the interfacial activation occurred. The immobilized C. antarctica lipase A on the monolith also exhibited improved stability, showing 64% conversion at 80 °C and 70% conversion after continuous running for 480 h, compared to 40 and 20% conversions under the same temperature and reaction time for the free lipase.  相似文献   

20.
An extracellular lipase of a newly isolated S. aureus strain ALA1 (SAL4) was purified from the optimized culture medium. The SAL4 specific activity determined at 60 °C and pH 12 by using olive oil emulsion or TC4, reached 7215 U/mg and 2484 U/mg, respectively. The 38 NH2-terminal amino acid sequence of the purified enzyme starting with two extra amino acid residues (LK) was similar to known staphylococcal lipase sequences. This novel lipase maintained almost 100% and 75% of its full activity in a pH range of 4.0–12 after a 24 h incubation or after 0.5 h treatment at 70 °C, respectively. Interestingly, SAL4 displayed appreciable stability toward oxidizing agents, anionic and non-ionic surfactants in addition to its compatibility with several commercial detergents. Overall, these interesting characteristics make this new lipase promising for its application in detergent industry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号