共查询到20条相似文献,搜索用时 15 毫秒
1.
Ngoc Uyen Nhi Nguyen Vincent Roderick LiangHao-Ven Wang 《Biochemical and biophysical research communications》2014
The actin-associated protein palladin has been shown to be involved in differentiation processes in non-muscle tissues. However, but its function in skeletal muscle has rarely been studied. Palladin plays important roles in the regulation of diverse actin-related signaling in a number of cell types. Since intact actin-cytoskeletal remodeling is necessary for myogenesis, in the present study, we pursue to investigate the role of actin-associated palladin in skeletal muscle differentiation. Palladin in C2C12 myoblasts is knocked-down using specific small interfering RNA (siRNA). The results show that down-regulation of palladin decreased migratory activity of mouse skeletal muscle C2C12 myoblasts. Furthermore, the depletion of palladin enhances C2C12 vitality and proliferation. Of note, the loss of palladin promotes C2C12 to express the myosin heavy chain, suggesting that palladin has a role in the modulation of C2C12 differentiation. It is thus proposed that palladin is required for normal C2C12 myogenesis in vitro. 相似文献
2.
C2C12 is a myoblast cell line which is used to studydifferentiation into multinucleated cells in vitro. Addition of calpain inhibitors, calpeptin orE-64d, to the culture medium prevented the myoblasticfusion of C2C12 cells. Immunoblot studies usingaffinity-purified antibody, revealed that the expressedlevels of mouse calpastatin remained unaltered duringC2C12 cell fusion. The detected calpastatin migratedas a protein of 130 kDa on SDS-polyacrylamide gelelectrophoresis. The estimated molecular mass wassomewhat greater than that in mouse liver anderythrocytes, and much greater than that reported inrat myoblasts. The 130 kDa isoform may contain anadditional N-terminal region designated XL domainfound in bovine calpastatin. 相似文献
3.
S.S. Xing C.C. Shen M.P. Godard J.J. Wang Y.Y. Yue S.T. Yang Q. Zhao S.B. Zhang T.X. Wang X.L. Yang P. Delafontaine Y. He Y.H. Song 《Biochemical and biophysical research communications》2014
Proteosome inhibitors such as bortezomib (BTZ) have been used to treat muscle wasting in animal models. However, direct effect of BTZ on skeletal muscle cells has not been reported. In the present study, our data showed that C2C12 cells exhibited a dose-dependent decrease in cell viability in response to increasing concentrations of BTZ. Consistent with the results of cell viability, Annexin V/PI analysis showed a significant increase in apoptosis after exposing the cells to BTZ for 24 h. The detection of cleaved caspase-3 further confirmed apoptosis. The apoptosis induced by BTZ was associated with reduced expression of p-ERK. Cell cycle analysis revealed that C2C12 cells underwent G2/M cell cycle arrest when incubated with BTZ for 24 h. Furthermore, BTZ inhibited formation of multinucleated myotubes. The inhibition of myotube formation was accompanied by decreased expression of Myogenin. Our data suggest that BTZ induces cell death and inhibits differentiation of C2C12 cells at clinically relevant doses. 相似文献
4.
5.
In this experiment, we evaluated the effects of strong static magnetic fields (SMF) on the orientation of myotubes formed from a mouse-derived myoblast cell line, C2C12. Myogenic differentiation of C2C12 cells was conducted under exposure to SMF at a magnetic flux density of 0-10 T and a magnetic gradient of 0-41.7 T/m. Exposure to SMF at 10 T led to significant formation of oriented myotubes. Under the high magnetic field gradient and a high value of the product of the magnetic flux density and magnetic field gradient, myotube orientation increased as the myogenic differentiation period increased. At the 3 T exposure position, where there was a moderate magnetic flux density and moderate magnetic field gradient, myotube orientation was not observed. We demonstrated that SMF induced the formation of oriented myotubes depending on the magnetic flux density, and that a high magnetic field gradient and a high value of the product of the magnetic flux density and magnetic field gradient induced the formation of oriented myotubes 6 days after myogenic differentiation. We did not detect any effect of the static magnetic fields on myogenic differentiation or cell number. To the best of our knowledge, this is the first report to demonstrate that myotubes orient to each other under a SMF without affecting the cell number and myogenic differentiation. 相似文献
6.
7.
为研究脑信号蛋白家族(Semaphorins)成员Sema7A对成肌细胞增殖和分化的影响,本文设计并合成了Sema7A基因的小干扰RNA(small interfering RNA,siRNA),用此siRNA转染C2C12成肌细胞.通过Hoechst核染和流式细胞术检测细胞增殖情况,免疫荧光检测肌管的形成情况,real-time qPCR和Western印迹技术检测成肌标记基因的变化.结果显示,干扰Sema7A后,C2C12成肌细胞增殖减慢,处在G2和S期的细胞所占的比例明显下降,而G1期细胞的比例升高.免疫荧光检测结果显示,干扰Sema7A后,肌管的直径及MyHC+细胞所占比例均显著降低.Real-time qPCR和Western印迹结果也显示,肌肉分化标志基因MyoD、MyoG、MyHC的mRNA及蛋白质表达均下降.进一步检测Sema7A受体下游信号通路发现,干扰Sema7A后,其下游信号分子PI3K和AKT的磷酸化水平被下调.以上结果表明,Sema7A可以调节C2C12成肌细胞的增殖和分化,可能是通过其受体作用于PI3K/AKT信号通路实现的,这为进一步研究Sema7A在骨骼肌发育中的作用提供实验基础. 相似文献
8.
9.
Satellite cells are a quiescent heterogenous population of mononuclear stem and progenitor cells which, once activated, differentiate into myotubes and facilitate skeletal muscle repair or growth. The Transforming Growth Factor-β (TGF-β) superfamily members are elevated post-injury and their importance in the regulation of myogenesis and wound healing has been demonstrated both in vitro and in vivo. Most studies suggest a negative role for TGF-β on satellite cell differentiation. However, none have compared the effect of these three isoforms on myogenesis in vitro. This is despite known isoform-specific effects of TGF-β1, -β2 and -β3 on wound repair in other tissues. In the current study we compared the effect of TGF-β1, -β2 and -β3 on proliferation and differentiation of the C2C12 myoblast cell-line. We found that, irrespective of the isoform, TGF-β increased proliferation of C2C12 cells by changing the cellular localisation of PCNA to promote cell division and prevent cell cycle exit. Concomitantly, TGF-β1, -β2 and -β3 delayed myogenic commitment by increasing MyoD degradation and decreasing myogenin expression. Terminal differentiation, as measured by a decrease in myosin heavy chain (MHC) expression, was also delayed. These results demonstrate that TGF-β promotes proliferation and delays differentiation of C2C12 myoblasts in an isoform-independent manner. 相似文献
11.
It is well known that growth hormone (GH)-induced IGF-1 signaling plays a dominant role in postnatal muscle growth. Our previous studies have identified a growth factor, progranulin (PGRN), that is co-induced with IGF-1 upon GH administration. This result prompted us to explore the function of PGRN and its association with IGF-1. In the present study, we demonstrated that, similar to IGF-1, PGRN can promote C2C12 myotube hypertrophy via the PI(3)K/Akt/mTOR pathway. Moreover, PGRN can rescue the muscle atrophy phenotypes in C2C12 myotube when IGF-1 signaling is blocked. This result shows that PGRN can substitute for IGF-1 signaling in the regulation of muscle growth. Our findings provide new insights into IGF-1-modulated complicated networks that regulate muscle growth. 相似文献
12.
The Akirin gene family normally contains two members that are essential to myoblast differentiation. Noticeably, the avian Akirin gene family comprises only one gene (Akirin2), However, it remains unknown whether avian Akirin gene family still has the function of Akirin1; moreover, it is still unclear whether and how Akirin2 plays a role in myoblast proliferation and differentiation. Interestingly, the unexpected functions of duck Akirin2 were revealed in the present study. The Real-time PCR results showed that between 12 and 48 h during the process of duck myoblasts differentiation, the overexpression of Akirin2 did not significantly increase the expression of myogenic regulatory factors. Flow cytometry analysis revealed that the cell cycle transition was accelerated by Akirin2 overexpression. Moreover, the overexpression of Akirin2 did not influence the myotube formation. Strikingly, when duck myoblasts were cultured in the growth medium, the overexpression of Akirin2 significantly enhanced cell viability. Although the expression of cyclin-dependent proteins did not significantly increase after transfection, the expression of the mammalian targets of rapamycin (mTOR) and p70 S6 kinase (p70S6K) increased. Furthermore, the protein expression of phospho-p70S6K (Ser 417) also increased. However, when rapamycin and pEGFP-N1-Akirin2 plasmids were added together to the growth medium, the positive impact of Akirin2 on cell viability and the mRNA expression of mTOR and p70S6K were significantly blocked. Furthermore, the expression of phospho-mTOR (Ser 2448) and phospho-p70S6K (Ser 417) were also blocked. Taken together, these results could suggest that duck Akirin2 could promote myoblast proliferation via the activation of the mTOR/p70S6K signaling pathway. 相似文献
13.
目的:研究不同强度脉冲电磁场干预对成肌细胞增殖的影响。方法:10Hz脉冲低频电磁场刺激经复苏后培养贴壁良好的C2C12成肌细胞,根据不同磁场强度和作用时间将其分为A、B、C组,无磁场干预的为对照组。采用RT-q PCR检测不同磁场强度下成肌细胞标记基因Myf5、Myo D及Pax7的m RNA的表达。结果:经RT-q PCR检测三种基因的表达情况,Myf5 m RNA在1.5 m T磁场强度下照射第五天表达最高;0.5 m T磁场强度下Myf5 m RNA的表达与对照组相比无统计学意义(P>0.05);1.0 m T磁场强度下Myf5 m RNA表达与对照组比较差异具有统计学意义(P<0.05);1.5 m T磁场强度下Myf5 m RNA表达与对照组比较差异具有统计学意义(P<0.05)。对照组Myo D m RNA的表达要比磁场作用下表达要高。三个磁场强度下Myo D m RNA表达与对照组相比均无统计学意义(P>0.05)。0.5 m T、1.0 m T磁场强度下Pax7 m RNA的表达要比对照组要高,与对照组相比具有统计学意义(P<0.05);1.5 m T磁场强度下Pax7 m RNA表达与对照组相比无统计学意义(P>0.05)。结论 :1.5 m T脉冲电磁场强度下作用5天对体外培养的成肌细胞Myf5 m RNA标记基因增殖促进作用最强。 相似文献
14.
Vahideh Tarhriz Shirin Eyvazi Maryam Musavi Mozhgan Abasi Kazem Sharifi Hossein Ghanbarian Mohammad Saeid Hejazi 《Journal of cellular biochemistry》2019,120(11):18854-18861
Cdk9 is a serine-threonine protein kinase that has been recognized as a regulator of cardiac differentiation. Recently, we have reported that transient induction of Cdk9 using noncoding RNA targeting Cdk9 sequences results in efficient cardiac differentiation. Concerning Cdk9 regulatory roles, here, we proposed whether constant overexpression of Cdk9 might influence the differentiation of myoblast C2C12 cells into myotubes. We overexpressed Cdk9 in mouse myoblast C2C12 cells to investigate its regulatory roles on myogenic differentiation. Upon Cdk9 overexpression, the expression level of myogenic regulatory factors was determined. Moreover, the expression profile of three important myomiRs consist of miR 1, 133 and 206 was examined during the differentiation process. Although Cdk9 expression is necessary for inducing differentiation in the early stage of myogenesis, continuous Cdk9 expression inhibits differentiation by modulating myomiRs and myogenic gene expression. Our results indicate that the transient induction of Cdk9 in the early stage of differentiation is critical for myogenesis. 相似文献
15.
As the skeletal muscle cell is an efficient force transducer, it has been incorporated in bio-microdevices using electrical field stimulation for generating contractile patterns. To improve both the spatial and temporal resolutions, we made photosensitive skeletal muscle cells from murine C2C12 myoblasts, which express channelrhodopsin-2 (ChR2), one of archaea-type rhodopsins derived from green algae Chlamydomonas reinhardtii. The cloned ChR2-expressing C2C12 myoblasts were made and fused with untransfected C2C12 to form multinucleated myotubes. The maturation of myotubes was facilitated by electrical field stimulation. Blue LED light pulse depolarized the membrane potential of a ChR2-expressing myotube and eventually evoked an action potential. It also induced a twitch-like contraction in a concurrent manner. A contraction pattern was thus made with a given pattern of LED pulses. This technique would have many applications in the bioengineering field, such as wireless drive of muscle-powered actuators/microdevices. 相似文献
16.
Jingjing Du Yi Zhang Linyuan Shen Jia Luo Huaigang Lei Peiwen Zhang 《Bioscience, biotechnology, and biochemistry》2016,80(4):706-711
MicroRNAs are a class of 18–22 nucleotide non-coding RNAs that modulate gene expression by associating with the 3′ untranslated regions of mRNAs. A large number of microRNAs are involved in the regulation of myoblast differentiation, many of which remain undiscovered. In this study, we found that miR-143-3p was upregulated during C2C12 myoblast differentiation and over-expression of miR-143-3p significantly inhibited the relative expression levels of MyoD, MyoG, myf5, and MyHC genes, especially in the later stages of differentiation. In addition, miR-143-3p inhibited expression of genes involved in the endogenous Wnt signaling pathway during C2C12 myoblast differentiation, including Wnt5a, LRP5, Axin2, and β-catenin. These results indicate that miR-143-3p represents a new myogenic differentiation-associated microRNA that can inhibit C2C12 myoblast differentiation, especially in the later stages of differentiation. 相似文献
17.
An RNA-binding protein, LIN28A was initially discovered in nematodes Caenorhabditis elegans and regulated stem cell differentiation and proliferation. With the aid of mouse models and cancer stem cells models, LIN28A demon strated a similar role in mammalian stem cells. Subsequent studies revealed LIN28A’s roles in regulating cell cycle and growth, tissue repair, and metabolism, especially glucose metabolism. Through regulation by pluripotency and neurotrophic factors, LIN28A performs these roles through let-7 dependent (binding to let-7) or independent (binding directly to mature mRNA) pathways. Elevated LIN28A levels are associated with cancers such as breast, colon, and ovarian cancers. Overexpressed LIN28A has been implicated in liver diseases and Rett syndrome whereas loss of LIN28A was linked to Parkinson’s disease. LIN28A inhibitors, LIN28A-specific nanobodies, and deubiquitinases targeting LIN28A could be feasible options for cancer treatments while drugs upregulating LIN28A could be used in regenerative therapy for neuropathies. We will review the upstream and downstream signalling pathways of LIN28A and its physiological functions. Then, we will examine current research and gaps in research regarding its mechanisms in conditions such as cancers, liver diseases, and neurological diseases. We will also look at the therapeutic potential of LIN28A in RNA-targeted therapies including small interfering RNAs and RNA-protein interactions. 相似文献
18.
19.
Expression of basic fibroblast growth factor results in the decrease of myostatin mRNA in murine C2C12 myoblasts 总被引:1,自引:0,他引:1
Liu HZ Li Q Yang XY Liu L Liu L An XR Chen YF 《Acta biochimica et biophysica Sinica》2006,38(10):697-703
During the development and regeneration of skeletal muscle,many growth factors,such asbasic fibroblast growth factor (bFGF,FGF-2) and myostatin,have been shown to play regulating roles.bFGF contributes to promote proliferation and to inhibit differentiation of skeletal muscle,whereas myostatinplays a series of contrasting roles.In order to elucidate whether the expression of bFGF has any relationshipwith the expression of myostatin in skeletal muscle cells,we constructed a eukaryotic expression vector forthe expression of exogenous bFGF in murine C2C12 myoblasts.Quantitative RT-PCR assays indicated thatwith the increase of the expression of exogenous bFGF gene,the expression of endogenous myostatin genewas suppressed at mRNA level and protein level. 相似文献
20.
Spermatogonia and sperm-like cells can be derived in vitro via the addition of RA (retinoic acid) to pluripotent ES and EG cells. At present, however, these cells have not been derived from unipotent cells. Here, we have generated premeiotic Stra8-positive cells from C2C12 myoblasts following treatment with 10 μM all-trans-RA for 8 days. The differentiated C2C12 cells exhibited spherical morphology similar to spermatogonia, and they expressed gene markers of premeiosis, meiosis and postmeiosis. In addition, some of the transdifferentiated Stra8-positive cells had a tail-like phenotype. Flow cytometry results indicated that up to 20% of RA-induced C2C12 cells were Stra8-positive. Mvh (mouse vasa homologue) protein, a germ cell-specific ATP-dependent RNA helicase and Prm1 (protamine 1) were detected in transdifferentiated cells. The DNA content in induced C2C12 cells showed that Stra8-positive cells were diploid, suggesting that the myoblast transdifferentiation was in the premeiotic stage of spermatogenesis. The derivation of Stra8-positive cells from C2C12 myoblasts has important implications for studying unipotent cell differentiation. Furthermore, C2C12 myoblasts may provide a useful in vitro cell model to study signal transduction and transdifferentiation during RA treatments. 相似文献