首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The potential to use Schwann cells (SCs) in neural repair for patients suffering from neurotrauma and neurodegenerative diseases is well recognized. However, significant cell death after transplantation hinders the clinical translation of SC-based therapies. Various factors may contribute to the death of transplanted cells. It is known that prolonged activation of P2X7 purinoceptors (P2X7R) can lead to death of certain types of cells. In this study, we show that rat SCs express P2X7R and exposure of cultured SCs to high concentrations of ATP (3–5 mM) or a P2X7R agonist, 2′(3′)-O-(4-benzoylbenzoyl)ATP (BzATP) induced significant cell death rapidly. High concentrations of ATP and BzATP increased ethidium uptake by SCs, indicating increased membrane permeability to large molecules, a typical feature of prolonged P2X7R activation. SC death, as well as ethidium uptake, induced by ATP was blocked by an irreversible P2X7R antagonist oxidized ATP (oxATP) or a reversible P2X7R antagonist A438079. oxATP also significantly inhibits the increase of intracellular free calcium induced by minimolar ATP concentrations. Furthermore, ATP did not cause death of SCs isolated from P2X7R-knockout mice. All these results suggest that P2X7R is responsible for ATP-induced SC death in vitro. When rat SCs were treated with oxATP before transplantation into uninjured rat spinal cord, 35% more SCs survived than untreated SCs 1 week after transplantation. Moreover, 58% more SCs isolated from P2X7R-knockout mice survived after being transplanted into rat spinal cord than SCs from wild-type mice. This further confirms that P2X7R is involved in the death of transplanted SCs. These results indicate that targeting P2X7R on SCs could be a potential strategy to improve the survival of transplanted cells. As many other types of cells, including neural stem cells, also express P2X7R, deactivating P2X7R may improve the survival of other types of transplanted cells.  相似文献   

2.
Human embryonic stem cells (hESCs) can be differentiated into structurally and electrically functional myocardial tissue and have the potential to regenerate large regions of infarcted myocardium. One of the key challenges that needs to be addressed towards full‐scale clinical application of hESCs is enhancing survival of the transplanted cells within ischaemic or scarred, avascular host tissue. Shortly after transplantation, most hESCs are lost as a result of multiple mechanical, cellular and host factors, and a large proportion of the remaining cells undergo apoptosis or necrosis shortly thereafter, as a result of loss of adhesion‐related signals, ischaemia, inflammation or immunological rejection. Blocking the apoptotic signalling pathways of the cells, using pro‐survival cocktails, conditioning hESCs prior to transplant, promoting angiogenesis, immunosuppressing the host and using of bioengineered matrices are among the emerging techniques that have been shown to optimize cell survival. This review presents an overview of the current strategies for optimizing cell and host tissue to improve the survival and efficacy of cardiac cells derived from pluripotent stem cells.  相似文献   

3.
Cell therapy is a promising treatment for diseases that are caused by cell degeneration or death. The cells for clinical transplantation are usually obtained by culturing healthy allogeneic or exogenous tissue invitro. However, for diseases of the eye, obtaining the adequate number of cells for clinical transplantation is difficult due to the small size of tissue donors and the frequent needs of long-term amplification of cells in vitro, which results in low cell viability after transplantation. In addition, the transplanted cells often develop fibrosis or degrade and have very low survival. Embryonic stem cells(ESCs) and induced pluripotent stem cells(i PS) are also promising candidates for cell therapy. Unfortunately, the differentiation of ESCs can bring immune rejection, tumorigenicity and undesired differentiated cells, limiting its clinical application. Although i PS cells can avoid the risk of immune rejection caused by ES cell differentiation post-transplantation, the low conversion rate, the risk of tumor formation and the potentially unpredictable biological changes that could occur through genetic manipulation hinder its clinical application. Thus, the desired clinical effect of cell therapy is impaired by these factors. Recent research findings recognize that the reason for low survival of the implanted cells not only depends on the seeded cells, but also on the cell microenvironment, which determines the cell survival, proliferation and even reverse differentiation. When used for cell therapy, the transplanted cells need a specific three-dimensional structure to anchor and specific extra cellular matrix components in addition to relevant cytokine signaling to transfer the required information to support their growth. These structures present in the matrix in which the stem cells reside are known as the stem cell microenvironment. The microenvironment interaction with the stem cells provides the necessary homeostasis for cell maintenance and growth. A large number of studies suggest that to explore how to reconstruct the stem cell microenvironment and strengthen its combination with the transplanted cells are key steps to successful cell therapy. In this review, we will describe the interactions of the stem cell microenvironment with the stem cells, discuss the importance of the stem cell microenvironment for cell-based therapy in ocular diseases, and introduce the progress of stem cell-basedtherapy for ocular diseases.  相似文献   

4.
间充质干细胞是一类具有强大增殖、多向分化潜能和免疫调节能力的多功能细胞,研究显示间充质干细胞移植可能治疗多种难治性疾病,例如帕金森病、脊髓损伤以及肿瘤等。但是,人们对移植后的细胞在宿主内的存活、分布、增殖、分化、免疫排斥反应以及成瘤特性等问题尚不清楚,所以许多疾病经过细胞移植治疗后的进展及转归情况仍难以获得确切的科学证据。而细胞成像技术(包括放射性核素成像、超声成像、磁共振成像以及光学成像)可以在体外或者体内实现对间充质干细胞实时、无创的示踪,在以间充质干细胞为研究基础的细胞移植治疗和细胞组织再生的医学领域里有着巨大的应用潜力。该文综述近十年来细胞成像技术应用于示踪间充质干细胞移植疗法的研究进展,旨在比较当下多种热门细胞成像技术的优劣,进而找寻更合适的干细胞示踪策略,为干细胞移植治疗的基础和临床研究提供进一步的理论证据支持和研究思路。  相似文献   

5.
Avoiding the limitations of the adult liver niche, transplantation of hepatic stem/progenitor cells into fetal liver is desirable to analyze immature cells in a hepatic developmental environment. Here, we established a new monitor tool for cell fate of hepatic progenitor cells transplanted into the mouse fetal liver by using ex utero surgery. When embryonic day (ED) 14.5 hepatoblasts were injected into the ED14.5 fetal liver, the transplanted cells expressed albumin abundantly or α-fetoprotein weakly, and contained glycogen in the neonatal liver, indicating that transplanted hepatoblasts can proliferate and differentiate in concord with surrounding recipient parenchymal cells. The transplanted cells became mature in the liver of 6-week-old mice. Furthermore, this method was applicable to transplantation of hepatoblast-like cells derived from mouse embryonic stem cells. These data indicate that this unique technique will provide a new in vivo experimental system for studying cell fate of hepatic stem/progenitor cells and liver organogenesis.  相似文献   

6.
Our study aimed to evaluate the protective role and mechanisms of bone marrow mesenchymal stem cells (BMSCs) in hypoxic photoreceptors and experimental retinal detachment. The cellular morphology, viability, apoptosis and autophagy of hypoxic 661w cells and cells cocultured with BMSCs were analysed. In retinal detachment model, BMSCs were intraocularly transplanted, and then, the retinal morphology, outer nuclear layer (ONL) thickness and rhodopsin expression were studied as well as apoptosis and autophagy of the retinal cells. The hypoxia-induced apoptosis of 661w cells obviously increased together with autophagy levels increasing and peaking at 8 hours after hypoxia. Upon coculturing with BMSCs, hypoxic 661w cells had a better morphology and fewer apoptosis. After autophagy was inhibited, the apoptotic 661w cells under the hypoxia increased, and the cell viability was reduced, even in the presence of transplanted BMSCs. In retina-detached eyes transplanted with BMSCs, the retinal ONL thickness was closer to that of the normal retina. After transplantation, apoptosis decreased significantly and retinal autophagy was activated in the BMSC-treated retinas. Increased autophagy in the early stage could facilitate the survival of 661w cells under hypoxic stress. Coculturing with BMSCs protects 661w cells from hypoxic damage, possibly due to autophagy activation. In retinal detachment models, BMSC transplantation can significantly reduce photoreceptor cell death and preserve retinal structure. The capacity of BMSCs to reduce retinal cell apoptosis and to initiate autophagy shortly after transplantation may facilitate the survival of retinal cells in the low-oxygen and nutrition-restricted milieu after retinal detachment.  相似文献   

7.
目的:观察心肌梗死小鼠静脉移植成体心脏干细胞后,细胞在小鼠体内各器官的分布情况。明确心梗后静脉移植成体心脏干 细胞在小鼠体内的分布和归巢情况。方法:分离培养小鼠心脏成体干细胞,采用流式细胞仪鉴定细胞,通过亲脂性染料CM-DiI标 记细胞后行小鼠急性心肌梗死模型建立和细胞移植,分别在细胞移植后7、14、8 天取小鼠心脏、肝脏、脑、脊髓、肺脏,行冰冻切 片,在荧光显微镜下观察移植细胞在各组织器官存活和分布情况。结果:成体心脏干细胞分离培养后呈贴壁生长,流式细胞仪检 测显示细胞纯度>80%。CM-DiI标记后荧光显微镜下观察可见标记的细胞胞浆胞核均被染成呈明亮的红色。心肌梗死后经静脉 移植成体心脏干细胞,细胞在各组织中分布呈变化过程,7 天时,在肺脏和肝脏分布较多,至14 天和28 天时,肺脏和肝脏分布减 少,心脏分布逐渐增多,表现出向心脏的" 归巢" 现象,而脑和脊髓在28 天的观察时间内分布较少。结论:采用CM-DiI标记心 脏成体干细胞,操作简单,标记效果好,可用于短期的细胞体内追踪。小鼠心肌梗死后行经静脉成体心脏干细胞移植,28 天后细胞 在心脏的分布逐渐增多,表现出向心脏的" 归巢" 现象。  相似文献   

8.
In the present study, induced pluripotent stem cells (iPSCs), induced neural stem cells (iNSCs), mesenchymal stem cells (MSCs) and an immortalized cell line (RMNE6), representing different characteristics of stem cells, were transplanted into normal and/or injured brain areas of rodent stroke models, and their effects were compared to select suitable stem cells for cell replacement stroke therapy. The rat and mice ischaemic models were constructed using the middle cerebral artery occlusion technique. Both electrocoagulation of the artery and the intraluminal filament technique were used. The behaviour changes and fates of grafted stem cells were determined mainly by behaviour testing and immunocytochemistry. Following iPSC transplantation into the corpora striata of normal mice, a tumour developed in the brain. The iNSCs survived well and migrated towards the injured area without differentiation. Although there was no tumourigenesis in the brain of normal or ischaemic mice after the iNSCs were transplanted in the cortices, the behaviour in ischaemic mice was not improved. Upon transplanting MSC and RMNE6 cells into ischaemic rat brains, results similar to iNSCs in mice were seen. However, transplantation of RMNE6 caused a brain tumour. Thus, tumourigenesis and indeterminate improvement of behaviour are challenging problems encountered in stem cell therapy for stroke, and the intrinsic characteristics of stem cells should be remodelled before transplantation. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
The transplantation of cultured stem and progenitor cells is a key element in the rapidly growing field of regenerative medicine. Based on their ability to rescue and/or repair injured tissue and partially restore organ function, multiple types of stem/progenitor cells have already entered into clinical trials. However, despite several decades of intense research, the goal to apply culture-expanded stem/progenitor cells in a manner that can effectively replace cells after injury has yet to be realized. Many sources of potentially useful cells are available, but something is clearly missing. In addition, recent studies suggest that paracrine effects of secreted or released factors are responsible for most of the benefits observed after cell transplantation, rather than direct cell replacement. These data call into question the need for cell transplantation for many types of therapy, in particular for acute injuries such as myocardial infarction and stroke. In this review, we examine current progress in the area of cell transplantation and minor issues and major hurdles regarding the clinical application of different cell types. We discuss the "paracrine hypothesis" for the action of transplanted stem/progenitor cells as an opportunity to identify defined combinations of biomolecules to rescue and/or repair tissues after injury. Although many of the concepts in this review will apply to multiple injury/repair systems, we will focus primarily on stem/progenitor cell-based treatments for neurological disorders and stroke.  相似文献   

10.
Cardiovascular diseases are major causes of mortality and morbidity. Cardiomyocyte apoptosis disrupts cardiac function and leads to cardiac decompensation and terminal heart failure. Delineating the regulatory signaling pathways that orchestrate cell survival in the heart has significant therapeutic implications. Cardiac tissue has limited capacity to regenerate and repair. Stem cell therapy is a successful approach for repairing and regenerating ischemic cardiac tissue; however, transplanted cells display very high death percentage, a problem that affects success of tissue regeneration. Stem cells display multipotency or pluripotency and undergo self-renewal, however these events are negatively influenced by upregulation of cell death machinery that induces the significant decrease in survival and differentiation signals upon cardiovascular injury. While efforts to identify cell types and molecular pathways that promote cardiac tissue regeneration have been productive, studies that focus on blocking the extensive cell death after transplantation are limited. The control of cell death includes multiple networks rather than one crucial pathway, which underlies the challenge of identifying the interaction between various cellular and biochemical components. This review is aimed at exploiting the molecular mechanisms by which stem cells resist death signals to develop into mature and healthy cardiac cells. Specifically, we focus on a number of factors that control death and survival of stem cells upon transplantation and ultimately affect cardiac regeneration. We also discuss potential survival enhancing strategies and how they could be meaningful in the design of targeted therapies that improve cardiac function.  相似文献   

11.
Effect of neurotrophic factors on neuronal stem cell death   总被引:3,自引:0,他引:3  
Neural cell survival is an essential concern in the aging brain and many diseases of the central nervous system. Neural transplantation of the stem cells are already applied to clinical trials for many degenerative neurological diseases, including Huntington\'s disease, Parkinson\'s disease, and strokes. A critical problem of the neural transplantation is how to reduce their apoptosis and improve cell survival. Neurotrophic factors generally contribute as extrinsic cues to promote cell survival of specific neurons in the developing mammalian brains, but the survival factor for neural stem cell is poorly defined. To understand the mechanism controlling stem cell death and improve cell survival of the transplanted stem cells, we investigated the effect of plausible neurotrophic factors on stem cell survival. The neural stem cell, HiB5, when treated with PDGF prior to transplantation, survived better than cells without PDGF. The resulting survival rate was two fold for four weeks and up to three fold for twelve weeks. When transplanted into dorsal hippocampus, they migrated along hippocampal alveus and integrated into pyramidal cell layers and dentate granule cell layers in an inside out sequence, which is perhaps the endogenous pathway that is similar to that in embryonic neurogenesis. Promotion of the long term-survival and differentiation of the transplanted neural precursors by PDGF may facilitate regeneration in the aging adult brain and probably in the injury sites of the brain.  相似文献   

12.
The role of stem cells in cardiac regeneration   总被引:18,自引:0,他引:18  
After myocardial infarction, injured cardiomyocytes are replaced by fibrotic tissue promoting the development of heart failure. Cell transplantation has emerged as a potential therapy and stem cells may be an important and powerful cellular source. Embryonic stem cells can differentiate into true cardiomyocytes, making them in principle an unlimited source of transplantable cells for cardiac repair, although immunological and ethical constraints exist. Somatic stem cells are an attractive option to explore for transplantation as they are autologous, but their differentiation potential is more restricted than embryonic stem cells. Currently, the major sources of somatic cells used for basic research and in clinical trials originate from the bone marrow. The differentiation capacity of different populations of bone marrow-derived stem cells into cardiomyocytes has been studied intensively. The results are rather confusing and difficult to compare, since different isolation and identification methods have been used to determine the cell population studied. To date, only mesenchymal stem cells seem to form cardiomyocytes, and only a small percentage of this population will do so in vitro or in vivo. A newly identified cell population isolated from cardiac tissue, called cardiac progenitor cells, holds great potential for cardiac regeneration. Here we discuss the potential of the different cell populations and their usefulness in stem cell based therapy to repair the damaged heart.  相似文献   

13.
Allogeneic umbilical cord blood haematopoietic stem cells (UCB-HSCs) can be transplanted into a host with the intact innate immunity with limited immuno-reaction, although the mechanisms remain unclear. The present studies aimed at investigating potential mechanisms of allogeneic UCB-HSCs escape from the cytolysis of natural killer (NK) cells. We compared UCB-HSCs ability to protect from NK-mediated cytotoxicity with peripheral blood or bone marrow haematopoietic stem cells (PB-HSCs and BM-HSCs). HSCs expressed lower levels of natural cytotoxicity receptor ligands including NKp30L, NKp44L and NKp46L than monocytes. Blocking these ligands respectively or in combination could increase the resistance of HSCs against NK cell mediated cytotoxicity. High expression of HLA-G was noticed on UCB-HSCs, rather than PB-HSCs or BM-HSCs, whereas blockade of HLA-G significantly elevated NK cell mediated cytolysis to UCB-HSCs. Thus, we conclude that natural cytotoxicity receptors and HLA-G on HSCs may contribute to the escape from NK cells, and activate and inhibitory NK cell receptors and their ligands can be novel therapeutic targets in cell transplantation.  相似文献   

14.
We have examined the growth behavior of small numbers of interstitial stem cells transplanted into tissue of genetically unrelated strains of Hydra magnipapillata. We show that such stem cells, which are at low density following transplantation, proliferate more rapidly than the stem cells of the host, which are at normal density. The rapid proliferation is similar to the proliferation rate of stem cells transplanted into interstitial cell free tissue. The results suggest that stem cells transplanted into heterotypic tissue are unable to "sense" the presence of host stem cells and to adopt their growth rate to that of the surrounding cells. Thus, the feedback signal which negatively regulates stem cell growth as a function of stem cell density must be strain specific.  相似文献   

15.
Multipotent germline stem (mGS) cells have been established from neonatal mouse testes. We previously reported that undifferentiated mGS cells are phenotypically similar to embryonic stem cells and that fetal liver kinase 1 (Flk1)+ mGS cells have a similar potential to differentiate into cardiomyocytes and endothelial cells compared with Flk1+ embryonic stem cells. Here, we transplanted these Flk1+ mGS cells into an ischemic heart failure mouse model to evaluate the improvement in cardiac function. Significant increase in left ventricular wall thickness of the infarct area, left ventricular ejection fraction and left ventricular maximum systolic velocity was observed 4 weeks after when sorted Flk1+ mGS cells were transplanted directly into the hearts of the acute ischemic model mice. Although the number of cardiomyocytes derived from Flk1+ mGS cells were too small to account for the improvement in cardiac function but angiogenesis around ischemic area was enhanced in the Flk1+ mGS cells transplanted group than the control group and senescence was also remarkably diminished in the early phase of ischemia according to β-galactosidase staining assay. In conclusion, Flk1+ mGS cell transplantation can improve the cardiac function of ischemic hearts by promoting angiogenesis and by delaying host cell death via senescence.  相似文献   

16.
Therapeutic potential of hepatocyte transplantation   总被引:11,自引:0,他引:11  
Liver repopulation with transplanted cells offers unique opportunities for treating a variety of diseases and for studies of fundamental mechanisms in cell biology. Our understanding of the basis of liver repopulation has come from studies of transplanted cells in animal models. A variety of studies established that transplanted hepatocytes as well as stem/progenitor cells survive, engraft, and function in the liver. Transplanted cells survive life-long, although cells do not proliferate in the normal liver. On the other hand, the liver is repopulated extensively when diseases or other injuries afflict native hepatocytes but spare transplanted cells. The identification of ways to repopulate the liver with transplanted cells has greatly reinvigorated the field of liver cell therapy. The confluence of insights in stem/progenitor cells, transplantation immunology, cryobiology, and liver repopulation in specific models of human diseases indicates that the field of liver cell therapy will begin to reap the promised fruit in the near future.  相似文献   

17.
Mesenchymal stem cells (MSCs) have a pronounced therapeutic potential in various pathological conditions. Though therapeutic effects of MSC transplantation have been studied for a long time, the underlying mechanisms are still not clear. It has been shown that transplanted MSCs are rapidly eliminated, presumably by apoptosis. As the mechanisms of MSC apoptosis are not fully understood, in the present work we analyzed MSC sensitivity to Fas-induced apoptosis using MSCs isolated from the biopsies of liver fibrosis patients (L-MSCs). The level of cell death was analyzed by flow cytometry in the propidium iodide test. The luminescent ATP assay was used to measure cellular ATP levels; and the mitochondrial membrane potential was assessed using the potential-dependent dye JC-1. We found that human L-MSCs were resistant to Fas-induced cell death over a wide range of FasL and anti-Fas mAb concentrations. At the same time, intrinsic death signal inducers CoCl2 and staurosporine caused apoptosis of L-MSCs in a dose-dependent manner. Despite the absence of Fas-induced cell death treatment of L-MSCs with low concentrations of FasL or anti-Fas mAb resulted in a cellular ATP level decrease, while high concentrations of the inducers caused a decline of the mitochondrial membrane potential. Pre-incubation of L-MSCs with the pro-inflammatory cytokine TNF-α did not promote L-MSC cell death. Our data indicate that human L-MSCs have increased resistance to receptor-mediated cell death even under inflammatory conditions.  相似文献   

18.
Zhang S  Ge J  Sun A  Xu D  Qian J  Lin J  Zhao Y  Hu H  Li Y  Wang K  Zou Y 《Journal of cellular biochemistry》2006,99(4):1132-1147
A variety of adult stem cells have been used to transplant into the infarcted (MI) heart, however, comparative studies are lacking to show more suitable source of cells for transplantation. We have identified a single non-hematopoietic mesenchymal stem cell subpopulation (snMSCs) isolated from human bone marrow and clonally purified, that over 99% of them expressed MSC marker proteins and cardiomyocyte marker proteins when induction in vitro. We also compared the effects of the snMSCs with unpurified MSC (uMSCs), mononuclear cells (BMMNCs), or peripheral blood mononuclear cells (PBMNCs) on myocardial repair after induction of MI in rats. Ninety days later, we observed a better cardiac function assessed by ejection fraction, fraction of shortening and lung wet/dry weight ratios, less remodeling of left ventricle (LV), lower collagen density in the LV, and more vessels in the ischemic wall in the snMSCs transplantation group than in other cell-transplanted groups. Furthermore, the transplanted cells expressing cardiomyocyte specific proteins or vascular endothelial cell marker proteins were more in the snMSCs group than in other ones. We conclude that transplantation with single clonally purified MSCs seems to be more beneficial to the cardiac repair than with other stem cells after MI.  相似文献   

19.
Lu WG  Chen H  Wang D  Li FG  Zhang SM 《生理学报》2007,59(1):51-57
全能区域非特异性的胚胎干细胞是研究成体不同脑区控制干细胞分化能力的十分有力的工具。胚胎干细胞源性神经前体细胞移植入成体脑后可分化为功能性神经元,但是未分化的胚胎干细胞在成体脑内各个部位的存活、生长与分化的潜能差异尚不清楚。本文旨在探讨成体脑组织对胚胎干细胞的影响及胚胎干细胞在成体脑内的一系列行为。将少量转绿色荧光蛋白未分化的小鼠胚胎干细胞移植入成体大鼠脑内不同部位,分别于移植5、14和28d后处死大鼠,进行形态学观察及免疫组化定性,以了解未分化的小鼠胚胎干细胞在大鼠脑内不同区域的存活、生长与分化。结果发现未分化的小鼠胚胎干细胞可逐步整合入受体组织并向nestin阳性神经前体细胞分化。移植细胞及其后裔在海马生长最为旺盛,而在隔区最差(P〈0.01);移植细胞分化为神经干细胞的效率也是在海马最高,而在隔区最低(P〈0.01)。提示只有部分脑区适合胚胎干细胞及其后裔生存,并提供促进其分化的有益环境。因此,由于位置特异的微环境因子及环境因素的存在,宿主组织特性对决定中枢神经系统疾病的细胞替代疗法策略是相当重要的。  相似文献   

20.
The discovery of insulin more than 90 years ago introduced a life‐saving treatment for patients with type 1 diabetes, and since then, significant progress has been made in clinical care for all forms of diabetes. However, no method of insulin delivery matches the ability of the human pancreas to reliably and automatically maintain glucose levels within a tight range. Transplantation of human islets or of an intact pancreas can in principle cure diabetes, but this approach is generally reserved for cases with simultaneous transplantation of a kidney, where immunosuppression is already a requirement. Recent advances in cell reprogramming and beta cell differentiation now allow the generation of personalized stem cells, providing an unlimited source of beta cells for research and for developing autologous cell therapies. In this review, we will discuss the utility of stem cell‐derived beta cells to investigate the mechanisms of beta cell failure in diabetes, and the challenges to develop beta cell replacement therapies. These challenges include appropriate quality controls of the cells being used, the ability to generate beta cell grafts of stable cellular composition, and in the case of type 1 diabetes, protecting implanted cells from autoimmune destruction without compromising other aspects of the immune system or the functionality of the graft. Such novel treatments will need to match or exceed the relative safety and efficacy of available care for diabetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号