首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
To enhance the production of hCTLA4Ig in transgenic rice suspension cell cultures, anoxic conditions were applied during the production phase. Under the anoxic conditions in sugar-depleted media, cell viability was reduced rapidly and protease activity increased compared to aerobic conditions. However, the maximum production level of hCTLA4Ig with sugar-depleted anoxic conditions was the same as that in aerobic conditions. In addition, the production of hCTLA4Ig under anoxic conditions reached a peak 2 days earlier than that in aerobic conditions. Addition of 30 mM glucose at the production phase under anoxic conditions markedly improved cell viability. A viability level over 65% could be maintained for more than 30 days. Repression of the RAmy3D promoter by residual sugar in the production of hCTLA4Ig was not observed under anoxic conditions with 30 mM glucose. In addition, the production periods of hCTLA4Ig was extended up to 30 days and the maximum production level of hCTLA4Ig under anoxic conditions was 2.1-fold higher. Therefore, anoxic conditions could be used for the enhanced production of hCTLA4Ig in transgenic rice cell cultures.  相似文献   

2.
The effects of culture media on the production of human cytotoxic T-lymphocyte antigen 4-immunoglobulin (hCTLA4Ig) and intracellular protein expression patterns were investigated in transgenic rice cell suspension cultures. Using comparative proteomic analysis, changes in the intracellular proteome in different culture media were identified. Culture media were found to be an important factor for the production of the recombinant target protein in this expression system, which was under the control of the rice α-amylase 3D (RAmy3D) promoter. In terms of hCTLA4Ig production, the N6 medium produced a 3.7-fold higher level of protein than the AA medium. In addition, the N6 medium provided better protein stability and cell viability. In the intracellular proteome analysis, we identified eight proteomes that were differentially expressed. These results could provide valuable information for the improvement of cell growth and target protein production.  相似文献   

3.
Human cytotoxic T-lymphocyte antigen 4-immunoglobulin (hCTLA4I g) fusion protein, a novel immunosuppressive agent, was expressed in transgenic rice cell suspension culture and its characteristics and in vitro activities were investigated. The expression vector pMYN409 was constructed to express hCTLA4I g under the control of rice alpha-amylase 3D (RAmy3D) promoter. Transgenic calli were prepared by particle bombardment mediated transformation and were screened for hCTLA4I g expression using ELISA. Under the induction condition by sugar starvation, suspension-cultured rice cells secreted hCTLA4I g into the media up to 31.4 mg/L in flask culture. The rice-derived hCTLA4Ig (hCTLA4IgP) was purified from the culture media with affinity chromatography using protein A and compared with CHO-derived hCTLA4Ig (hCTLA4IgM). Recombinant hCTLA4IgP has molecular weight of approximately 50 kDa on SDS-PAGE under reducing condition, which is a little different from that of hCTLA4IgM probably due to the difference of carbohydrate chain structures. Purified hCTLA4IgP was biologically active and was confirmed to suppress T-cell proliferation.  相似文献   

4.
In this study, the influences of major nutrients on cell growth and lipid production were investigated in heterotrophic culture of Chlorella protothecoides. The results demonstrated that phosphorus depletion had no effect on lipid accumulation but restricted cell growth; however, nitrogen depletion could enhance lipid accumulation thus benefiting lipid production. Furthermore, the effects of glucose inhibition were comparatively investigated with osmotic stress, showing that the effects of glucose inhibition were similar to the effect of osmotic stress at equivalent osmotic pressures only if the glucose concentration was less than 100 g/L, otherwise the effects of glucose inhibition became much stronger than osmotic stress. Interestingly, it was found that a specific hyperosmotic stress could significantly enhance lipid accumulation, thus providing a new stress strategy for efficient lipid production. Finally, a novel two-stage fed-batch culture consisting of a growth phase and a lipid accumulation phase with nitrogen depletion and hyperosmotic stress was proposed, yielding a final lipid productivity of 177.3 mg/L/h with a very high lipid yield of 207.0 mg/g glucose and lipid content of 39.2% after 180 h culture, which were 1.60, 1.79 and 1.92-fold of those obtained in one-stage fed-batch culture without stress phase, respectively.  相似文献   

5.
《Process Biochemistry》2014,49(12):2044-2048
Production of pediocin SM-1 by Pediococcus pentosaceus Mees 1934 was investigated in semi-aerobic, pH-controlled, batch and fed-batch fermentations using a complex medium containing sucrose as the main source of carbon. The effects of sucrose concentration were studied in fed-batch fermentations in which a sucrose solution was added at stable feeding rates (5, 7, 9 and 10 g/l/h). The results showed that pediocin is produced as a product of the primary metabolism and its titer could be greatly improved by adjusting the sucrose feeding rate in fed-batch fermentation. The maximum titer of pediocin of 145 AU/ml was obtained in the fed-batch culture with 7 g/l/h feeding rate and that was 119% higher compared to the titer obtained in batch culture. Higher feeding rates (9 and 10 g/l/h) resulted in decreased pediocin yields while biomass levels appeared to be rather unaffected. The specific rate of pediocin formation was also sensitive to sucrose concentration levels. A mathematical model developed on the basis of well-known rate equations for batch and fed-batch cultures and growth associated production, described successfully cell growth, sucrose assimilation, lactate production and pediocin production in fed-batch culture.  相似文献   

6.
The extensive prospects of violacein in the pharmaceutical industry have attracted increasing interest. However, the fermentation levels of violacein are currently inadequate to meet the demands of industrial production. This study was undertaken to develop an efficient process for the production of violacein by recombinant Citrobacter freundii. The effects of dissolved oxygen (DO) and pH on cell growth and violacein production in batch cultures were investigated first. When the DO and pH of the medium were controlled at around 25% and 7.0, respectively, the biomass and concentration of violacein were maximized. Based on the consumption of nutrients in the medium observed during batch culture, a fed-batch fermentation strategy with controlled DO and pH was implemented. By continuously feeding glycerol, NH4Cl, and l-tryptophan at a constant feeding rate of 16 mL h−1, the final concentration of violacein reached 4.13 g L−1, which was 4.09-fold higher than the corresponding batch culture, and the maximal dry cell weight (DCW) and average violacein productivity obtained for the fed-batch culture were 3.34 g DCW L−1 and 82.6 mg L−1 h−1, respectively. To date, this is the first report on the efficient production of violacein by genetically engineered strains in a fermentor.  相似文献   

7.
Adsorptive loss of human cytotoxic T-lymphocyte antigen 4-immunoglobulin (hCTLA4Ig) in transgenic rice cell suspension cultures was investigated using glass flasks, plastic flasks, disposable vessels, and stainless steel vessels. When hCTLA4Ig was added to the glass flasks containing sterile AA medium, a rapid decrease in the concentration of hCTLA4Ig, independent on pH, was observed resulting in more than 90% of the protein loss within 1 h due to the surface adsorption. When the same experiments were performed on four different types of culture equipments mentioned above, the lowest adsorption level was observed in the plastic flasks and the highest level was observed in the glass flasks. The use of the plastic flasks retarded the adsorptive loss of hCTLA4Ig at the early stage of the protein production. There was a significant increase in the production of hCTLA4Ig when the flasks were coated with bovine serum albumin. However, the spike test of purified hCTLA4Ig at two different concentrations of 15 and 100 mg L−1 in 500-mL spinner flasks confirmed that the amount of hCTLA4Ig adsorbed was dependent on the surface area of the flasks but not on the concentrations. In conclusion, although the protein adsorption affected the total amount of the protein yielded to some extent, it could be regarded as a minor factor in transgenic plant cell cultures with higher titer.  相似文献   

8.
《Process Biochemistry》2010,45(8):1334-1341
A high cell density cultivation protocol was developed for the secretory production of potato carboxypeptidase inhibitor (PCI) in Escherichia coli. The strain BW25113 (pIMAM3) was cultured in fed-batch mode employing minimal media and an exponential feed profile where the specific growth rate was fixed by limitation of the fed carbon source (glycerol). Plasmid loss rates were found to be proportional to the specific growth rate. Distribution of PCI along the cell compartments and the culture media was also dependent on the fixed growth rate. When specific growth rate was kept at μ = 0.10 h−1, 1.4 g PCI L−1 were obtained when adding the product present in periplasmic extracts and supernatant fractions, with a 50% of the total expressed protein recovered from the extracellular medium. This constituted a 1.2-fold increase compared to growth at μ = 0.15 h−1, and 2.0-fold compared to μ = 0.25 h−1. Last, a cell permeabilization treatment with Triton X-100 and glycine was employed to direct most of the product to the culture media, achieving over 81% of extracellular PCI. Overall, our results point out that production yields of secretory proteins in fed-batch cultures of E. coli can be improved by means of process variables, with applications to the production of small disulfide-bridged proteins. Overall, our results point out that control of the specific growth rate is a successful strategy to improve the production yields of secretory expression in fed-batch cultures of E. coli, with applications to the production of small disulfide-bridged proteins.  相似文献   

9.
For this study, 2,3-butanediol (BD) fermentation from pure and biomass-derived sugar were optimized in shake-flask and 5-L bioreactor levels using Klebsiella oxytoca ATCC 8724. The results showed that 70 g/L of single sugar (glucose or xylose) and 90 g/L of mixed-sugar (glucose:xylose = 2:1) were optimum concentrations for efficient 2,3-BD fermentation. At optimum sugar concentrations, 2,3-BD productivities were 1.03, 0.64 and 0.50 gL−1 h−1, and yields were 0.43, 0.36 and 0.35 g/g in glucose, xylose and mixed-sugar medium, respectively. The lack of simultaneous utilization of glucose and xylose led to the lowest productivity in the mixed-sugar medium. Detoxification of biomass hydrolyzates was necessary for efficient 2,3-BD fermentation when sugar concentrations in the medium was 90 g/L or higher, but not with sugar concentrations of 30 g/L or less. A fed-batch fermentation using glucose medium led to an increase 2,3-BD titer to 79.4 g/L and yields 0.47 g/g, while productivity decreased to 0.79 gL−1 h−1. However, the fed-batch process was inefficient using mixed-sugar and biomass hydrolyzates because of poor xylose utilization. These results indicated that appropriate biomass processing technologies must be developed to generate separate glucose and xylose streams to produce high 2,3-BD titer from biomass-derived sugar using a fed-batch process.  相似文献   

10.
Productivity of recombinant bovine trypsin using a rice amylase 3D promoter has been studied in transgenic rice suspension culture. Alternative carbon sources were added to rice cell suspension cultures in order to improve the production of recombinant bovine trypsin. It was demonstrated that addition of alternative carbon sources such as succinic acid, fumaric acid and malic acid in the culture medium could increase the productivity of recombinant bovine trypsin 3.8–4.3-fold compared to those in the control medium without carbon sources. The highest accumulated trypsin reached 68.2 mg/L on day 5 in the culture medium with 40 mM fumaric acid.The feasibility of repeated use of the cells for recombinant trypsin production was tested in transgenic rice cell suspension culture with the culture medium containing the combination of variable sucrose concentration and 40 mM fumaric acid. Among the used combinations, the combination of 1% sucrose and 40 mM fumaric acid resulted in a yield of up to 53 mg/L five days after incubation. It also increased 31% (W/W) of dry cell weight and improved 43% of cell viability compared to that in control medium without sucrose. Based on these data, recycling of the trypsin production process with repeated 1% sucrose and 40 mM fumaric acid supplying-harvesting cycles was developed in flask scale culture. Recombinant bovine trypsin could be stably produced with a yield of up to 53–39 mg/L per cycle during five recycling cycles.  相似文献   

11.
《Process Biochemistry》2010,45(4):613-616
Corncob acid hydrolysate, detoxed by sequently boiling, overliming and activated charcoal adsorption, was used for 2,3-butanediol production by Klebsiella oxytoca ACCC 10370. The effects of acetate in hydrolysate and pH on 2,3-butanediol production were investigated. It was found that acetic acid in hydrolysate inhibited the growth of K. oxytoca while benefited the 2,3-butanediol yield. With the increase in acetic acid concentration in medium from 0 to 4 g/l, the lag phase was prolonged and the specific growth rate decreased. The acetic acid inhibition on cell growth can be alleviated by adjusting pH to 6.3 prior to fermentation and a substrate fed-batch strategy with a low initial acetic acid concentration. Under the optimum condition, a maximal 2,3-butanediol concentration of 35.7 g/l was obtained after 60 h of fed-batch fermentation, giving a yield of 0.5 g/g reducing sugar and a productivity of 0.59 g/h l.  相似文献   

12.
Silkworm hemolymph (SH), prepared from fifth-instar larvae of Bombyx mori and heat-treated at 60 degrees C for 30 min, was used to improve cell viability and the production of human cytotoxic T-lymphocyte antigen 4-immunoglobulin (hCTLA4Ig) in transgenic Oryza sativa L. cell suspension cultures. Even though SH could not elevate cell viability at the concentrations up to 3% (v/v), addition of 0.3% (v/v) SH to a culture medium enhanced the production of hCTLA4Ig by 36.8% over an SH-free medium. Moreover, the production period of hCTLA4Ig could be shortened in a 0.3% (v/v) SHadded medium compared with that in an SH-free culture. As a result, addition of 0.3% (v/v) SH improved the productivity of hCTLA4Ig significantly in transgenic rice cell cultures.  相似文献   

13.
《Process Biochemistry》2014,49(3):374-379
Batch cultures of Candida utilis CBS 621 were carried out in a pressurized reactor under increased air pressure up to 6 bar. The effect of total air pressure was also investigated in a high cell density fed-batch culture, raising the total air pressure from 1 bar to 12 bar. The results showed that the rise of air pressure, for both operation modes, led to a substantial enhancement of biomass production. Moreover, ethanol formation was significantly reduced at 6 bar and 12 bar air pressure, respectively for batch and fed-batch processes.A method using automatic image analysis for classification of C. utilis cells based on their morphology was developed and applied to experimental data. Morphological parameters such as single and budding cells, cell size and elongation factor, were analyzed to assess the pressure effect on yeast culture. No significant differences were observed in cell size distribution and yeast cells retained the typical oval form, even at 12 bar air pressure.In what biological aspects are concerned, it is possible to state that C. utilis CBS 621 can cope with hyperbaric stress, meaning that the use of increased air pressure is a suitable method for oxygenation enhancement of high-density cultures of this strain.  相似文献   

14.
A fed-batch process for the production of biosimilar monoclonal antibody was developed. Since the brand product is produced by perfusion process, the impact of process change from perfusion to fed-batch on product quality and cell performance was evaluated. Perfusion culture was performed at 0.47–1.00 (v/v/d) perfusion rate by spin-filter method with 15–17 μm mesh. Culture parameters such as pH (6.8–7.2), dissolved oxygen (40–70% air saturation), temperature (37 °C) and agitation speed (250 rpm) were applied in both culture modes. In terms of cell performance, volumetric productivity increased 3.7 times while process performance increased 7.5 times in fed-batch culture due to 10 times higher scalability. Considering the glycosylation pattern and charge variants, no significant changes in product quality were observed upon process change, although intact IgG level slightly decreased in fed-batch mode. The change of production media showed more effect on glycosylation patterns than the operation in different culture modes. Furthermore, there were no differences in biological activity, including TNFα, FcγRIIIa, and C1q-binding affinity. Through a scale-up study from 3 L to 12,500 L, it was confirmed that cell performance and product quality could be maintained. In conclusion, product quality of the fed-batch process was comparable to that of the reference product.  相似文献   

15.
Isomaltulose is a structural isomer of sucrose commercially used in food industries. Glucosyltransferase produced by Erwinia sp. D12 catalyses an intramolecular transglucosylation of sucrose giving isomaltulose. An experimental Design and Response Surface Methodology were applied for the optimization of the nutrient concentration in the culture medium for enzyme production in shaken flasks at 200 rpm and 30 °C. A higher production of glucosyltransferase (7.47 Uml−1) was observed in the culture medium containing sugar cane molasses (160 gl−1), bacteriological peptone (20 gl−1) and yeast extract Prodex Lac SD® (15 gl−1) after 8 h, at 30 °C. The highest production of glucosyltransferase in the 6.6-l bioreactor (14.6 Uml−1) was obtained in the optimized culture medium after 10 h at 26 °C. When Erwinia sp. D12 cells were immobilized in sodium alginate, it was verified that sodium alginate solution A could be substituted by a cheaper one, sodium alginate solution B. Using a 40% cell suspension and 2% sodium alginate solution B for cell immobilization in a packed-bed reactor, 64.1% conversion of sucrose to isomaltulose was obtained. The packed-bed reactor with immobilized cells plus glutaraldehyde and polyethylenimine solutions remained in a pseudo-steady-state for 180 h.  相似文献   

16.
We examined glucose 6-phosphate dehydrogenase (G6PD) production by fed-batch cultivation, using a recombinant strain of Saccharomyces cerevisiae W303-181 overexpressing this enzyme. The cultivations were carried out in a 3 L fermenter at pH 5.7, 30 °C, 2.0 vvm aeration, 200 rpm agitation and an inoculum concentration of 1.0 g/L. The volume of the culture medium in the fed-batch process varied from 1.333 to 2.0 L, due to the addition of 15.0 g/L glucose solution during 5 h. Different feeding rates were studied (exponentially increasing and decreasing feeding rates), and the feeding profile was determined by values of the parameter K (time constant), namely: 0.2, 0.5 and 0.8 h−1. The best enzyme production (847 U/L) was obtained with an exponentially increasing feeding rate and K = 0.2 h−1. The results attained also showed that this process is promising for G6PD production.  相似文献   

17.
18.
Date syrup as an economical source of carbohydrates and immobilized Aspergillus niger J4, which was entrapped in calcium alginate pellets, were employed for enhancing the production of citric acid. Maximum production was achieved by pre-treating date syrup with 1.5% tricalcium phosphate to remove heavy metals. The production of citric acid using a pretreated medium was 38.87% higher than an untreated one that consumed sugar. The appropriate presence of nitrogen, phosphate and magnesium appeared to be important in order for citric acid to accumulate. The production of citric acid and the consumed sugar was higher when using 0.1% ammonium nitrate as the best source of nitrogen. The production of citric acid increased significantly when 0.1 g/l of KH2PO4 was added to the medium of date syrup. The addition of magnesium sulfate at the rate of 0.20 g/l had a stimulating effect on the production of citric acid. Maximum production of citric acid was obtained when calcium chloride was absent. One of the most important benefits of immobilized cells is their ability and stability to produce citric acid under a repeated batch culture. Over four repeated batches, the production of citric acid production was maintained for 24 days when each cycle continued for 144 h. The results obtained in the repeated batch cultivation using date syrup confirmed that date syrup could be used as a medium for the industrial production of citric acid.  相似文献   

19.
Jerusalem artichoke extract or powder was used for astaxanthin production using Phaffia rhodozyma without acidic or enzymatic inulin hydrolysis. The culture medium containing Jerusalem artichoke as carbon source was optimized, and feeding strategies, including constant, exponential, pH-stat, and substrate feedback fed-batch fermentations, were also compared for enhancing the cell biomass and astaxanthin synthesis by P. rhodozyma. Substrate-feedback fed-batch fermentation resulted in the highest dry cell weight of 83.60 g/L, with a carotenoid concentration and yield of 982.50 mg/L and 13.30 mg/g, respectively, under optimized medium components using Jerusalem artichoke extract as carbon source in a 3-L stirred-tank bioreactor. Moreover, 482.50 mg/L of carotenoids and 253.10 mg/L of astaxanthin were obtained by continuous feeding of Jerusalem artichoke powder, which was used as carbon source. Astaxanthin essence with high DPPH-scavenging activity was obtained from the extracted astaxanthin, and the DPPH free radical scavenging rate of 40 ppm astaxanthin essence reached 76.29%. When stored at 4 °C, astaxanthin essence showed the highest stability, with a minimum k value of 0.0099 week−1 and maximum half-life (t1/2) value of 70 weeks.  相似文献   

20.
A mixed fermentation strategy based on exponentially fed-batch cultures (EFBC) and nutrient pulses with sucrose and yeast extract was developed to achieve a high concentration of PHB by Azotobacter vinelandii OPNA, which carries a mutation on the regulatory systems PTSNtr and RsmA-RsmZ/Y, that negatively regulate the synthesis of PHB. Culture of the OPNA strain in shake flaks containing PY-sucrose medium significantly improved growth and PHB production with respect to the results obtained from the cultures with the parental strain (OP). When the OPNA strain was cultured in a batch fermentation keeping constant the DOT at 4%, the maximal growth rate (0.16 h−1) and PHB yield (0.30 gPHB gSuc−1) were reached. Later, in EFBC, the OPNA strain increased three fold the biomass and 2.2 fold the PHB concentration in relation to the values obtained from the batch cultures. Finally, using a strategy of exponential feeding coupled with nutrient pulses (with sucrose and yeast extract) the production of PHB increased 7-fold to reach a maximal PHB concentration of 27.3 ± 3.2 g L−1 at 60 h of fermentation. Overall, the use of the mutant of A. vinelandii OPNA, impaired in the PHB regulatory systems, in combination with a mixed fermentation strategy could be a feasible strategy to optimize the PHB production at industrial level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号