首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Endocrine practice》2010,16(2):324-333
ObjectiveTo review evidence supporting the hypothesis that metabolic manifestations of lipodystrophy result from leptin deficiency and that leptin replacement may be a viable treatment for generalized lipodystrophy.MethodsThis review results from the authors’ collective clinical experience and a comprehensive MEDLINE search of the English-language literature (1998 to 2009) on “leptin and lipodystrophy.”ResultsSevere lipodystrophy syndromes are characterized by loss of subcutaneous adipose tissue and thus a relative deficiency of the adipocyte-secreted hormone leptin. Several small, nonrandomized, open-label trials in a composite total of more than 100 patients with severe lipodystrophy not related to human immunodeficiency virus infection have evaluated the efficacy and safety of recombinant human methionyl leptin (metreleptin) therapy. Variables observed to improve after treatment with metreleptin include glycemic control, insulin sensitivity, plasma triglycerides, caloric intake, liver volume and lipid content, intramyocellular lipid content, and neuroendocrine and immunologic end points. In these studies, metreleptin treatment was well tolerated. Typical daily replacement doses for metreleptin were 0.06 to 0.08 mg/kg for female patients and 0.04 mg/kg for male patients, administered by subcutaneous injection twice daily. Although metreleptin is not yet approved for routine clinical use, it is available by means of expanded access provisions for patients with severe lipodystrophy and associated metabolic abnormalities.ConclusionEvidence published in the medical literature indicates that treating severe lipodystrophy as a leptin deficiency syndrome can improve the metabolic outcomes in affected patients. (Endocr Pract. 2010;16:324-333)  相似文献   

2.
《Endocrine practice》2007,13(6):656-661
ObjectiveTo evaluate the effectiveness and safety of pioglitazone therapy in a patient with an atypical presentation of partial lipodystrophy.MethodsWe present a case report and review the associated literature to put this case in perspective and explain its atypical features.ResultsA 40-year-old woman was referred because of uncontrolled diabetes and dyslipidemia, despite receiving a total daily dose of insulin of 300 U and combination therapy with a statin and a fibrate. On examination, the patient was found to have substantial central and abdominal fat deposition in conjunction with slender arms and legs. The addition of pioglitazone to her therapeutic regimen resulted in a dramatic improvement in glycemic control and in the dyslipidemia. During approximately a 2-year period, the patient’s insulin dose was decreased and was ultimately discontinued. Considerable increases in weight and in waist circumference were observed during this period. Sequencing of candidate genes known to be associated with familial partial lipodystrophy, acquired partial lipodystrophy, and generalized lipodystrophy showed no genetic abnormalities. Magnetic resonance imaging confirmed the presence of significant visceral and subcutaneous abdominal fat deposition, in association with scant fat tissue in the extremities. Her weight decreased after discontinuation of the insulin therapy and institution of dietary counseling.ConclusionThiazolidinediones have been shown to be efficacious in syndromic lipodystrophies, such as familial partial lipodystrophy subtype 2. We report that these pharmaceutical agents may also help improve metabolic variables in atypical lipodystrophy syndromes with no obvious molecular basis. A pronounced weight gain might result from synergism between thiazolidinediones and insulin promoting adipogenesis, which diminished somewhat after discontinuation of insulin therapy. (Endocr Pract. 2007;13:656-661)  相似文献   

3.
《Endocrine practice》2012,18(5):763-771
ObjectiveTo investigate the link between insulin resistance and the metabolic syndrome how to develop treatment approaches.MethodsWe present 3 cases of extreme syndromic insulin resistance: lipodystrophy, autoantibodies to the insulin receptor, and mutations in the insulin receptor gene, with accompanying discussion of pathophysiology and treatment.ResultsIn lipodystrophy, insulin resistance is a direct consequence of leptin deficiency, and thus leptin replacement reverses metabolic syndrome abnormalities, including diabetes and hypertriglyceridemia. The insulin “receptoropathies,” including autoantibodies to the insulin receptor and insulin receptor gene mutations, are characterized by extreme insulin resistance and ovarian hyperandrogenism, without dyslipidemia or fatty liver disease. Autoantibodies to the insulin receptor can be treated using an immunosuppressive paradigm adapted from treatment of other autoimmune and neoplastic conditions. Leptin treatment has shown some success in treating hyperglycemia in patients with insulin receptor gene mutations. Treatment for this condition remains inadequate, and novel therapies that bypass insulin receptor signaling, such as enhancers of brown adipose tissue, are needed.ConclusionsWe present a clinical approach to the treatment of syndromic insulin resistance. The study of rare diseases that replicate the metabolic syndrome, with clear-cut pathophysiology, promotes understanding of novel physiology and development of targeted therapies that may be applicable to the broader population with obesity, insulin resistance, and diabetes. (Endocr Pract. 2012; 18:763-771)  相似文献   

4.
ObjectiveTo evaluate the long-term clinical effect of treatment with metreleptin (an analogue of human leptin) on glycemic and lipid abnormalities and markers of hepatic steatosis in patients with inherited or acquired lipodystrophy.MethodsFifty-five patients (36 with generalized lipodystrophy and 19 with partial lipodystrophy) with at least 1 of 3 metabolic abnormalities (diabetes mellitus, fasting triglyceride level ≥ 200 mg/dL, and insulin resistance) and low leptin levels received subcutaneous injections of metreleptin once or twice daily in an ongoing clinical trial at the National Institutes of Health.ResultsAt baseline, hemoglobin A1c-8.5% ± 2.1% (mean ± standard deviation [SD])-and triglycerides—479 ± 80 mg/dL (geometric mean ± standard error [SE])-were substantially elevated. Robust and sustained reductions in both variables were evident for the observed patient population during a 3-year metreleptin treatment period (-2.1% ± 0.5% [mean ± SE] and -35.4% ± 13.7% [mean ± SE], respectively). Mean alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels were elevated at baseline (100 ± 120 U/L and 71 ± 77 U/L [mean ± SD], respectively) and decreased by -45 ± 19 U/L and -33 ± 14 U/L (mean ± SE), respectively, during the 3-year metreleptin treatment period. Improvements in hemoglobin A1c, triglycerides, ALT, and AST were more pronounced in the subsets of patients having elevated levels at baseline. The most notable adverse events observed in this patient population were likely attributable to underlying metabolic abnormalities or comorbidities.ConclusionMetreleptin treatment substantially reduced glycemic variables, triglycerides, and liver enzymes (ALT and AST) and demonstrated durability of response throughout a 3-year treatment period. These results support metreleptin as a potential treatment for certain metabolic disorders (for example, diabetes mellitus and hypertriglyceridemia) associated with lipodystrophy. (Endocr Pract. 2011;17:922-932)  相似文献   

5.
Carbone F  La Rocca C  Matarese G 《Biochimie》2012,94(10):2082-2088
Recent years have seen several advances in our understanding of the functions of adipose tissue regarding not only the energy storage, but also the regulation of complex metabolic and endocrine functions. In this context, leptin and adiponectin, the two most abundant adipocyte products, represent one of the best example of adipocytokines involved in the control of energy expenditure, lipid and carbohydrate metabolism as well as in the regulation of immune responses. Leptin and adiponectin secretion is counter-regulated in vivo, in relation to degree of adiposity, since plasma leptin concentrations are significantly elevated in obese subjects in proportion to body mass index while adiponectin secretion decreases in relation to the amount of adipose tissue. In this review we focus on the main biological activities of leptin and adiponectin on the lipid and carbohydrate metabolism and on their contribute in regulation of innate and adaptive immune responses.  相似文献   

6.
AimsOur aim was to evaluate the effect of exercise training (TR) on adipocyte-size-dependent expression of leptin and adiponectin.Main methodsMale Wistar rats were divided into 2 groups, sedentary control (CR) and TR group, and both monitored for 9 weeks. Adipocytes isolated from epididymal, retroperitoneal, and inguinal fat depots were independently separated into 3 fractions of different cell size, and the relationships between adipocyte size and either leptin or adiponectin mRNA were determined by real-time RT-PCR analysis.Key findingsIn epididymal and inguinal adipose tissue, positive relationships between adipocyte size and both leptin and adiponectin mRNA expression were found. Comparison of TR and CR rats showed no significant effect of TR on the slopes of the linear regression lines of correlation between leptin mRNA and adipocyte size in either adipose tissue, whereas the slopes of the regression line of correlation between adipocyte size and adiponectin mRNA were greater in TR group. Leptin levels per milliliter of plasma were significantly lower in TR than CR rats, whereas leptin levels adjusted to the 3 fat depots did not differ. TR did not affect adiponectin levels in plasma, whereas adiponectin levels adjusted to the 3 fat depots were significantly greater in TR than CR group.SignificanceTR-induced reduction in leptin mRNA expression was closely associated with smaller adipocyte size. However, TR amplified the adipocyte-size-dependent expression of adiponectin mRNA, suggesting that TR-induced alterations in adiponectin mRNA may also be mediated by factor(s) other than adipocyte size.  相似文献   

7.
BackgroundPine nut oil (PNO), a standardized and well-defined extract of Pinus koraiensis (Korean pine), has beneficial effects on wound healing, inflammatory diseases, and cancer. However, the explanation for the mechanism by which PNO reduces body fat remains uncertain. We performed a protein-protein interaction network (PPIN) analysis to explore the genes associated with pinolenic acid using the MEDILINE database from PubChem and PubMed. It was concluded through the PPIN analysis that PNO was involved in a neutral lipid biosynthetic process.PurposeThis study evaluated the effects of PNO predicted by the network analysis of fat accumulation in chronic obesity mouse models established by feeding a high fat diet (HFD) to C57BL/6J mice and explored potential mechanisms.MethodsHFD mice were fed only HFD or HFD with PNO at 822 and 1644 mg/kg. After an oral administration of 7 weeks, several body weight and body fat-related parameters were examined, including the following: adipose weight, adipocyte size, serum lipid profiles, adipocyte expression of PPAR-γ, sterol regulatory element binding protein (SREBP)-1c, lipoprotein lipase (LPL) and leptin.ResultsWe showed that oral administration of PNO to HFD mice reduces body fat weight, fat in tissue, white adipose tissue weight, and adipocyte size. The serum cholesterol was improved in the HFD mice treated with PNO. Additionally, PNO has significantly attenuated the HFD-induced changes in the adipose tissue expression of PPAR-γ, SREBP-1c, LPL, and leptin.ConclusionsThe findings from this study based on the PPIN analysis suggest that PNO has potential as drug to reduce body fat through fat regulatory mechanisms by PPAR-γ and SREBP-1c.  相似文献   

8.
《Endocrine practice》2013,19(1):51-58
ObjectiveTo characterize the metabolic phenotype of 2 cases of normal weight young women who developed type 2 diabetes (T2D), severe insulin resistance (insulin requirement >200 units/day), marked hypertriglyceridemia (>2000 mg/dL), and hepatic steatosis beginning 9 years after undergoing total body irradiation (TBI) and bone marrow transplantation for childhood cancer.MethodsFasting plasma glucose, insulin, free fatty acids (FFAs), leptin, adiponectin, resistin, TNFα, and IL-6 were measured in each case and in 8 healthy women; Case 1 was also assessed after initiating pioglitazone. Coding regions and splice junctions of PPARG, LMNA, and AKT2 were sequenced in Case 1 and of PPARG in Case 2 to evaluate for familial partial lipodystrophies. Genotyping of APOE was performed in Case 1 to rule out type III hyperlipoproteinemia.ResultsBoth cases had elevated plasma levels of insulin, leptin, resistin, and IL-6, high-normal to elevated TNFα, and low to low-normal adiponectin in keeping with post-receptor insulin resistance and adipose tissue inflammation. Case 1 experienced a biochemical response to pioglitazone. No causative mutations for partial lipodystrophies or type III hyperlipoproteinemia were identified.ConclusionThough metabolic derangements have previously been reported in association with TBI, few cases have described insulin resistance and hypertriglyceridemia as severe as that seen in our patients. We speculate that early childhood TBI may impede adipose tissue development leading to metabolic complications from an attenuated ability of adipose tissue to accommodate caloric excess, and propose that this extreme metabolic syndrome be evaluated for as a late complication of TBI. (Endocr Pract. 2013;19:51-58)  相似文献   

9.
Leptin is hypothesized to function as a negative feedback signal in the regulation of energy balance. It is produced primarily by adipose tissue and circulating concentrations correlate with the size of body fat stores. Administration of exogenous leptin to normal weight, leptin responsive animals inhibits food intake and reduces the size of body fat stores whereas mice that are deficient in either leptin or functional leptin receptors are hyperphagic and obese, consistent with a role for leptin in the control of body weight. This review discusses the effect of leptin on adipocyte metabolism. Because adipocytes express leptin receptors there is the potential for leptin to influence adipocyte metabolism directly. Adipocytes also are insulin responsive and receive sympathetic innervation, therefore leptin can also modify adipocyte metabolism indirectly. Studies published to date suggest that direct activation of adipocyte leptin receptors has little effect on cell metabolism in vivo, but that leptin modifies adipocyte sensitivity to insulin to inhibit lipid accumulation. In vivo administration of leptin leads to a suppression of lipogenesis, an increase in triglyceride hydrolysis and an increase in fatty acid and glucose oxidation. Activation of central leptin receptors also contributes to the development of a catabolic state in adipocytes, but this may vary between different fat depots. Leptin reduces the size of white fat depots by inhibiting cell proliferation both through induction of inhibitory circulating factors and by contributing to sympathetic tone which suppresses adipocyte proliferation. This article is part of a Special Issue entitled: Modulation of Adipose Tissue in Health and Disease.  相似文献   

10.
Xu X  Liu C  Xu Z  Tzan K  Wang A  Rajagopalan S  Sun Q 《Life sciences》2012,90(25-26):1001-1009
AimsHigh-fat diet (HFD) is associated with adipose inflammation, which contributes to key components of metabolic abnormalities. The expanded adipose tissue mass associated with obesity is the result of hyperplasia and hypertrophy of adipocytes. In this study, we investigated the effects of long-term HFD on adipocyte progenitor cell (APC) population and adipose-specific gene profiles in both white and brown adipose, and the role of perivascular adipose in the alteration of vascular function in response to HFD.Main methodsMale C57BL/6 mice were fed a standard normal diet (ND) or HFD for about 8 months. Glucose metabolism was assessed by an intraperitoneal glucose tolerance test. APC population and adipose-related gene profile were evaluated, and vascular function was measured in the presence or absence of perivascular adipose. Adiponectin and AMPK activity were also investigated.Key findingsHFD induced insulin resistance and glucose intolerance, and resulted in a decrease in APC population in brown, but not in white adipose tissue, when compared with animals fed a ND, with differential alterations of white and brown adipocyte-specific gene expression in brown and white adipose. Additionally, HFD led to altered vascular function in arteries in the presence of perivascular adipose tissue, which is associated with increased superoxide production. Adiponectin and AMPK activity were significantly decreased in response to long-term HFD.SignificanceThese findings suggest that long-term high-fat intake differentially alters adipocyte progenitor population and adipose-related gene expression in adipose tissue, and adiponectin-AMPK signaling might be involved. In addition, HFD induces changes in perivascular adipose-mediated vascular function.  相似文献   

11.
Stephan Herzig 《The EMBO journal》2017,36(14):1999-2017
Adipose tissue represents a critical component in healthy energy homeostasis. It fulfills important roles in whole‐body lipid handling, serves as the body's major energy storage compartment and insulation barrier, and secretes numerous endocrine mediators such as adipokines or lipokines. As a consequence, dysfunction of these processes in adipose tissue compartments is tightly linked to severe metabolic disorders, including obesity, metabolic syndrome, lipodystrophy, and cachexia. While numerous studies have addressed causes and consequences of obesity‐related adipose tissue hypertrophy and hyperplasia for health, critical pathways and mechanisms in (involuntary) adipose tissue loss as well as its systemic metabolic consequences are far less understood. In this review, we discuss the current understanding of conditions of adipose tissue wasting and review microenvironmental determinants of adipocyte (dys)function in related pathophysiologies.  相似文献   

12.
Triglycerides within the cytosol of cells are stored in a phylogenetically conserved organelle called the lipid droplet (LD). LDs can be formed at the endoplasmic reticulum, but mechanisms that regulate the formation of LDs are incompletely understood. Adipose tissue has a high capacity to form lipid droplets and store triglycerides. Fat storage-inducing transmembrane protein 2 (FITM2/FIT2) is highly expressed in adipocytes, and data indicate that FIT2 has an important role in the formation of LDs in cells, but whether FIT2 has a physiological role in triglyceride storage in adipose tissue remains unproven. Here we show that adipose-specific deficiency of FIT2 (AF2KO) in mice results in progressive lipodystrophy of white adipose depots and metabolic dysfunction. In contrast, interscapular brown adipose tissue of AF2KO mice accumulated few but large LDs without changes in cellular triglyceride levels. High fat feeding of AF2KO mice or AF2KO mice on the genetically obese ob/ob background accelerated the onset of lipodystrophy. At the cellular level, primary adipocyte precursors of white and brown adipose tissue differentiated in vitro produced fewer but larger LDs without changes in total cellular triglyceride or triglyceride biosynthesis. These data support the conclusion that FIT2 plays an essential, physiological role in fat storage in vivo.  相似文献   

13.
The lipodystrophy syndrome (adipose tissue redistribution and metabolic abnormalities) observed with highly active antiretroviral therapy (HAART) during human immunodeficiency virus (HIV) infection may be related to increased proinflammatory cytokine activity. We measured acute cytokine (TNF-alpha, IL-6, leptin), glycerol, and lactate secretion from abdominal subcutaneous adipose tissue (SAT), and systemic cytokine levels, in HIV-infected subjects with and without lipodystrophy (HIVL+ and HIVL-, respectively) and healthy non-HIV controls. Lipodystrophy was confirmed and characterized as adipose tissue redistribution in HIVL+ compared with HIVL- and controls, by dual-energy X-ray absorptiometry and by whole body MRI. TNF-alpha secretion from abdominal SAT and circulating levels of IL-6, soluble TNF receptors I and II, and insulin were elevated in HIVL+ relative to HIVL- and/or controls, particularly in HIVL+ undergoing HAART. In the HIV-infected group as a whole, IL-6 secretion from abdominal SAT and serum IL-6 were positively associated with visceral fat and were negatively associated with the relative amount of lower limb adipose tissue (P < 0.01). Decreased leptin and increased lactate secretion from abdominal SAT were specifically associated with HAART. In conclusion, increased cytokine secretion from adipose tissue and increased systemic proinflammatory cytokine activity may play a significant role in the adipose tissue remodeling and/or the metabolic abnormalities associated with the HIV-lipodystrophy syndrome in patients undergoing HAART.  相似文献   

14.
The lipodystrophies are characterized by loss of adipose tissue in some anatomical sites, frequently with fat accumulation in nonatrophic depots and ectopic sites such as liver and muscle. Molecularly characterized forms include Dunnigan-type familial partial lipodystrophy (FPLD), partial lipodystrophy with mandibuloacral dysplasia (MAD), Berardinelli-Seip congenital generalized lipodystrophy (CGL), and some cases with Barraquer-Simons acquired partial lipodystrophy (APL). The associated mutant gene products include 1) nuclear lamin A in FPLD type 2 and MAD type A; 2) nuclear lamin B2 in APL; 3) nuclear hormone receptor peroxisome proliferator-activated receptor gamma in FPLD type 3; 4) lipid biosynthetic enzyme 1-acylglycerol-3-phosphate O-acyltransferase 2 in CGL type 1; 5) integral endoplasmic reticulum membrane protein seipin in CGL type 2; and 6) metalloproteinase ZMPSTE24 in MAD type B. An unresolved question is whether metabolic disturbances are secondary to adipose repartitioning or result from a direct effect of the mutant gene product. Careful analysis of clinical, biochemical, and imaging phenotypes, using an approach called "phenomics," reveals differences between genetically stratified subtypes that can be used to guide basic experiments and to improve our understanding of common clinical entities, such as metabolic syndrome or the partial lipodystrophy syndrome associated with human immunodeficiency virus infection.  相似文献   

15.
Leptin, adiponectin and IL18 are adipokines related with obesity, insulin resistance and dyslipidemia in the general population. Treated HIV-1-infected patients with lipodystrophy may develop insulin resistance and proatherogenic dyslipidemia. We assessed the relationship between plasma adipokine levels, adipokine genetics, lipodystrophy and metabolic disturbances. Plasma leptin, adiponectin and IL18 levels were assessed in 446 individuals: 282 HIV-1-infected patients treated with antiretroviral drugs (132 with lipodystrophy and 150 without) and 164 uninfected controls (UC). The LEP2410A>G, LEPRQ223R, ADIPQ276G>T, ADIPOR2-Intron5A>G and IL18-607C>A polymorphisms were validated by sequencing. Leptin levels were higher in UC than in HIV-1-infected, either with or without lipodystrophy (p<0.001 for both comparisons) and were lower in patients with lipodystrophy compared with those without lipodystrophy (p=0.006). In patients with lipodystrophy, leptin had a positive correlation with insulin and with HOMA-IR. Adiponectin levels were non-significantly different in UC and HIV-1-infected patients. Patients with lipodystrophy had lower adiponectin levels than non-lipodystrophy subjects (p<0.001). In patients with lipodystrophy, adiponectin was negatively correlated with insulin, HOMA-IR and triglycerides. Plasma IL18 levels were higher in HIV-1-infected patients compared with UC (p<0.001), and no differences were found according to the presence of lipodystrophy. In patients with lipodystrophy there was a negative correlation between IL18 levels and LDLc. Genetic analyses indicated no significant associations with lipodystrophy nor with insulin resistance or with lipid abnormalities. In conclusion, HIV-1-infected patients have reduced plasma leptin levels. This reduction is magnified in patients with lipodystrophy whose adiponectin levels were lower than that of non-lipodystrophy subjects. Plasma IL18 levels are increased in infected patients irrespective of the presence of lipodystrophy. The polymorphisms assessed are not associated with lipodystrophy or metabolic disturbances in treated HIV-1-infected patients.  相似文献   

16.
17.
18.

Background  

Multipotent stem cells exist within adipose tissue throughout life. An abnormal recruitment of these adipose precursor cells could participate to hyperplasia of adipose tissue observed in severe obesity or to hypoplasia of adipose tissue observed in lipodystrophy. Therefore, pharmacological molecules that control the pool of stem cells in adipose tissue are of great interest. Glycogen Synthase Kinase (GSK) 3 has been previously described as involved in differentiation of preadipose cells and might be a potential therapeutic target to modulate proliferation and differentiation of adipocyte precursors. However, the impact of GSK3 inhibition on human adipose-derived stem cells remained to be investigated. The aim of this study was to investigate GSK3 as a possible target for pharmacological inhibition of stem cell adipogenesis. To reach this goal, we studied the effects of pharmacological inhibitors of GSK3, i.e. lithium chloride (LiCl) and BIO on proliferation and adipocyte differentiation of multipotent stem cells derived from human adipose tissue.  相似文献   

19.
《Journal of lipid research》2017,58(12):2348-2364
Lipin-1 is a Mg2+-dependent phosphatidic acid phosphatase (PAP) that in mice is necessary for normal glycerolipid biosynthesis, controlling adipocyte metabolism, and adipogenic differentiation. Mice carrying inactivating mutations in the Lpin1 gene display the characteristic features of human familial lipodystrophy. Very little is known about the roles of lipin-1 in human adipocyte physiology. Apparently, fat distribution and weight is normal in humans carrying LPIN1 inactivating mutations, but a detailed analysis of adipose tissue appearance and functions in these patients has not been available so far. In this study, we performed a systematic histopathological, biochemical, and gene expression analysis of adipose tissue biopsies from human patients harboring LPIN1 biallelic inactivating mutations and affected by recurrent episodes of severe rhabdomyolysis. We also explored the adipogenic differentiation potential of human mesenchymal cell populations derived from lipin-1 defective patients. White adipose tissue from human LPIN1 mutant patients displayed a dramatic decrease in lipin-1 protein levels and PAP activity, with a concomitant moderate reduction of adipocyte size. Nevertheless, the adipose tissue develops without obvious histological signs of lipodystrophy and with normal qualitative composition of storage lipids. The increased expression of key adipogenic determinants such as SREBP1, PPARG, and PGC1A shows that specific compensatory phenomena can be activated in vivo in human adipocytes with deficiency of functional lipin-1.  相似文献   

20.
Diabetes, lipids, and adipocyte secretagogues.   总被引:17,自引:0,他引:17  
That obesity is associated with insulin resistance and type II diabetes mellitus is well accepted. Overloading of white adipose tissue beyond its storage capacity leads to lipid disorders in non-adipose tissues, namely skeletal and cardiac muscles, pancreas, and liver, effects that are often mediated through increased non-esterified fatty acid fluxes. This in turn leads to a tissue-specific disordered insulin response and increased lipid deposition and lipotoxicity, coupled to abnormal plasma metabolic and (or) lipoprotein profiles. Thus, the importance of functional adipocytes is crucial, as highlighted by the disorders seen in both "too much" (obesity) and "too little" (lipodystrophy) white adipose tissue. However, beyond its capacity for fat storage, white adipose tissue is now well recognised as an endocrine tissue producing multiple hormones whose plasma levels are altered in obese, insulin-resistant, and diabetic subjects. The consequence of these hormonal alterations with respect to both glucose and lipid metabolism in insulin target tissues is just beginning to be understood. The present review will focus on a number of these hormones: acylation-stimulating protein, leptin, adiponectin, tumour necrosis factor alpha, interleukin-6, and resistin, defining their changes induced in obesity and diabetes mellitus and highlighting their functional properties that may protect or worsen lipid metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号