首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Liver diseases caused by viral infection, alcohol abuse and metabolic disorders can progress to end‐stage liver failure, liver cirrhosis and liver cancer, which are a growing cause of death worldwide. Although liver transplantation and hepatocyte transplantation are useful strategies to promote liver regeneration, they are limited by scarce sources of organs and hepatocytes. Mesenchymal stem cells (MSCs) restore liver injury after hepatogenic differentiation and exert immunomodulatory, anti‐inflammatory, antifibrotic, antioxidative stress and antiapoptotic effects on liver cells in vivo. After isolation and culture in vitro, MSCs are faced with nutrient and oxygen deprivation, and external growth factors maintain MSC capacities for further applications. In addition, MSCs are placed in a harsh microenvironment, and anoikis and inflammation after transplantation in vivo significantly decrease their regenerative capacity. Pre‐treatment with chemical agents, hypoxia, an inflammatory microenvironment and gene modification can protect MSCs against injury, and pre‐treated MSCs show improved hepatogenic differentiation, homing capacity, survival and paracrine effects in vitro and in vivo in regard to attenuating liver injury. In this review, we mainly focus on pre‐treatments and the underlying mechanisms for improving the therapeutic effects of MSCs in various liver diseases. Thus, we provide evidence for the development of MSC‐based cell therapy to prevent acute or chronic liver injury. Mesenchymal stem cells have potential as a therapeutic to prolong the survival of patients with end‐stage liver diseases in the near future.  相似文献   

2.
全球终末期肝病、肝衰竭的发病率和死亡率逐年升高,且目前肝移植是唯一疗效确切的治疗选择,但是,肝移植的使用受到肝源供体严重不足,长期存活率低,医疗费用昂贵等缺点使得原位肝移植的应用受限,绝大多数患者无法受益。为了克服肝脏器官短缺,干细胞替代治疗策略逐渐成为另一个肝病治疗的重要选择,干细胞治疗,特别是间充质干细胞(MSC)提供了一个新的肝病治疗选择。MSC是一群贴壁生长的成纤维细胞样细胞,由于MSC能够分化为多种类型的细胞,能够产生多种的细胞因子和生长因子,具有造血支持和免疫调节和抗炎功能,MSC被认为在再生医学领域具有重大的科学和实用价值。另外,由于MSC应用于治疗实验性肝损伤能明显提高动物存活率,明显改善肝功能。此外,一些临床前研究和临床研究也表明MSC对肝损伤性疾病具有显著地疗效。因此MSC在损伤性和退行性肝脏疾病的治疗具有广阔的应用前景。本文综述了MSC在肝损伤疾病治疗应用的进展,并对MSC在肝病治疗中的应用前景进行了展望。  相似文献   

3.
肝纤维化及其终末病变肝硬化已严重危害全球人类健康,虽然慢性肝病的治疗手段和抗肝纤维化药物的研究已取得了很大进展,肝移植依然是最有效的治疗方案,但器官的紧缺却是一个现实问题。目前寻找有效的干预手段进行抗肝纤维化治疗已越来越受到大家的关注。近些年,大量基础及临床研究均证实在一定条件下利用骨髓间充质干细胞(MSCs)可以抑制肝星状细胞活化诱导其凋亡,实现肝纤维化逆转。随着干细胞技术的快速发展,基于骨髓间充质干细胞(MSCs)的细胞疗法在肝纤维化治疗领域的研究与应用已成为一个充满生命力的新方向。本文将对肝纤维化及基于MSCs的治疗机制进展及其应用进行综述。  相似文献   

4.
Systemic delivery of multipotent mesenchymal stem cells (MSC) may be of benefit in the treatment of neurological diseases, including multiple sclerosis (MS). Certainly, animal studies have demonstrated functional benefits following MSC transplantation, although the mechanisms by which MSCs migrate to lesions and stimulate repair remain unknown. Chemokines stimulate migration in other settings. In this study, we systematically explore the migratory and proliferative responses of human MSCs (hMSC) to chemokines expressed in MS lesions. We demonstrate that these chemokines trigger hMSC migration. In addition, we show that RANTES and IP-10 promote hMSC proliferation.  相似文献   

5.
Systemic delivery of multipotent mesenchymal stem cells (MSC) may be of benefit in the treatment of neurological diseases, including multiple sclerosis (MS). Certainly, animal studies have demonstrated functional benefits following MSC transplantation, although the mechanisms by which MSCs migrate to lesions and stimulate repair remain unknown. Chemokines stimulate migration in other settings. In this study, we systematically explore the migratory and proliferative responses of human MSCs (hMSC) to chemokines expressed in MS lesions. We demonstrate that these chemokines trigger hMSC migration. In addition, we show that RANTES and IP-10 promote hMSC proliferation.Key words: migration, proliferation, multipotent mesenchymal stromal cells, chemokines, demyelination  相似文献   

6.
Over the last decades, mesenchymal stem cells (MSCs) have been extensively studied with regard to their potential applications in regenerative medicine. In rheumatic diseases, MSC-based therapy is the subject of great expectations for patients who are refractory to proposed treatments such as rheumatoid arthritis (RA), or display degenerative injuries without possible curative treatment, such as osteoarthritis (OA). The therapeutic potential of MSCs has been demonstrated in several pre-clinical models of OA or RA and both the safety and efficacy of MSC-based therapy is being evaluated in humans. The predominant mechanism by which MSCs participate to tissue repair is through a paracrine activity. Via the production of a multitude of trophic factors with various properties, MSCs can reduce tissue injury, protect tissue from further degradation and/or enhance tissue repair. However, a thorough in vivo examination of MSC-derived secretome and strategies to modulate it are still lacking. The present review discusses the current understanding of the MSC secretome as a therapeutic for treatment of inflammatory or degenerative pathologies focusing on rheumatic diseases. We provide insights on and perspectives for future development of the MSC secretome with respect to the release of extracellular vesicles that would have certain advantages over injection of living MSCs or administration of a single therapeutic factor or a combination of factors.  相似文献   

7.
Use of mesenchymal stem cell (MSC) transplantation after myocardial infarction (MI) has been found to have infarct‐limiting effects in numerous experimental and clinical studies. However, recent meta‐analyses of randomized clinical trials on MSC‐based MI therapy have highlighted the need for improving its efficacy. There are two principal approaches for increasing therapeutic effect of MSCs: (i) preventing massive MSC death in ischaemic tissue and (ii) increasing production of cardioreparative growth factors and cytokines with transplanted MSCs. In this review, we aim to integrate our current understanding of genetic approaches that are used for modification of MSCs to enable their improved survival, engraftment, integration, proliferation and differentiation in the ischaemic heart. Genetic modification of MSCs resulting in increased secretion of paracrine factors has also been discussed. In addition, data on MSC preconditioning with physical, chemical and pharmacological factors prior to transplantation are summarized. MSC seeding on three‐dimensional polymeric scaffolds facilitates formation of both intercellular connections and contacts between cells and the extracellular matrix, thereby enhancing cell viability and function. Use of genetic and non‐genetic approaches to modify MSC function holds great promise for regenerative therapy of myocardial ischaemic injury.  相似文献   

8.
Corneal diseases are a major cause of blindness in the world. Although great progress has been achieved in the treatment of corneal diseases, wound healing after severe corneal damage and immunosuppressive therapy after corneal transplantation remain prob-lematic. Mesenchymal stem cells(MSCs) derived from bone marrow or other adult tissues can differentiate into various types of mesenchymal lineages, such as osteocytes, adipocytes, and chondrocytes, both in vivo and in vitro. These cells can further differentiate into specific cell types under specific conditions. MSCs migrate to injury sites and promote wound healing by secreting anti-inflammatory and growth factors. In ad-dition, MSCs interact with innate and acquired immune cells and modulate the immune response through their powerful paracrine function. Over the last decade, MSCs have drawn considerable attention because of their beneficial properties and promising therapeutic prospective. Furthermore, MSCs have been applied to various studies related to wound healing, autoim-mune diseases, and organ transplantation. This review discusses the potential functions of MSCs in protecting corneal tissue and their possible mechanisms in corneal wound healing and corneal transplantation.  相似文献   

9.
Umbilical cord blood (UCB) is a primitive and abundant source of mesenchymal stem cells (MSCs). UCB-derived MSCs have a broad and efficient therapeutic capacity to treat various diseases and disorders. Despite the high latent self-renewal and differentiation capacity of these cells, the safety, efficacy, and yield of MSCs expanded for ex vivo clinical applications remains a concern. However, immunomodulatory effects have emerged in various disease models, exhibiting specific mechanisms of action, such as cell migration and homing, angiogenesis, anti-apoptosis, proliferation, anti-cancer, anti-fibrosis, anti-inflammation and tissue regeneration. Herein, we review the current literature pertaining to the UCB-derived MSC application as potential treatment strategies, and discuss the concerns regarding the safety and mass production issues in future applications.  相似文献   

10.
Mesenchymal stem cells (MSCs) are non-hematopoietic stem cells with the capacity to differentiate into tissues of both mesenchymal and non-mesenchymal origin. MSCs can differentiate into osteoblastic, chondrogenic, and adipogenic lineages, although recent studies have demonstrated that MSCs are also able to differentiate into other lineages, including neuronal and cardiomyogenic lineages. Since their original isolation from the bone marrow, MSCs have been successfully harvested from many other tissues. Their ease of isolation and ex vivo expansion combined with their immunoprivileged nature has made these cells popular candidates for stem cell therapies. These cells have the potential to alter disease pathophysiology through many modalities including cytokine secretion, capacity to differentiate along various lineages, immune modulation and direct cell-cell interaction with diseased tissue. Here we first review basic features of MSC biology including MSC characteristics in culture, homing mechanisms, differentiation capabilities and immune modulation. We then highlight some in vivo and clinical evidence supporting the therapeutic roles of MSCs and their uses in orthopedic, autoimmune, and ischemic disorders.  相似文献   

11.
Adult bone marrow-derived mesenchymal stem cells (MSCs) display a spectrum of functional properties. Transplantation of these cells improves clinical outcome in models of cerebral ischemia and spinal cord injury via mechanisms that may include replacement of damaged cells, neuroprotective effects, induction of axonal sprouting, and neovascularization. Therapeutic effects have been reported in animal models of stroke after intravenous delivery of MSCs, including those derived from adult human bone marrow. Initial clinical studies on intravenously delivered MSCs have now been completed in human subjects with stroke. Here, we review the reparative and protective properties of transplanted MSCs in stroke models, describe initial human studies on intravenous MSC delivery in stroke, and provide a perspective on prospects for future progress with MSCs.  相似文献   

12.
Mesenchymal stem cells (MSC) have generated a great amount of enthusiasm over the past decade as a novel therapeutic paradigm for a variety of diseases. Currently, MSC based clinical trials have been conducted for at least 12 kinds of pathological conditions, with many completed trials demonstrating the safety and efficacy. This review provides an overview of the recent clinical findings related to MSC therapeutic effects. Roles of MSCs in clinical trials conducted to treat graft-versus-host-disease (GVHD) and cardiovascular diseases are highlighted. Clinical application of MSC are mainly attributed to their important four biological properties- the ability to home to sites of inflammation following tissue injury when injected intravenously; to differentiate into various cell types; to secrete multiple bioactive molecules capable of stimulating recovery of injured cells and inhibiting inflammation and to perform immunomodulatory functions. Here, we will discuss these four properties. Moreover, the issues surrounding clinical grade MSCs and principles for MSC therapeutic approaches are also addressed on the transition of MSCs therapy from bench side to bedside.  相似文献   

13.
Treatment of osteoarthritis with mesenchymal stem cells   总被引:1,自引:0,他引:1  
Osteoarthritis(OA)is one of the most prevalent joint diseases with prominent symptoms affecting the daily life of millions of middle aged and elderly people.Despite this,there are no successful medical interventions that can prevent the progressive destruction of OA joints.The onset of pathological changes in OA is associated with deviant activity of mesenchymal stem cells(MSCs),the multipotent precursors of connective tissue cells that reside in joints.Current therapies for OA have resulted in poor clinical outcomes without repairing the damaged cartilage.Intra-articular delivery of culture-expanded MSCs has opened new avenues of OA treatment.Pre-clinical and clinical trials demonstrated the feasibility,safety,and efficacy of MSC therapy.The Wnt/β-catenin,bone morphogenetic protein 2,Indian hedgehog,and Mitogen-activated protein kinase signaling pathways have been demonstrated to be involved in OA and the mechanism of action of MSC therapies.  相似文献   

14.
In recent years, a large number of studies have contributed to our understanding of the immunomodulatory mechanisms used by multipotent mesenchymal stem cells (MSCs). Initially isolated from the bone marrow (BM), MSCs have been found in many tissues but the strong immunomodulatory properties are best studied in BM MSCs. The immunomodulatory effects of BM MSCs are wide, extending to T lymphocytes and dendritic cells, and are therapeutically useful for treatment of immune-related diseases including graft-versus-host disease as well as possibly autoimmune diseases. However, BM MSCs are very rare cells and require an invasive procedure for procurement. Recently, MSCs have also been found in fetal-stage embryo-proper and extra-embryonic tissues, and these human fetal MSCs (F-MSCs) have a higher proliferative profile, and are capable of multilineage differentiation as well as exert strong immunomodulatory effects. As such, these F-MSCs can be viewed as alternative sources of MSCs. We review here the current understanding of the mechanisms behind the immunomodulatory properties of BM MSCs and F-MSCs. An increase in our understanding of MSC suppressor mechanisms will offer insights for prevalent clinical use of these versatile adult stem cells in the near future.  相似文献   

15.
End‐stage liver fibrosis frequently progresses to portal vein thrombosis, formation of oesophageal varices, hepatic encephalopathy, ascites, hepatocellular carcinoma and liver failure. Mesenchymal stem cells (MSCs), when transplanted in vivo, migrate into fibrogenic livers and then differentiate into hepatocyte‐like cells or fuse with hepatocytes to protect liver function. Moreover, they can produce various growth factors and cytokines with anti‐inflammatory effects to reverse the fibrotic state of the liver. In addition, only a small number of MSCs migrate to the injured tissue after cell transplantation; consequently, multiple studies have investigated effective strategies to improve the survival rate and activity of MSCs for the treatment of liver fibrosis. In this review, we intend to arrange and analyse the current evidence related to MSC transplantation in liver fibrosis, to summarize the detailed mechanisms of MSC transplantation for the reversal of liver fibrosis and to discuss new strategies for this treatment. Finally, and most importantly, we will identify the current problems with MSC‐based therapies to repair liver fibrosis that must be addressed in order to develop safer and more effective routes for MSC transplantation. In this way, it will soon be possible to significantly improve the therapeutic effects of MSC transplantation for liver regeneration, as well as enhance the quality of life and prolong the survival time of patients with liver fibrosis.  相似文献   

16.
Mesenchymal stem cells (MSCs) have been isolated not only from bone marrow, but also from many other tissues such as adipose tissue, skeletal muscle, liver, brain and pancreas. Because MSC were found to have the ability to differentiate into cells of multiple organs and systems such as bone, fat, cartilage, muscle, neurons, hepatocytes and insulin-producing cells, MSCs have generated a great deal of interest for their potential use in regenerative medicine and tissue engineering. Furthermore, given the ease of their isolation and their extensive expansion rate and differentiation potential, mesenchymal stem cells are among the first stem cell types that have a great potential to be introduced in the clinic. Finally, mesenchymal stem cells seem to be not only hypoimmunogenic and thus be suitable for allogeneic transplantation, but they are also able to produce immunosuppression upon transplantation. In this review we summarize the latest research in the use of mesenchymal stem cells in transplantation for generalized diseases, local implantation for local tissue defects, and as a vehicle for genes in gene therapy protocols.  相似文献   

17.
The term mesenchymal stem cell (MSCs) was adopted in the 1990s to describe a population of bone-marrow-derived cells that demonstrated the capacity for tri-lineage differentiation at a clonal level. Research conducted during the ensuing decades has demonstrated that MSCs fulfill many functions in addition to connective tissue progenitors including contributing to the HSC niche and regulating the function of immune effector cells of both the innate and adaptive immune system. Despite these advances, fundamental aspects of MSC biology remain indeterminate. For example, the embryonic origin of MSCs and their niche in vivo remains a highly debated topic. More importantly, the mechanisms that regulate self-renewal and lineage specification have also been largely unexplored. The later is significant in that MSC population's exhibit considerable donor-to-donor and intra-population heterogeneity but knowledge regarding how different functional attributes of MSCs are specified at the population level is unknown. This poses significant obstacles in research and in efforts to develop clinical manufacturing protocols that reproducibly generate functionally equivalent MSC populations. Herein, I discuss data demonstrating that MSC populations are intrinsically heterogeneous, elaborate on the molecular basis for this heterogeneity, and discuss how heterogeneity impacts clinical manufacturing and the therapeutic potency of MSCs.  相似文献   

18.
Literature review of MSCs in the treatment of osteoarthritis in the past five yearsOsteoarthritis (OA) is one of the most common chronic joint diseases, with prominent symptoms caused by many factors. However, current medical interventions for OA have resulted in poor clinical outcomes, demonstrating that there are huge unmet medical needs in this area. Cell therapy has opened new avenues of OA treatment. Different sources of mesenchymal stromal cells (MSCs) may have different phenotypes and cellular functions. Pre-clinical and clinical studies have demonstrated the feasibility, safety and efficacy of MSC therapy. Mitogen-activated protein kinase, Wnt and Notch signaling pathways are involved in the chondrogenesis of MSC-mediated treatments. MSCs may also exert effective immunoregulatory and paracrine effects to stimulate tissue repair. Therapy with extracellular vesicles containing cytokines, which are secreted by MSCs, might be a potential treatment for OA.  相似文献   

19.
Bone marrow mesenchymal stem cells (BM-MSCs) have therapeutic potential in acute lung injury (ALI). Hypoxia-induced mitogenic factor (HIMF) is a lung-specific growth factor that participates in a variety of lung diseases. In this study, we evaluated the therapeutic role of BM-MSC transplantation in lipopolysaccharide (LPS)- induced ALI and assessed the importance of HIMF in MSC transplantation. MSCs were isolated and identified, and untransduced MSCs, MSCs transduced with null vector or MSCs transduced with a vector encoding HIMF were transplanted into mice with LPS-induced ALI. Histopathological changes, cytokine expression and indices of lung inflammation and lung injury were assessed in the various experimental groups. Lentiviral transduction did not influence the biological features of MSCs. In addition, transplantation of BM-MSCs alone had significant therapeutic effects on LPS-induced ALI, although BM-MSCs expressing HIMF failed to improve the histopathological changes observed with lung injury. Unexpectedly, tumour necrosis factor α levels in lung tissues, lung oedema and leucocyte infiltration into lungs were even higher after the transplantation of MSCs expressing HIMF, followed by a significant increase in lung hydroxyproline content and α-smooth muscle actin expression on day 14, as compared to treatment with untransduced MSCs. BM-MSC transplantation improved LPS-induced lung injury independent of HIMF.  相似文献   

20.
For decades, mesenchymal stem (MSCs) cells have been used for cardiovascular diseases as regenerative therapy. This review is an attempt to summarize the types of MSCs involved in myocardial infarction (MI) therapy, as well as its possible mechanisms effects, especially the paracrine one in MI focusing on the studies (human and animal) conducted within the last 10 years. Recently, reports showed that MSC therapy could have infarct‐limiting effects after MI in both experimental and clinical trials. In this context, various types of MSCs can help cardiac regeneration by either revitalizing the cardiac stem cells or revascularizing the arteries and veins of the heart. Furthermore, MSCs could produce paracrine growth factors that increase the survival of nearby cardiomyocytes, as well as increase angiogenesis through recruitment of stem cell from bone marrow or inducing vessel growth from existing capillaries. Recent research suggests that the paracrine effects of MSCs could be mediated by extracellular vesicles including exosomes. Exosomal microRNAs (miRNAs) released by MSCs are promising therapeutic hotspot target for MI. This could be attributed to the role of miRNA in cardiac biology, including cardiac regeneration, stem cell differentiation, apoptosis, neovascularization, cardiac contractility and cardiac remodeling. Furthermore, gene‐modified MSCs could be a recent promising therapy for MI to enhance the paracrine effects of MSCs, including better homing and effective cell targeted tissue regeneration. Although MSC therapy has achieved considerable attention and progress, there are critical challenges that remains to be overcome to achieve the most effective successful cell‐based therapy in MI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号