首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Regarding our previous report on refolding of alkaline phosphatase [Yazdanparast and Khodagholi, 2005 Arch. Biochem. Biophys] it was found that in spite of the anti-aggregatory effect of 3-[(3-cholamidopropyl) dimethylammonio]-1-propanesulfonate (CHAPS), a zwitteronic detergent, the recovered activity was almost the same as the recovered activity obtained through the unassisted approach. The low recovery yield is probably due to the bulky groups of the detergent that interfere with its entrance into the small cavity of the stripping agent, cyclodextrin, implying that the stripping of detergent molecules from the detergent-protein complexes plays a major role in successful refolding processes. To improve the efficiency of CHAPS stripping, we evaluated, for the first time, the stripping potential of a molecular imprinting polymer designed to replace beta-CD. In this approach, CHAPS was used as the template and the refolding of GuHCl denatured alkaline phosphatase was studied. Our results indicated that under the optimally developed refolding environment and similar to stripping by soluble beta-CD, a refolding yield of 79% was obtained for denatured alkaline phosphatase using 20 mg/ml of the molecularly imprinted poly (beta-CD) polymer. The major advantage of the new stripping agent, besides of its recycling option and ease of separation from the finished product, is its high potential of preventing aggregate formation. Based on these results, it seems that the new stripping strategy can constitute an ideal approach for refolding of proteins at much lower industrial costs compared to stripping with soluble beta-cyclodextrin.  相似文献   

2.
Artificial chaperone-assisted refolding has been shown to be an effective approach for improving the refolding yield of denatured proteins. Independent refolding of several structurally diverse proteins by this approach has provided promising results regarding significant suppression of aggregation along with enhanced refolding yields. However, from the industrial point of view, some modifications seem to be essential for making the technique more efficient. In that regard and with a cost-cutting goal we designed, for the first time, a beta-cyclodextrin-polyurethane polymer to replace the soluble beta-cyclodextrin as the stripping agent for refolding of carbonic anhydrase. Our results indicated that under the optimally developed refolding environment, the denatured carbonic anhydrase was refolded with a yield of 75% using 15 mg/mL of the beta-cyclodextrin-polyurethane polymer, a yield near to stripping by soluble beta-CD. This new stripping approach seems to constitute an ideal approach for refolding of proteins at much lower industrial costs compared to stripping with soluble beta-cyclodextrin. However, further-improvements in solid-phase artificial chaperone assisted technique are demanded either through synthesizing better stripping agents or by optimizing and defining better refolding environments.  相似文献   

3.
Insoluble beta-cyclodextrin (beta-CD) copolymers have been used for the refolding of thermally and/or chemically denatured carbonic anhydrase with refolding yield of 40% using 300 mg of the copolymer/ml refolding solution containing 0.042 mg/ml protein. In an attempt to enhance the refolding yield with lower quantities of the copolymer, a new beta-CD-rich copolymer with higher beta-CD content was synthesized. Regarding the need for rapid stripping of the detergent molecules from the detergent-protein complexes formed in the capture step of the technique (artificial chaperone-assisted refolding), experimental variables (e.g. copolymer and the protein contents) were optimized to improve the refolding yields along with depressing the aggregate formation. In addition, comparative studies using different ionic detergents and the copolymer were conducted to get a more comprehensive understanding of the detergent's tail length in the stripping step of the process. Our results indicated that under the optimal developed refolding environment, the denatured CA was refolded with a yield of 75% using only 5mg of the copolymer/1.2 ml refolding solution containing 0.0286 mg/ml protein. Taking into account the recycling potential of the copolymer, the new resin, with significant cost-cutting capability, is a suitable candidate for industrial applications.  相似文献   

4.
In this study, we evaluated, for the first time, the application of molecular tube based alpha-cyclodextrin for improving the refolding yields of two different enzymes: carbonic anhydrase and alkaline phosphatase. Our results indicate that under the optimal developed refolding environments, the denatured carbonic anhydrase and alkaline phosphatase were refolded with a yield of 51 and 61% using 15 and 5 mg/ml of the molecular tube, respectively. Regardless of lower refolding yields compared with liquid-phase artificial chaperone assisted approach, the new technique (solid-phase artificial chaperone assisted refolding) benefits from easier and faster separation of the refolded product from the refolding environment, recycling of the stripping agent, and finally, significantly less environmental effect at the industrial levels. However, further improvements in solid-phase artificial chaperone assisted technique are needed either through synthesizing better stripping agents or by optimizing and defining better refolding environments.  相似文献   

5.
Regarding our previous report on refolding of alkaline phosphatase [Yazdanparast and Khodagholi, 2005 Arch. Biochem. Biophys] it was found that in spite of the anti-aggregatory effect of 3-[(3-cholamidopropyl) dimethylammonio]-1-propanesulfonate (CHAPS), a zwitteronic detergent, the recovered activity was almost the same as the recovered activity obtained through the unassisted approach. The low recovery yield is probably due to the bulky groups of the detergent that interfere with its entrance into the small cavity of the stripping agent, cyclodextrin, implying that the stripping of detergent molecules from the detergent–protein complexes plays a major role in successful refolding processes. To improve the efficiency of CHAPS stripping, we evaluated, for the first time, the stripping potential of a molecular imprinting polymer designed to replace β-CD. In this approach, CHAPS was used as the template and the refolding of GuHCl denatured alkaline phosphatase was studied. Our results indicated that under the optimally developed refolding environment and similar to stripping by soluble β-CD, a refolding yield of 79% was obtained for denatured alkaline phosphatase using 20 mg/ml of the molecularly imprinted poly (β-CD) polymer. The major advantage of the new stripping agent, besides of its recycling option and ease of separation from the finished product, is its high potential of preventing aggregate formation. Based on these results, it seems that the new stripping strategy can constitute an ideal approach for refolding of proteins at much lower industrial costs compared to stripping with soluble β-cyclodextrin.  相似文献   

6.
The "artificial chaperone method" for protein refolding developed by Rozema et al. (Rozema, D.; Gellman, S. H. J. Am. Chem. Soc. 1995, 117 (8), 2373-2374) involves the sequential dilution of denatured protein into a buffer containing detergent (cetyltrimethylammonium bromide, CTAB) and then into a refolding buffer containing cyclodextrin (CD). In this paper a simplified one-step artificial chaperone method is reported, whereby CTAB is added directly to the denatured solution, which is then diluted directly into a refolding buffer containing beta-cyclodextrin (beta-CD). This new method can be applied at high protein concentrations, resulting in smaller processing volumes and a more concentrated protein solution following refolding. The increase in achievable protein concentration results from the enhanced solubility of CTAB at elevated temperatures in concentrated denaturant. The refolding yields obtained for the new method were significantly higher than for control experiments lacking additives and were comparable to the yields obtained with the classical two-step approach. A study of the effect of beta-CD and CTAB concentrations on refolding yield suggested two operational regimes: slow stripping (beta-CD/CTAB approximately 1), most suited for higher protein concentrations, and fast stripping (beta-CD/CTAB approximately 2.7), best suited for lower protein concentrations. An increased chaotrope concentration resulted in higher refolding yields and an enlarged operational regime.  相似文献   

7.
Artificial chaperone-assisted refolding has been shown to be an effective approach for improving the refolding yield of some of the denatured proteins. Since identical concentrations of various detergents do not induce similar variations in the protein structures, we arranged to evaluate the artificial chaperoning capabilities of several ionic detergents as a function of charge, structure, and the hydrophobic tail length of the detergent. Our results indicate that carbonic anhydrase can be refolded from its denatured state via artificial chaperone strategy using both anionic and cationic detergents. However, the extent of refolding assistance (kinetic and refolding yield) were different due to protein and detergent net charges, detergent concentrations, and the length of hydrophobic portion of each detergent. These observed differences were attributed to physical properties of CA-detergent complexes and/or to the kinetics of detergent stripping by beta-cyclodextrin from the protein-detergent complexes which is apparently dependent on the detergent-beta-CD association constants and the nature of the partially stripped complexes.  相似文献   

8.
Improved protein refolding using hollow-fibre membrane dialysis   总被引:7,自引:0,他引:7  
We have used a cellulose acetate, hollow-fibre (HF) ultrafiltration membrane to refold bovine carbonic anhydrase, loaded into the lumen space, by removing the denaturant through controlled dialysis via the shell side space. When challenged with GdnHCl-denatured carbonic anhydrase, 70% of the loaded protein reptated through the membrane into the circulating dialysis buffer. Reptation occurred because the protein, in its fully unfolded configuration, was able to pass through the pores. The loss of carbonic anhydrase through the membrane was controlled by the dialysis conditions. Dialysis against 0.05 M Tris-HCl for 30 min reduced the denaturant around the protein to a concentration that allowed the return of secondary structure, increasing the hydrodynamic radius, thus preventing protein transmission. Under these conditions a maximum of 42% of carbonic anhydrase was recovered (from a starting concentration of 5 mg/mL) with 94% activity. This is an improvement over refolding carbonic anhydrase by simple batch dilution, which gave a maximum reactivation of 85% with 35% soluble protein yield. The batch refolding of carbonic anhydrase is very sensitive to temperature; however, during HF refolding between 0 and 25 degrees C the temperature sensitivity was considerably reduced. In order to reduce the convection forces that give rise to aggregation and promote refolding the dialyzate was slowly heated from 4 to 25 degrees C. This slow, temperature-controlled refolding gave an improved soluble protein recovery of 55% with a reactivation yield of 90%. The effect of a number of additives on the refolding system performance were tested: the presence of PEG improved both the protein recovery and the recovered activity from the membrane, while the detergents Tween 20 and IGEPAL CA-630 increased only the refolding yield.  相似文献   

9.
Regarding the world wide success of artificial chaperone-assisted protein refolding technique and based on its well worked-out mechanism, it is anticipated that the lipid moieties of glycosylphosphatidylinositol (GPI) group, which is present in some membrane proteins, might interfere with the capturing step of the technique. To find an answer, we evaluated the chemical denaturation and also the refolding behavior of insoluble and soluble alkaline phosohatase (ALP), with or without GPI group, respectively. The results indicated that the presence of GPI in the enzyme increased the stability of the protein against chemical denaturation while it decreased its refolding yield by the artificial chaperone refolding technique. The lower refolding yield, compared to soluble ALP (sALP), might be due to a less efficient stripping step caused by new interactions imparted to the refolding elements of the system especially those among the hydrophobic tails of GPI and the capturing agent of the technique. These new interactions will interrupt the kinetics of detergent stripping from the captured molecules by the stripping agent (i.e., cyclodextrins). This situation will lead to higher intermolecular hydrophobic interactions among the refolding protein intermediates leading to their higher misfolding and aggregation.  相似文献   

10.
A novel artificial chaperone system using a combination of interactions between the unfolded protein, a detergent and a chromatographic column packed with immobilized beta-cyclodextrin (beta-CD) polymer coupled to an agarose gel, was introduced to refold recombinant Staphylococcus aureus elongation factor-G (EF-G). Pre-mixing of 10% Triton X-100 and unfolded EF-G at 24 mg/ml followed by a 20-fold dilution into refolding buffer led to successful capturing of EF-G by Triton X-100 resulting in formation of a detergent-protein complex at 1.2mg/ml of final protein concentration. The complex was subsequently applied to the immobilized beta-CD polymer column resulting in correct refolding of EF-G at a concentration of 530 microg/ml with 99% mass recovery. Detergent concentrations above critical micelle concentration were required for efficient capturing of EF-G at high protein concentration. Other detergents with hydrophile-lipophile-Balance values similar to that of Triton X-100 (Triton N-101, Noindet P40 (NP40), and Berol 185) also produced similar result. Soluble polymerized beta-CD was more efficient than the monomer to remove the detergent from the protein complex in a batch system. Immobilized beta-CD polymer column further improved the capability of detergent removal and was able to prevent aggregation that occurred with the addition of soluble beta-CD polymer at high protein concentration in the batch system. The mechanism for this system-assisted refolding was tentatively interpreted: the released protein could correctly refold in an enclosed hydrophilic environment provided by the integration of matrix and beta-CD polymer, and thus avoided aggregation during detergent removal.  相似文献   

11.
It is now well established that alpha-cyclodextrin (alpha-CD) is a valuable folding agent in refolding processes of several denatured enzyme solutions. The refolding of Gu-HCl denatured alpha-amylase in the dilution-additive mode revealed that alpha-CD enhanced the refolding yield by 20-30% depending upon alpha-CD concentration. However, the refolding efficiency of the Gu-HCl denatured alpha-amylase through the artificial chaperone-assisted method indicated that alpha-CD enhanced the activity recovery of denatured alpha-amylase by almost 50% and also increased the reactivation rate constant relative to the unassisted control sample. The higher refolding efficiency should be due to different mechanism played by alpha-CD in this technique. In addition, our data indicated that higher refolding yields are obtained when the residual Gu-HCl concentration is low in the refolding environment and when the capture agent is removed not in a stepwise manner from the protein-detergent complexes in the stripping step of the whole process. Collectively, the results of this investigation expand the range of procedural variations used to refold different denatured proteins through artificial chaperone-assisted method.  相似文献   

12.
A novel artificial chaperone system, based on combination of oppositely charged detergents, was elaborated to refold soluble alkaline phosphatase. Upon dilution of urea-denatured alkaline phosphatase to a nondenaturing urea concentration in the presence of the capturing agent, complexes of the detergent and non-native protein molecules are formed and thereby the formation of protein aggregates is prevented. The so-called captured protein is unable to refold from the detergent-protein complex states unless a stripping agent is used to gradually remove the detergent molecules. In that respect, we used detergents with variable charges and tail lengths to initiate and complete the refolding process. The results obtained from various analyses (fluorescence, UV, circular dichroism, surface tension, turbidity measurements and activity assays) indicated that the extent of refolding assistance was different due to detergents structure and also the length of hydrophobic portion of each detergent. These observed differences were attributed to the strong electrostatic interactions among the capturing and stripping detergents used in this investigation. Collectively it is expected that protein refolding process can be achieved easier, cheaper and more efficient, using the new technique reported here.  相似文献   

13.
We have been studying the formation of hydrogel nanoparticles by the self-aggregation of hydrophobized polysaccharide and the effective complexation between these nanoparticles as a host and various globular soluble proteins as a guest. This paper describes a new finding that refolding of the heat-denatured enzyme effectively occurs with the nanoparticles and beta-cyclodextrin according to a mechanism similar to that of a molecular chaperone. In particular, the irreversible aggregation of carbonic anhydrase B (CAB) upon heating was completely prevented by complexation between the heat-denatured enzyme and hydrogel nanoparticles formed by the self-aggregation of cholesteryl group-bearing pullulan (CHP). The complexed CAB was released by dissociation of the self-aggregate upon the addition of beta-cyclodextrin. The released CAB refolded to the native form, and almost 100% recovery of the activity was achieved. The thermal stability of CAB was drastically improved by capture of the unfolded form which was then released to undergo refolding.  相似文献   

14.
Desai A  Lee C  Sharma L  Sharma A 《Biochimie》2006,88(10):1435-1445
Cyclodextrins (CDs), in the presence or absence of detergents, have been reported to suppress aggregate formation during the refolding of a number of proteins. A structure-activity relationship study between CD chemistry and refolding of lysozyme was performed and compared to carbonic anhydrase, in order to better understand the mechanism of CD-assisted protein refolding and to identify CDs that could function as good protein folding agents. Among the natural CDs, which have only hydroxyl groups, alpha-CD, with a smaller cavity size was more effective than the oligosaccharide with a larger cavity, gamma-CD. Replacement of the hydroxyls with other functional groups did not improve, but could seriously interfere, with the lysozyme refolding ability of alpha-CD. In case of gamma-CD, substitution of its hydroxyls with other groups either enhanced or diminished its refolding capability towards lysozyme. In general, neutral CDs were better refolding agents than the charged sugars. The presence of anionic substituents like carboxyl and phosphate groups actually promoted aggregate formation and completely abolished the sugar's refolding ability. This effect was more pronounced with lysozyme than with carbonic anhydrase. CDs with cationic functional groups did not show any significant effects on lysozyme refolding. The presence of both anionic and cationic substituents on the same CD molecule was found to partially restore its renaturation ability. Electrophoresis data indicate that CDs, which promoted lysozyme refolding, arrested aggregation at the stage of smaller soluble aggregates. Interestingly, the structure-activity relationship observed with lysozyme was quite similar to that reported for a non-disulfide protein, carbonic anhydrase. These results suggest that the effects of CDs on protein refolding are attributed to their ability to suppress aggregation of proteins. CDs may show properties similar to chaotropic agents, which may help explain their anti-aggregation and protein refolding ability. Besides alpha-CD, a number of other neutral CDs were found to be effective protein folding aids.  相似文献   

15.
Cycloamylose as an efficient artificial chaperone for protein refolding   总被引:7,自引:0,他引:7  
High molecular weight cyclic alpha-1,4-glucan (referred to as cycloamylose) exhibited an artificial chaperone property toward three enzymes in different categories. The inclusion properties of cycloamylose effectively accommodated detergents, which keep the chemically denatured enzymes from aggregation, and promoted proper protein folding. Chemically denatured citrate synthase was refolded and completely recovered it's enzymatic activity after dilution with polyoxyethylenesorbitan buffer followed by cycloamylose treatment. The refolding was completed within 2 h, and the activity of the refolded citrate synthase was quite stable. Cycloamylose also promoted the refolding of denatured carbonic anhydrase B and denatured lysozyme of a reduced form.  相似文献   

16.
It is now well accepted that ionic detergents along with alpha- or beta-cyclodextrins can enhance protein refolding yields. In this report, we evaluated the effect of detergent's tail length on the kinetics of denatured carbonic anhydrase refolding along with determining the rate-limiting step of the whole refolding process. A sensitive fluorimetric technique was also developed to follow up the second-by-second fate of the denatured protein while undergoing refolding. In this technique, inclusion complexes are formed between the correctly refolded CA and the fluorescent active site probe, 5-dimethylaminonaphtalene-1-sulfonamide. By this specific technique, it became evident that the rate of detergent stripping from the CA-detergent mixed micelles that also appeared to be the rate-limiting step depends on the beta-CD-detergent association constants which are under the influence of detergent's tail length. Based on these findings, appropriate refolding conditions could be designed to kinetically diminish the rate of off-pathway aggregation.  相似文献   

17.
It is well accepted that whole casein and its purified major components, due to their chaperone-like activity, are able to suppress the thermal and chemical aggregation of several substrate proteins. In this study, we set out to determine whether whole and β-casein are able to prevent (or attenuate) aggregation accompanying refolding of chemically denatured carbonic anhydrase or to recover lost biological activity after its denaturation. Additionally, we showed attenuated heat-induced fibrillar aggregation of egg white ovalbumin in the presence of these commonly occurring unfolded proteins, as molecular chaperones. Also, the extent, rate and order of aggregation, in the presence and absence of aggregation suppressors, were compared. Although β-casein did not prevent aggregation as strong as whole casein, both chaperones were efficient not only in suppressing the aggregation extent of denatured carbonic anhydrase, but also in delaying elongation process of amyloid fibril formation with no effect on nucleation phase.  相似文献   

18.
Oxidative refolding chromatography: folding of the scorpion toxin Cn5   总被引:19,自引:0,他引:19  
We have made an immobilized and reusable molecular chaperone system for oxidative refolding chromatography. Its three components-GroEL minichaperone (191-345), which can prevent protein aggregation; DsbA, which catalyzes the shuffling and oxidative formation of disulfide bonds; and peptidyl-prolyl isomerase-were immobilized on an agarose gel. The gel was applied to the refolding of denatured and reduced scorpion toxin Cn5. The 66-residue toxin, which has four disulfide bridges and a cis peptidyl-proline bond, had not previously been refolded in reasonable yield. We recovered an 87% yield of protein with 100% biological activity.  相似文献   

19.
Casein micelles are a major component of milk proteins. It is well known that casein micelles show chaperone-like activity such as inhibition of protein aggregation and stabilization of proteins. In this study, it was revealed that casein micelles also possess a high refolding activity for denatured proteins. A buffer containing caseins exhibited higher refolding activity for denatured bovine carbonic anhydrase than buffers including other proteins. In particular, a buffer containing α-casein showed about a twofold higher refolding activity compared with absence of α-casein. Casein properties of surface hydrophobicity, a flexible structure and assembly formation are thought to contribute to this high refolding activity. Our results indicate that casein micelles stabilize milk proteins by both chaperone-like activity and refolding properties.  相似文献   

20.
Molecular chaperone-like activity for protein refolding was investigated using nanogels of self-assembly of cholesterol-bearing pullulan. Nanogels effectively prevented protein aggregation (i.e. carbonic anhydrase and citrate synthase) during protein refolding from GdmCl denaturation. Enzyme activity recovered in high yields upon dissociation of the gel structure in which the proteins were trapped, by the addition of cyclodextrins. The nanogels assisted protein refolding in a manner similar to the mechanism of molecular chaperones, namely by catching and releasing proteins. The nanogels acted as a host for the trapping of refolded intermediate proteins. Cyclodextrin is an effector molecule that controls the binding ability of these host nanogels to proteins. The present nanogel system was also effective at the renaturation of inclusion body of a recombinant protein of the serine protease family.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号