首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gas hold-up (ɛg), sauter mean bubble diameter (d32) and oxygen transfer coefficient (kLa) were evaluated at four different alkane concentrations (0.05, 0.1, 0.3 and 0.5 vol.%) in water over the range of superficial gas velocity (ug) of (1.18–23.52) × 10−3 m/s at 25 °C in a laboratory-scale bubble column bioreactor. Immiscible hydrocarbons (n-decane, n-tridecane and n-hexadecane) were utilized in the experiments as impurity. A type of anionic surfactant was also employed in order to investigate the effect of addition of surfactant to organic-aqueous systems on sauter mean bubble diameter, gas hold-up and oxygen transfer coefficient. Influence of addition of alkanes on oxygen transfer coefficient and gas hold-up, was shown to be dependent on the superficial gas velocity. At superficial gas velocity below 0.5 × 10−3 m/s, addition of alkane in air–water medium has low influence on oxygen transfer coefficient and also gas hold-up, whereas; at higher gas velocities slight addition of alkane increases oxygen transfer coefficient and also gas hold-up. Increase in concentration of alkane resulted in increase in oxygen transfer coefficient and gas hold-up and roughly decrease in sauter mean bubble diameter, which was attributed to an increase in the coalescence-inhibiting tendency in the presence of surface contaminant molecules. Bubbles tend to become smaller with decreasing surface tension of hydrocarbon, thus, oxygen transfer coefficient increases due to increasing of specific gas–liquid interfacial area (a). Empirical correlations were proposed for evaluating gas hold-up as a function of sauter mean bubble diameter, superficial gas velocity and interfacial surface tension as well as evaluating Sherwood number as a function of Schmidt, Reynolds and Bond numbers.  相似文献   

2.
3.
《Process Biochemistry》2014,49(8):1245-1250
This work describes the development of a novel integrated system for lactic acid production by Actinobacillus succinogenes. Fermentation and separation were integrated with the use of a microfiltration (MF) membrane, and lactic acid was recovered by resin adsorption following MF. The fermentation broth containing residual sugar and nutrients was then recycled back into the fermenter after lactic acid adsorption. This novel approach overcame the problem of product inhibition and extended the cell growth period from 41 h to 120 h. Production of lactic acid was improved by 23% to 183.4 g L−1. The overall yield and productivity for glucose were 0.97 g g−1 and 1.53 g L−1 h−1, respectively. These experimental results indicate that the integrated system could benefit continuous production of lactic acid at high levels.  相似文献   

4.
A study was conducted on H2S removal in a biotrickling filter packed with open-pore polyurethane foam. Thiobacillus denitrificans was used as inoculum and a mixed culture population was developed during the process. The inhibitory effect of sulphate concentration (1.8–16.8 g L−1), pH (6.9–8.6), trickling liquid velocity (TLV, 9.1–22.8 m h−1), H2S inlet concentration (20–157 ppmv) and the empty bed residence time (EBRT, 9–57 s) on the H2S removal efficiency (RE) were thoroughly investigated. An increase in pH from 6.9 to 8.5 led to a corresponding increase in H2S removal. In addition, an inhibitory effect of sulphate concentration was observed from 16.8 g L−1 and the maximum elimination capacity was found to be 22 gS m−3 h−1 (RE 98%). The RE was constant (98.8 ± 0.30%) for EBRT  16 s, but a decrease in the EBRT from 16 to 9 s led to a corresponding decrease in RE from 98.2 to 89.6% for a TLV of 9.1 m h−1 and from 97.9 to 94.9% for a TLV of 22.8 m h−1 (inlet load of 11.0 ± 0.2 gS m−3 h−1). The sulphur oxidation capacity in the biotrickling filter was not diminished by the presence of other bacteria.  相似文献   

5.
A perfluoropolymer (PFP) membrane has been prepared for use in vapor permeation to separate aqueous ethanol mixtures produced from rice straw with xylose-assimilating recombinant Saccharomyces cerevisiae. PFP membranes commonly have been used for dehydration process and possess good selectivity and high permeances. The effects of by-products during dilute acid pretreatment, addition of yeast extract, and ethanol fermentation on PFP membrane performance were investigated. While feeding mixtures of ethanol (90 wt%) in water, to which individual by-products (0.1–2 g/L) were added, the PFP membrane demonstrated no clear change in permeation rate (439–507 g m−2 h−1) or separation factor (14.9–23.5) from 2 to 4 h of the process. The PFP membrane also showed no clear change in permeation rate (751–859 g m−2 h−1) or separation factor (12.5–13.8) while feeding the mixture (final ethanol conc.: 61 wt%) of ethanol and distillation of the fermentation broth using a suspended fraction of dilute acid-pretreated rice straw for 20 h. These results suggest that the PFP membrane can tolerate actual distillation liquids from ethanol fermentation broth obtained from lignocellulosic biomass pretreated with dilute acid.  相似文献   

6.
Simultaneous saccharification and fermentation (SSF) of renewable cellulose for the production of 3-phenyllactic acid (PhLA) by recombinant Escherichia coli was investigated. Kraft pulp recovered from biomass fractionation processes was used as a model cellulosic feedstock and was hydrolyzed using 10–50 filter paper unit (FPU) g−1 kraft pulp of a commercial cellulase mixture, which increased the glucose yield from 21% to 72% in an enzyme dose-dependent manner. PhLA fermentation of the hydrolyzed kraft pulp by a recombinant E. coli strain expressing phenylpyruvate reductase from Wickerhamia fluorescens TK1 produced 1.9 mM PhLA. The PhLA yield obtained using separate hydrolysis and fermentation was enhanced from 5.8% to 42% by process integration into SSF of kraft pulp (20 g L−1) in a complex medium (pH 7.0) at 37 °C. The PhLA yield was negatively correlated with the initial glucose concentration, with a five-fold higher PhLA yield observed in culture medium containing 10 g L−1 glucose compared to 100 g L−1. Taken together, these results suggest that the PhLA yield from cellulose in kraft pulp can be improved by SSF under glucose-limited conditions.  相似文献   

7.
 Enzymatic hydrolysis of corncob and ethanol fermentation from cellulosic hydrolysate were investigated. After corncob was pretreated by 1% H2SO4 at 108 °C for 3 h, the cellulosic residue was hydrolyzed by cellulase from Trichoderma reesei ZU-02 and the hydrolysis yield was 67.5%. Poor cellobiase activity in T. reesei cellulase restricted the conversion of cellobiose to glucose, and the accumulation of cellobiose caused severe feedback inhibition to the activities of β-1,4-endoglucanase and β-1,4-exoglucanase in cellulase system. Supplementing cellobiase from Aspergillus niger ZU-07 greatly reduced the inhibitory effect caused by cellobiose, and the hydrolysis yield was improved to 83.9% with enhanced cellobiase activity of 6.5 CBU g−1 substrate. Fed-batch hydrolysis process was started with a batch hydrolysis containing 100 g l−1 substrate, with cellulosic residue added at 6 and 12 h twice to get a final substrate concentration of 200 g l−1. After 60 h of reaction, the reducing sugar concentration reached 116.3 g l−1 with a hydrolysis yield of 79.5%. Further fermentation of cellulosic hydrolysate containing 95.3 g l−1 glucose was performed using Saccharomyces cerevisiae 316, and 45.7 g l−1 ethanol was obtained within 18 h. The research results are meaningful in fuel ethanol production from agricultural residue instead of grain starch.  相似文献   

8.
《Process Biochemistry》2007,42(3):335-343
A comparative study of the performance of two types of adsorbent (Streamline Quartz Base and Upfront Matrices), derivatized with the same affinity ligand (RPAP) to recover C595 diabody fragment (dbFv) from Escherichia coli lysates has been undertaken. Both streamline and Upfront Matrices are characterized by a particle size range of 100–300 μm. Streamline has a density of 1.20 g cm−3 and ligand concentration of 0.85 μmol ml−1. Upfront has a density of 1.35 g cm−3 and ligand concentration of 0.83 μmol ml−1. The release of C595 dbFv from E. coli cells was achieved by a chemical lysis method. The recovery performance of both adsorbents was evaluated in terms of operational productivity and elution yield of C595 dbFv in packed bed (clarified feedstock) and expanded bed (unclarified and clarified feedstock) chromatography systems. Streamline and Upfront adsorbents exhibited diabody operational productivities of 131 and 202 mg l−1, respectively, with an elution yield of 92 and 94%, respectively, in packed bed operation. Streamline and Upfront adsorbents exhibited diabody operational productivities of 54.5 and 123.7 mg l−1, respectively, with an elution yield of 89 and 92%, respectively, in expanded bed operation.  相似文献   

9.
The removal of Remazol Blue and Reactive Black B by the immobilized thermophilic cyanobacterial strain Phormidium sp. was investigated under thermophilic conditions in a batch system, in order to determine the optimal conditions required for the highest dye removal. In the experiments, performed at pH 8.5, with different initial dye concentrations between 9.1 mg l−1 and 82.1 mg l−1 and at 45 °C, calcium alginate immobilized Phormidium sp. showed high dye decolorization, with maximum uptake yields ranging from 50% to 88% at all dye concentrations tested. When the effects of high dye concentrations on dye removal were investigated, the highest uptake yield in the beads was 50.3% for 82.1 mg l−1 Remazol Blue and 60.0% for 79.5 mg l−1 Reactive Black B. The highest color removal was detected at 45 °C and 50 °C incubation temperatures for all dye concentrations. As the temperature decreased, the removal yield of immobilized Phormidium sp. also decreased. At about 75 mg l−1 initial dye concentrations, the highest specific dye uptake measured was 41.29–41.17 mg g−1 for Remazol Blue and 47.69–43.82 mg g−1 for Reactive Black B at 45 °C and 50 °C incubation temperatures, respectively, after 8 days incubation.  相似文献   

10.
The mixed cultures has been isolated from industrial saline wastewater contaminated with chromium(VI), using enrichment in the presence of 50 mg l−1 chromium(VI) and 4% (w/v) NaCl at pH 8. In this study, the molasses (M) medium was selected a suitable medium for the effective chromium bioaccumulation by the mixed cultures. Eleven pure isolates obtained from mixed cultures and some of them showed high bioaccumulation in the M media containing about 100 mg l−1 chromium(VI) and 4% NaCl. The strain 8 (99.3%) and 10 (99.1%) were able to bioaccumulate more efficient than the mixed culture (98.9%) in this media. But the highest specific Cr uptake was obtained by the mixed cultures followed by strain 8 and 10 with 56.71, 33.14 and 21.7 mg g−1, respectively. Bioaccumulation of chromium(VI) ions by the strain 8 growing in the media with chromium(VI) and NaCl was studied in a batch system as a function of initial chromium(VI) (86.6–547.6 mg l−1) and NaCl (0, 2, 4, 6% w/v) concentrations. During all the experiments, the uptake yield of the strain 8 was highly affected from NaCl concentrations in the medium at high initial chromium(VI) concentrations. But at low chromium(VI) concentration, strain 8 was not affected from NaCl concentrations in the medium. The maximum uptake yield were obtained in the M media with 2% NaCl as 98.8% for 110.0 mg l−1, 98.6% for 217.1 mg l−1, 98.6% for 381.7 mg l−1 and 98.2% for 547.6 mg l−1 initial chromium(VI) concentrations. The strain 8 tolerated a 6% (w/v) NaCl concentration was able to bioaccumulate more than 95% of the applied chromium(VI) at the 97.6–224.4 mg l−1 initial chromium(VI) concentrations. The results presented in this paper was shown that these pure and mixed cultures might be of use for the bioaccumulation of chromium(VI) from saline wastewater.  相似文献   

11.
A method for Selenocystine and Selenomethionine determination by LC–ES–MS was developed in this work. The mass spectrometer was used in a positive mode and the m/z used for the identification of Selenomethionine and Selenocystine were 198.35 and 337.15, respectively.The selenium species were separated using a LC system. A silica chromatographic column (ZORBAX Eclipse XDB-C8 of 50 mm length and 2.1 mm internal diameter (particle size 3.5 μm)) was used. The separation was realised in isocratic mode, using methanol:water (1:1) with 1% of acetic acid and a flow rate of 200 μL min−1. The developed method was precise (RSD of 4.5% and 3.9% for Selenomethionine and Selenocystine, respectively) and sensible (limit of detection (LOD) 0.06 and 0.99 mg L−1 for selenomethionine and selenocystine, respectively).  相似文献   

12.
Genetic based knowledge of different growth traits including morphological, physiological and developmental plays fundamental role in the improvement of rice. Genetic divergence allows superior recombinants which are essential in any crop development project. Forty-one rice genotypes including bacterial blight (BB) resistant and susceptible checks were assessed for 13 morphological traits. Among the genotypes, almost all the traits exhibited highly significant variation. The higher extent of genotypic (GCV) as well as phenotypic coefficients of variation (PCV) were noticed for number of tillers hill 1, total number of spikelets panicle 1, number of filled grains panicle 1, and yield hill 1. High heritability together with high genetic advance was observed for total number of spikelets panicle 1, number of filled grains panicle 1, and yield hill 1 indicating dominant role of additive gene action in the expression of these traits. Number of filled grains panicle 1 exhibited positive correlation with most of the traits. Yield hill 1 showed a good number of highly significant positive correlations with number of filled grain panicle 1, total number of spikelets panicle 1, 1000 grain weight hill 1, number of panicle hill 1, and panicle length. The UPGMA dendrogram divided all the genotypes in to six major clusters. The PCA showed 13 morphological traits generated about 71% of total variation among all the genotypes under this study. On the basis of 13 morphological traits, genotypes such as IRBB2, IRBB4, IRBB13, IRBB21, and MR263 could be hybridized with genotypes MR84, MR159, MRQ50, MRQ74, PH9 and IR8 in order to develop suitable BB resistant rice genotypes.  相似文献   

13.
《Aquatic Botany》2005,81(4):315-325
Effects of irradiance and water flow on formation and growth of filamentous and spongy thalli of Codium fragile (Suringar) Hariot growing on vinylon threads were investigated at the laboratory culture. They showed clear differences in their irradiance and water flow requirements for their formation and growth. Spongy thalli were formed from the cultured filamentous thalli only at the high water flow velocity (10 cm s−1). Number of the spongy thalli remarkably increased with increasing irradiance because those at 10, 50 and 100 μmol m−2 s−1 reached 0, 2 and 76 thalli m−1, respectively, by 10 weeks of culture. In contrast, filamentous thalli were formed from the cultured spongy thalli at 0 and 3 cm s−1, and difference in irradiance had no effect on their formation. Growth of the spongy thalli greatly accelerated under the combination of the high irradiance and high water velocity (200 μmol m−2 s−1 and 10 cm s−1) because their relative growth rate in wet weight under the condition was two–four times higher than those at the other examined irradiances and water velocities. On the other hand, difference in water velocity had no effect on growth of the filamentous thalli under flowing water, and their growth decelerated at the high irradiance (200 μmol m−2 s−1). This demonstrates that water flow is a major factor controlling the formation of the spongy and filamentous thalli. The formation and growth of the spongy thalli surely occur under the combination of the high irradiance and fast flowing water. In contrast, the formation of the filamentous thalli occurs in the calm water, and their growth is inhibited under the high irradiance.  相似文献   

14.
Aerobic granulation is a process in which suspended biomass aggregate and form discrete well-defined granules in aerobic systems. To investigate the properties and kinetics of aerobic granular sludge, aerobic granules were cultivated with glucose synthetic wastewater in a series of sequencing batch reactors (SBR). The spherical shaped granules were observed on 8th day with the mean diameter of 0.1 mm. With the organic loading rate (OLR) being increased to 4.0 g COD L−1 d−1, aerobic granules grew matured with spherical shape. The size of granules ranged from 1.2 to 1.8 mm, and the corresponding settling velocity of individual granule was 24.2–36.4 m h−1. The oxygen utilization rate (OUR) of mature granules was 41.90 g O2 kg MLSS−1 h−1, which was two times higher than that of activated sludge (18.32 g O2 kg MLSS−1 h−1). The experimental data indicated that the substrate utilization and biomass growth kinetics generally followed Monod's kinetics model. The corresponding kinetic coefficients of k (maximum specific substrate utilization rate), Ks (half velocity coefficient), Y (growth yield coefficient) and Kd (decay coefficient) were determined as follows, kc = 23.65 d−1, Kc = 3367.05 mg L−1, KN = 0.038 d−1, KN = 29.65 mg L−1, Y = 0.1927–0.2022 mg MMLS (mg COD)−1 and Kd = 0.00845–0.0135 d−1, respectively. Those properties of aerobic granules made aerobic granules system had a short setup period, high substrate utilization rate and low sludge production.  相似文献   

15.
Aerobic granular sludge was cultivated in a glass sequencing batch reactor (SBR) with glucose synthetic wastewater. The spherical shaped granules were observed on 4th day with the mean diameter of 0.1 mm. With the increase of chemical oxygen demand (COD) concentration of the influent, aerobic granules grew matured, the size of which ranged from 1.2 to 1.9 mm. The aerobic granular sludge could sustain high organic loading rate (about 4.0 g COD L−1 d−1), with good settling ability (settling velocity 36 m/h) and high biomass concentration (MLSS 6.7 ±0.2 g/L). Experimental data indicated that the substrate utilization and biomass growth kinetics followed Monod's kinetics model approximately. The corresponding kinetic coefficients of maximum specific substrate utilization rate (k), half velocity coefficient (Ks), growth yield coefficient (Y) and decay coefficient (Kd) were 13.2 d−1, 275.8 mg/L, 0.183–0.250 mg MLSS/mg COD and 0.023–0.075 d−1, respectively, which made aerobic granules have short setup period, high rate of substrate utilization and little surplus sludge.  相似文献   

16.
Cheese whey powder (CWP) solution with different CWP or sugar concentrations was fermented to ethanol in a continuous fermenter using pure culture of Kluyveromyces marxianus (DSMZ 7239). Sugar concentration of the feed CWP solution varied between 55 and 200 g l−1 while the hydraulic residence time (HRT) was kept constant at 54 h. Ethanol formation, sugar utilization and biomass formation were investigated as functions of the feed sugar concentration. Percent sugar utilization and biomass concentrations decreased and the effluent sugar concentration increased with increasing feed sugar concentrations especially for the feed sugar contents above 100 g l−1. Ethanol concentration and productivity (DP) increased with increasing feed sugar up to 100 g l−1 and then decreased with further increases in the feed sugar content. The highest ethanol concentration (3.7%, v v−1) and productivity (0.54 gE l−1 h−1) were obtained with the feed sugar content of 100 g l−1 or 125 g l−1. The ethanol yield coefficient (YP/S) was also maximum (0.49 gE gS−1) when the feed sugar was between 100 and 125 g l−1. The growth yield coefficient (YX/S) decreased steadily from 0.123 to 0.063 gX gS−1 when the feed sugar increased from 55 to 200 g l−1 due to adverse effects of high sugar contents on yeast growth. The optimal feed sugar concentration maximizing the ethanol productivity and sugar utilization was between 100 and 125 g l−1 under the specified experimental conditions.  相似文献   

17.
《Process Biochemistry》2007,42(1):112-117
A simple fed-batch process was developed using a modified variable specific growth rate feeding strategy for high cell density cultivation of Escherichia coli BL21 (DE3) expressing human interferon-gamma (hIFN-γ). The feeding rate was adjusted to achieve the maximum attainable specific growth rate during fed-batch cultivation. In this method, specific growth rate was changed from a maximum value of 0.55 h−1 at the beginning of feeding and then it was reduced to 0.4 h−1 at induction time.The final concentration of biomass and IFN-γ was reached to ∼115 g l−1 (DCW) and 42.5 g(hIFN-γ) l−1 after 16.5 h, also the final specific yield and overall productivity of recombinant hIFN-γ (rhIFN-γ) were obtained 0.37 g(hIFN-γ) g−1 DCW and 2.57 g(hIFN-γ) l−1 h−1, respectively. According to available data this is the highest specific yield and productivity that has been reported for recombinant proteins production yet.  相似文献   

18.
Eight varieties of maize, namely Awassa 511 (A511), Birkata, composite of best families (CBF), Dendane, drought tolerant population (DTP1), Guto, Katumani and Keroshet planted in 1995 cropping season were compared for grain and crop residue yield and nutritive value of the stover. Significant differences (p < 0.05) were observed in grain and crop residue yields of the varieties. Grain yield was highest (6.99 t ha−1) in DTP1 and lowest (2.21 t ha−1) in Keroshet. Stover and total crop residue yields were significantly higher (p < 0.05) in A511 than in CBF and Dendane. The stem was the largest portion in the stover varying from 31% in Dendane to 50% in A511. The stover of Birkata showed a high crude protein (CP) and low ash and fibre contents compared to the other varieties. The CP content varied from 28 g kg DM−1 (Guto) to 61 g kg DM−1 (Birkata). Crop residue yield and quality parameters, except CP content of the stover, were not negatively correlated with grain yield. The potential utility index varied from 61% (Keroshet) to 74% (CBF). The varieties with higher potential utility indices, except Guto, also had relatively higher solubility, 48 h DM degradability and effective degradability compared to the other varieties. The overall results showed evidence of varietal differences in grain and stover yield and stover quality and indicated the possibility of selecting for maize varieties that combine high grain yield and desirable stover characteristics.  相似文献   

19.
An epoxy-activated monolithic Convective Interaction Media (CIM®) disk was used for the immobilization of endodextranase D8144 from Penicillium sp. (EC 3.2.1.11) in order to produce on-line isomalto-oligosaccharides (IMOs) from Dextran T40. Enzymatic parameters, molecular weight of IMOs and performance of the IMmobilized Enzymes Reactor (IMER) were investigated. The immobilization yield of enzymes was about 45.3% (w/w), and the real specific activity close to 3.26 U mg−1. The Km values did not significantly change between free (12.8 g L−1) and immobilized enzymes (14.2 g L−1), due to the absence of diffusional limitation. The IMER system presented more than 80% of its residual activity after 5000 column volumes, highlighting the high stability of the immobilized endodextranases. Response surface methodology was used to enhance the performance of the IMER. Depending on dextran concentrations and flow rates, specific patterns of IMOs distributions were observed during the enzymatic hydrolysis. Finally, prebiotic activity was also investigated on IMOs produced by medium conditions (flow rate 0.3 mL min−1 and dextran concentrations 4% w/w) against Lactobacillus rhamnosus GG (ATCC 53103). Their scores were at least as good as two commercialized fructo-oligosaccharides (FOS), Fibrulose® F97 and Orafti® P95.  相似文献   

20.
Lacto-N-tetraose (Gal(β1-3)GlcNAc(β1-3)Gal(β1-4)Glc) is one of the most abundant oligosaccharide structures in human milk. We recently described the synthesis of lacto-N-tetraose by a whole-cell biotransformation with recombinant Escherichia coli cells. However, only about 5% of the lactose was converted into lacto-N-tetraose by this approach. The major product obtained was the intermediate lacto-N-triose II (GlcNAc(β1-3)Gal(β1-4)Glc).In order to improve the bioconversion of lactose to lacto-N-tetraose, we have investigated the influence of the carbon source on the formation of lacto-N-tetraose and on the intracellular availability of the glycosyltransferase substrates, UDP-N-acetylglucosamine and UDP-galactose. By growth of the recombinant E. coli cells on D-galactose, the yield of lacto-N-tetraose (810.8 mg L−1 culture) was 3.6-times higher compared to cultivation on D-glucose.Using fed-batch cultivation with galactose as sole energy and carbon source, a large-scale synthesis of lacto-N-tetraose was demonstrated. During the 26 h feeding phase the growth rate (μ = 0.05) was maintained by an exponential galactose feed. In total, 16 g L−1 lactose were fed and resulted in final yields of 12.72 ± 0.21 g L−1 lacto-N-tetraose and 13.70 ± 0.10 g L−1 lacto-N-triose II. In total, 173 g of lacto-N-tetraose were produced with a space-time yield of 0.37 g L−1 h−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号