首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Process Biochemistry》2007,42(4):681-685
The potential application of dry biomass of a cyanobacterium Anacystis nidulans as a supplement in SSF for the production of laccase from Pleurotus ostreatus was evaluated. Experiments were carried out in solid culture using groundnut shell as a basic substrate supplemented with four independent nitrogen sources (ammonium sulphate, urea, yeast extract and dry powder of cyanobacteria). All the four supplements enhanced the enzyme yield, and yeast extract showed precedence over inorganic nitrogenous sources. However, when dry biomass of A. nidulans was used as an additive to groundnut shell (agricultural residues), it supported maximum cell growth (56.83 ± 5.56 mg/g dry substrate) and laccase production (49.21 ± 4.89 U/g dry substrate). Addition of 1 mM copper salt in the medium containing groundnut shell supplemented with yeast extract gave laccase activity of 32.64 ± 3.4 U/g dry substrate. When dry powder of cyanobacterial biomass was used as N-supplement, laccase production enhanced to 65.42 ± 6.48 U/g dry substrate. In addition to the enhancement to enzyme production inhibitory effects of high concentrations of copper was also diminished in the medium having dry cyanobacterial biomass. This study, forms the first report on the potential application of cyanobacterial biomass as an additive for production of laccase by Pleurotus ostraetus MTCC 1804 in solid state fermentation and has relevance in scale-up production of this fungal enzyme of commercial significance.  相似文献   

2.
Protease producing halotolerant bacterium was isolated from saltern pond sediment (Tuticorin) and identified as Bacillus licheniformis (TD4) by 16S rRNA gene sequencing. Protease production was enhanced by optimizing the culture conditions. The nutritional factors such as carbon and nitrogen sources, NaCl and also physical parameters like incubation time, pH, agitation, inoculum size were optimized for the maximum yield of protease. Studies on the effect of different carbon and nitrogen sources revealed that xylose and urea enhances the enzyme production. Thus, with selected C–N sources along with 1 M NaCl the maximum protease production (141.46 U/mg) was obtained in the period of 24 h incubation at pH 8 under 250 rpm compared to the initial enzyme production (89.87 U/mg).  相似文献   

3.
Fifty-three plant-associated microorganisms were investigated for their ability to convert sucrose to its isomers. These microorganisms included one Dickeya zeae isolate and 7 Enterobacter, 3 Pantoea, and 43 Pectobacterium species. Eleven out of the 53 strains (21%) showed the ability to transform sucrose to isomaltulose and trehalulose. Among those, Pectobacterium carotovorum KKH 3-1 showed the highest bioconversion yield (97.4%) from sucrose to its isomers. In this strain, the addition of up to 14% sucrose in the medium enhanced sucrose isomerase (SIase) production. The SIase activity at 14% sucrose (47.6 U/mg dcw) was about 3.6-fold higher than that of the negative control (13.3 U/mg dcw at 0% sucrose). The gene encoding SIase, which is comprised a 1776 bp open reading frame (ORF) encoding 591 amino acids, was cloned from P. carotovorum KKH 3-1 and expressed in Escherichia coli. The recombinant SIase (PCSI) was shown to have optimum activity at pH 6.0 and 40 °C. The reaction temperature significantly affected the ratio of sucrose isomers produced by PCSI. The amount of trehalulose increased from 47.5% to 79.1% as temperature was lowered from 50 °C to 30 °C, implying that SIase activity can be controlled by reaction temperature.  相似文献   

4.
《Process Biochemistry》2007,42(8):1259-1263
We have investigated production, solubility and activity of recombinant glutathione-S-transferase (GST) expressed in Escherichia coli BL21 grown in defined media with glucose or glycerol as carbon source. GST was predominantly expressed as a soluble protein on both carbon sources, and 83–84% was found in the supernatant after cell lysis. In cultures grown on glucose, only 32 ± 9% of the GST was active, while 76 ± 13% of the GST was active in cultures grown on glycerol. This shows that glycerol has the potential to increase the activity of soluble GST in E. coli cultures in vivo.  相似文献   

5.
Xylanase production by Aspergillus foetidus MTCC 4898 was carried out under solid state fermentation using wheat bran and anaerobically treated distillery spent wash. Response surface methodology involving Box–Behnken design was employed for optimizing xylanase production. The interactions among various fermentation parameters viz. moisture to substrate ratio, inoculum size, initial pH, effluent concentration and incubation time were investigated and modeled. The predicted xylanase activity under optimized parameters was 8200–8400 U/g and validated xylanase activity was 8450 U/g with very poor cellulase activity. Crude xylanase was used for enzymatic saccharification of agroresidues like wheat straw, rice straw and corncobs. Dilute NaOH and ammonia pretreatments were found to be beneficial for the efficient enzymatic hydrolysis of all the three substrates. Dilute NaOH pretreated wheat straw, rice straw and corncobs yielded 4, 4.2, 4.6 g/l reducing sugars, respectively whereas ammonia treated wheat straw, rice straw and corncobs yielded 4.9, 4.7, 4.6 g/l reducing sugars, respectively. The hydrolyzates were analysed by HPTLC. Xylose was found to be the major end product with traces of glucose in the enzymatic hydrolyzates of all the substrates.  相似文献   

6.
An FAD-dependent glucose dehydrogenase (FAD-GDH) from Aspergillus terreus NIH2624 was expressed in Escherichia coli with a yield of 228 ± 16 U/L of culture. Co-expression with chaperones DnaK/DnaJ/GrpE and osmotic stress induced by simple carbon sources enhanced productivity significantly, improving the yield to 23883 ± 563 U/L after optimization. FAD-GDH was purified in two steps with the specific activity of 604 U/mg. Using d-glucose as substrate, the optimal pH and temperature for FAD-GDH were determined to be 7.5 and 50 °C, respectively. Activity was stable across the pH range 3.5–9.0, and the half-life was 52 min at 42 °C. Km and Vmax were calculated as 86.7 ± 5.3 mM and 928 ± 35 U/mg, and the molecular weight was approximately 65.6 kDa based on size exclusion chromatography, indicating a monomeric structure. The 3D structure of FAD-GDH was simulated by homology modelling using the structure of A. niger glucose oxidase (GOD) as template. From the model, His551, His508, Asn506 and Arg504 were identified as key residues, and their importance was verified by site-directed mutagenesis. Furthermore, three additional mutants (Arg84Ala, Tyr340Phe and Tyr406Phe) were generated and all exhibited a higher degree of substrate specificity than the native enzyme. These results extend our understanding of the structure and function of FAD-GDH, and could assist potential commercial applications.  相似文献   

7.
《Process Biochemistry》2004,39(11):1519-1524
Changes in pyruvate and ascorbate production and antioxidant enzyme activities together with lipid peroxidation levels in Fusarium equiseti were investigated in relation to changes in the concentrations of glucose and maltose as carbon sources in the range of 5–25 g/l in Armstrong Fusarium Medium (AFM). The highest pyruvate concentration obtained at 20 g/l maltose was 67.5 ± 0.69 μg/ml while ascorbic acid reached a maximum value at 25 g/l glucose of 1866±26.1 μg/ml The maximum superoxide dismutas (SOD) activities related to increased pyruvate production were determined in AFM medium containing 20 g/l glucose as 41.49±0.65 and maltose as 61.12±0.8 IU/mg. Catalase (CAT) activity variations showed coherence with SOD activity in a medium containing maltose and reached 219.11±2.8 IU/mg while they were decreased with increasing glucose concentration. glutathione peroxidase (GSH-Px) activities in F. equiseti did not change significantly with glucose and maltose concentration and were determined to be 1.21±0.22 and 1.67±0.15 IU/mg, respectively. Minimum lipid peroxidation levels for each carbon source were determined in both 20 g/l maltose and glucose concentrations as 0.9 and 1.62 nmol MDA/g wet weight.  相似文献   

8.
A highly chitinolytic strain Penicillium ochrochloron MTCC 517 was procured from MTCC, Chandigarh, India. Culture medium supplemented with 1% chitin was found to be suitable for maximum production of chitinase. Purification of extracellular chitinase was done from the culture medium by organic solvent precipitation and DEAE-cellulose column chromatography. The chitinase was purified 6.92-fold with 29.9% yield. Molecular mass of purified chitinase was found to be 64 kDa by SDS-PAGE. The chitinase showed optimum temperature 40 °C and pH 7.0. The enzyme activity was completely inhibited by Hg2+, Zn2+, K+ and NH4+. The enzyme kinetic study of purified chitinase revealed the following characteristics, such as apparent Km 1.3 mg ml?1, Vmax 5.523 × 10?5 moles l?1 min?1 and Kcat 2.37 s?1 and catalytic efficiency 1.82 s?1 M?1. The enzyme hydrolyzed colloidal chitin, glycol chitin, chitosan, glycol chitosan, N,N′-diacetylchitobiose, p-nitrophenyl N-acetyl-β-d-glucosaminide and 4-methylumbelliferyl N-acetyl-β-d-glucosaminide. The chitinase of P. ochrochloron MTCC 517 is an exoenzyme, which gives N-acetylglucosamine as the main hydrolyzate after hydrolysis of colloidal chitin. Protoplasts with high regeneration capacity were obtained from Aspergillus niger using chitinase from P. ochrochloron MTCC 517. Since it also showed antifungal activity, P. ochrochloron MTCC 517 seems to be a promising biocontrol agent.  相似文献   

9.
Escherichia coli strain NZN111, a pflB and ldhA double mutant of E. coli W1485, is considered a candidate of succinic acid producer. However, it is reported that this strain fails to ferment glucose anaerobically. In this study, it was demonstrated that when a gluconeogenic carbon source was used to replace glucose in aerobic culture, the NZN111 cells restored the ability to ferment glucose in the subsequent anaerobic culture with succinic acid as the major product even though no further genetic manipulation had been carried out. Activities of enzymes including phosphoenolpyruvate (PEP) carboxykinase, PEP carboxylase, isocitrate lyase, malate dehydrogenase, malic enzyme, and pyruvate kinase in the NZN111 cells aerobically grown on different carbon sources were measured, and enhanced anaplerotic and oxaloacetate-reducing activities were revealed. Furthermore, supply of MgCO3 or NaHCO3 greatly improved succinate production by the malate-grown NZN111 cells. At the same time, pyruvic acid production was significantly reduced. When the malate-grown cells were anaerobically cultured in a salt medium with high pH buffering capacity, succinic acid was produced at a specific productivity of 308 mg/(g DCW h) with a molar yield of 1.31 mol succinic acid/mol glucose.  相似文献   

10.
The psychrotolerant bacterium Shewanella sp. G5 was used to study differential protein expression on glucose and cellobiose as carbon sources in cold-adapted conditions. This strain was able to growth at 4 °C, but reached the maximal specific growth rate at 37 °C, exhibiting similar growing rates values with glucose (μ: 0.4 h−1) and cellobiose (μ: 0.48 h−1). However, it grew at 15 °C approximately in 30 h, with specific growing rates of 0.25 and 0.19 h−1 for cellobiose and glucose, respectively. Thus, this temperature was used to provide conditions related to the environment where the organism was originally isolated, the intestinal content of Munida subrrugosa in the Beagle Channel, Fire Land, Argentina. Cellobiose was reported as a carbon source more frequently available in marine environments close to shore, and its degradation requires the enzyme β-glucosidase. Therefore, this enzymatic activity was used as a marker of cellobiose catabolism. Zymogram analysis showed the presence of cold-adapted β-glucosidase activity bands in the cell wall as well as in the cytoplasm cell fractions. Two-dimensional gel electrophoresis of the whole protein pattern of Shewanella sp. G5 revealed 59 and 55 different spots induced by cellobiose and glucose, respectively. Identification of the quantitatively more relevant proteins suggested that different master regulation schemes are involved in response to glucose and cellobiose carbon sources. Both, physiological and proteomic analyses could show that Shewanella sp. G5 re-organizes its metabolism in response to low temperature (15 °C) with significant differences in the presence of these two carbon sources.  相似文献   

11.
Eight fungal species were cultivated on the Czapek liquid medium and a good starting extracellular and intracellular exo-inulinase were selected. Extracellular inulinase from Ulocladium atrum was prepared in the presence of 1% inulin source and 0.2% sodium nitrate as the best carbon and nitrogen sources. Incubation for the U. atrum was increased till it reached its maximum (36 U/ml) at the sixth day of incubation at 30 °C which was the best temperature for the production of exo-inulinase. Effect of all metal ions inhibited inulase production by U. atrum. Exo-inulinase was purified by using ammonium sulfate precipitation, ion exchange chromatography on DEAE-cellulose. Three active inulinase forms INI, INII and INIII were resolved, each for DEAE cellulose. The specific activity of INI was 1915 U/mg protein which represented 2.65-fold purification over the crude extract with 42.8% recovery pooling of INI placed on CM cellulose chromatography and INI was resolved into INIa, INIb and INIc. The specific activity of INIa was 2479.2 U/mg protein which represented 3.43-fold purification over the crude extract with 24.2% recovery.  相似文献   

12.
In this work, a laccase producer, Ganoderma lucidum, was separated and identified according to its morphological characteristics and phylogenetic data. A 4000 U/l and 8500 U/l of laccase activity was obtained in 500 ml flask by submerged culture and biomembrane-surface liquid culture (BSLC), respectively. Furthermore, the novel biomembrane-surface liquid co-culture (BSLCc) was developed by adding Saccharomyces cerevisiae to reactor in order to shorten the fermentation period and improve laccase production. Laccase activity obtained by BSLCc, 23 000 U/l, is 5.8 and 2.7 times of that obtained by submerged culture and BSLC, respectively. In addition, laccase production by BSLCc was successfully scaled-up to 100 l reactor, and 38 000 U/l of laccase activity was obtained on day 8. The mechanism of overproducing laccase by BSLCc was investigated by metabolism pathway analysis of glucose. The results show glucose limitation in fermentation broth induces the secretion of laccase. The addition of S. cerevisiae, on one hand, leads to an earlier occurrence of glucose limitation state, and thus shortens the fermentation time; on the other hand, it also results in the appearance of a series of metabolites of the yeast including organic acids, ethanol, glycerol and so forth in fermentation broth, and both polyacrylamide gel electrophoresis analysis and enzyme activity detection of laccase show that these metabolites contribute to the improvement of laccase activity.  相似文献   

13.
Statistical experimental design was used to optimize the conditions of simultaneous saccharification and fermentation (SSF), viz. temperature, pH and time of fermentation of ethanol from sago starch with co-immobilized amyloglucosidase (AMG) and Zymomonas mobilis MTCC 92 by submerged fermentation. Maximum ethanol concentration of 55.3 g/l was obtained using a starch concentration of 150 g/l. The optimum conditions were found to be a temperature of 32.4 °C, pH of 4.93 and time of fermentation of 17.24 h. Thus, by using SSF process with co-immobilized AMG and Z. mobilis cells MTCC 92, the central composite design (CCD) was found to be the most favourable strategy investigated with respect to ethanol production and enzyme recovery.  相似文献   

14.
Burkholderia sp. C20 strain isolated from food wastes produces a lipase with hydrolytic activities towards olive oil. Fermentation strategies for efficient production of this Burkholderia lipase were developed using a 5-L bench top bioreactor. Critical factors affecting the fermentative lipase production were examined, including pH, aeration rate, agitation rate, and incubation time. Adjusting the aeration rate from 0.5 to 2 vvm gave an increase in the overall lipase productivity from 0.057 to 0.076 U/(ml h), which was further improved to 0.09 U/(ml h) by adjusting the agitation speed to 100 rpm. The production of Burkholderia lipase followed mixed growth-associated kinetics with a yield coefficient of 524 U/g-dry-cell-weight. The pH optimum for cell growth and lipase production was different at 7.0 and 6.0, respectively. Furthermore, stepwise addition of carbon substrate (i.e., olive oil) enhanced lipase production in both flask and bioreactor experiments.  相似文献   

15.
Thermobifida fusca not only produces cellulases, hemicellulases and xylanases, but also excretes butyric acid. In order to achieve a high yield of butyric acid, the effect of different carbon sources: mannose, xylose, lactose, cellobiose, glucose, sucrose and acetates, on butyric acid production was studied. The highest yield of butyric acid was 0.67 g/g C (g-butyric acid/g-carbon input) on cellobiose. The best stir speed and aeration rate for butyric acid production were found to be 400 rpm and 2 vvm in a 5-L fermentor. The maximum titer of 2.1 g/L butyric acid was achieved on 9.66 g/L cellulose. In order to test the production of butyric acid on lignocellulosic biomass, corn stover was used as the substrate, on which there was 2.37 g/L butyric acid produced under the optimized conditions. In addition, butyric acid synthesis pathway was identified involving five genes that catalyzed reactions from acetyl-CoA to butanoyl-CoA in T. fusca.  相似文献   

16.
《Process Biochemistry》2007,42(4):686-692
Pseudomonas putida 33 wild strain, subjected to gamma ray mutagenesis and designated as P. putida 300-B mutant was used as microbial rhamnolipid-producer by using distant carbon sources (viz. hydrocarbons, waste frying oils ‘WFOs’, vegetable oil refinery wastes and molasses) in the minimal media under shake flask conditions. The behavior of glucose as co-substrate and growth initiator was examined. The 300-B mutant strain showed its ability to grow on all the substrates tested and produced rhamnolipid surfactants to different extents however; soybean and corn WFOs were observed to be preferred carbon sources followed by kerosene and paraffin oils, respectively. The best cell biomass (3.5 g l−1) and rhamnolipids yield (4.1 g l−1) were obtained with soybean WFO as carbon source and glucose as growth initiator under fed-batch cultivation showing an optimum specific growth rate (μ) of 0.272 h−1, specific product yield (qp) of 0.318 g g−1 h and volumetric productivity (PV) of 0.024 g l−1 h. The critical micelle concentration of its culture supernatant was observed to be 91 mg rhamnolipids l−1 and surface tension as 31.2 mN m−1.  相似文献   

17.
A metabolically engineered Escherichia coli has been constructed for the production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] from unrelated carbon sources. Genes involved in succinate degradation in Clostridium kluyveri and P(3HB) accumulation pathway of Ralstonia eutropha were co-expressed for the synthesis of the above copolyester. E. coli native succinate semialdehyde dehydrogenase genes sad and gabD were both deleted for eliminating succinate formation from succinate semialdehyde, which functioned to enhance the carbon flux to 4HB biosynthesis. The metabolically engineered E. coli produced 9.4 g l?1 cell dry weight containing 65.5% P(3HB-co-11.1 mol% 4HB) using glucose as carbon source in a 48 h shake flask growth. The presence of 1.5–2 g l?1 α-ketoglutarate or 1.0 g l?1 citrate enhanced the 4HB monomer content from 11.1% to more than 20%. In a 6 l fermentor study, a 23.5 g l?1 cell dry weight containing 62.7% P(3HB-co-12.5 mol% 4HB) was obtained after 29 h of cultivation. To the best of our knowledge, this study reports the highest 4HB monomer content in P(3HB-co-4HB) produced from unrelated carbon sources.  相似文献   

18.
The aim of the present work is to develop an osmotolerant yeast strain with high lactose utilization and further use it to ferment lactose rich whey permeate for high ethanol titer and to reduce energy consumption. Ethanol production and growth rate of selected MTCC 1389 strain were quite high in whey containing lactose up to 150 g/L but it remains constant in lactose concentration (200 g/L) as cells encountered osmotic stress. Thus, strain MTCC 1389 was used for an adaptation to lactose concentration 200 g/L for 65 days and used further for fermentation of lactose rich whey. Fermentation with an adapted K. marxianus MTCC 1389 strain in laboratory fermenter resulted in ethanol titer of 79.33 g/L which is nearly 17.5% higher than the parental strain (66.75 g/L). Expression analysis of GPD1, TPS1and TPS2 found upregulated in lactose adapted K. marxianus strain as compared to the parental strain. These results suggest that an adapted K. marxianus strain accumulates glycerol and trehalose in response to lactose stress and improve osmotolerance in K. marxianus cells. Thus, the study illustrates that evolutionary engineering is an efficient strategy to obtain a superior biofuel yeast strain, which efficiently ferments four-fold concentrated cheese whey.  相似文献   

19.
A β-glucosidase gene from Putranjiva roxburghii (PRGH1) was heterologously expressed in Saccharomyces cerevisiae to enable growth on cellobiose. The recombinant enzyme was secreted to the culture medium, purified and biochemically characterized. The enzyme is a glycoprotein with a molecular weight of ∼68 kDa and exhibited enzymatic activity with β‐linked aryl substrates like pNP-Fuc, pNP-Glc, pNP-Gal and pNP-Cel with catalytic efficiency in that order. Significant enzyme activity was observed for cellobiose, however the enzyme activity was decreased with increase in chain length of glycan substrates. Using cellobiose as substrate, the enzyme showed optimal activity at pH 5.0 and 65 °C. The enzyme was thermostable up to 75 °C for 60 min. The enzyme showed significant resistance towards both glucose and ethanol induced inhibition. The recombinant S. cerevisiae strain showed advantages in cell growth, glucose and bio-ethanol production over the native strain with cellobiose as sole carbon source. In simultaneous saccharification and fermentation (SSF) experiments, the recombinant strain was used for bio-ethanol production from two different cellulosic biomass sources. At the end of the SSF, we obtained 9.47 g L−1 and 14.32 g L−1 of bio-ethanol by using carboxymethyl cellulose and pre-treated rice straw respectively. This is first report where a β-glucosidase gene from plant origin has been expressed in S. cerevisiae and used in SSF.  相似文献   

20.
We examined glucose 6-phosphate dehydrogenase (G6PD) production by fed-batch cultivation, using a recombinant strain of Saccharomyces cerevisiae W303-181 overexpressing this enzyme. The cultivations were carried out in a 3 L fermenter at pH 5.7, 30 °C, 2.0 vvm aeration, 200 rpm agitation and an inoculum concentration of 1.0 g/L. The volume of the culture medium in the fed-batch process varied from 1.333 to 2.0 L, due to the addition of 15.0 g/L glucose solution during 5 h. Different feeding rates were studied (exponentially increasing and decreasing feeding rates), and the feeding profile was determined by values of the parameter K (time constant), namely: 0.2, 0.5 and 0.8 h−1. The best enzyme production (847 U/L) was obtained with an exponentially increasing feeding rate and K = 0.2 h−1. The results attained also showed that this process is promising for G6PD production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号