首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
The masticatory apparatus absorbs high occlusal forces, but uncontrolled parafunctional or orthodontic forces damage periodontal ligament (PDL), cause pulpal calcification, pulp necrosis and tooth loss. Morphology and functional differentiation of connective tissue cells can be controlled by mechanical stimuli but effects of uncontrolled forces on intra-pulpal homeostasis and ability of dental pulp stem cells (DPSCs) to withstand direct external forces are unclear. Using dynamic hydrostatic pressure (HSP), we tested the hypothesis that direct HSP disrupts DPSC survival and odontogenic differentiation. DPSCs from four teenage patients were subjected to HSP followed by assessment of cell adhesion, survival and recovery capacity based on odontogenic differentiation, mineralization and responsiveness to bone morphogenetic protein-2 (BMP-2). HSP down-regulated DPSC adhesion and survival but promoted differentiation by increasing mineralization, in vivo hard tissue regeneration and BMP-2 responsiveness despite reduced cell numbers. HSP-treated DPSCs displayed enhanced odontogenic differentiation, an indication of favorable recovery from HSP-induced cellular stress.  相似文献   

2.
In addition to bone, the dentin‐pulp complex is also influenced by menopause, showing a decreased regenerative capacity. High levels of follicle‐stimulating hormone (FSH) during menopause could directly regulate bone metabolism. Here, the role of FSH in the odontogenic differentiation of the dentin‐pulp complex was investigated. Dental pulp stem cells (DPSCs) were isolated. CCK‐8 assays, cell apoptosis assays, Western blotting (WB), real‐time RT‐PCR, alkaline phosphatase activity assays, and Alizarin Red S staining were used to clarify the effects of FSH on the proliferation, apoptosis and odontogenic differentiation of the DPSCs. MAPK pathway‐related factors were explored by WB assays. FSH and its inhibitor were used in OVX rats combined with a direct pulp‐capping model. HE and immunohistochemistry were used to detect reparative dentin formation and related features. The results indicated that FSH significantly decreased the odontogenic differentiation of the DPSCs without affecting cell proliferation and apoptosis. Moreover, FSH significantly activated the JNK signalling pathway, and JNK inhibitor partly rescued the inhibitory effect of FSH on DPSC differentiation. In vivo, FSH treatment attenuated the dentin bridge formation and mineralization‐related protein expression in the OVX rats. Our findings indicated that FSH reduced the odontogenic capacity of the DPSCs and was involved in reparative dentinogenesis during menopause.  相似文献   

3.
4.
Dental pulp stem cells (DPSCs) are capable of both self-renewal and multilineage differentiation, which play a positive role in dentinogenesis. Studies have shown that tumor necrosis factor-α (TNF-α) is involved in the differentiation of DPSCs under pro-inflammatory stimuli, but the mechanism of action of TNF-α is unknown. Rip-like interacting caspase-like apoptosis-regulatory protein kinase (RICK) is a biomarker of an early inflammatory response that plays a key role in modulating cell differentiation, but the role of RICK in DPSCs is still unclear. In this study, we identified that RICK regulates TNF-α-mediated odontogenic differentiation of DPSCs via the ERK signaling pathway. The expression of the biomarkers of odontogenic differentiation dental matrix protein-1 (DMP-1), dentin sialophosphoprotein (DSPP), biomarkers of odontogenic differentiation, increased in low concentration (1–10 ng/ml) of TNF-α and decreased in high concentration (50–100 ng/ml). Odontogenic differentiation increased over time in the odontogenic differentiation medium. In the presence of 10 ng/L TNF-α, the expression of RICK increased gradually over time, along with odontogenic differentiation. Genetic silencing of RICK expression reduced the expression of odontogenic markers DMP-1 and DSPP. The ERK, but not the NF-κB signaling pathway, was activated during the odontogenic differentiation of DPSCs. ERK signaling modulators decreased when RICK expression was inhibited. PD98059, an ERK inhibitor, blocked the odontogenic differentiation of DPSCs induced by TNF-α. These results provide a further theoretical and experimental basis for the potential use of RICK in targeted therapy for dentin regeneration.  相似文献   

5.
6.
Background information. Although adult bone‐marrow‐derived cell populations have been used to make teeth when recombined with embryonic oral epithelium, the differences between dental and non‐dental stem‐cell‐mediated odontogenesis remain an open question. Results. STRO‐1+ (stromal precursor cell marker) DPSCs (dental pulp stem cells) and BMSSCs (bone marrow stromal stem cells) were isolated from rat dental pulp and bone marrow respectively by magnetic‐activated cell‐sorting techniques. Their odontogenic capacity was compared under the same inductive microenvironment produced by ABCs (apical bud cells) from 2‐day‐old rat incisors. Co‐cultured DPSCs/ABCs in vitro showed more active odontogenic differentiation ability than mixed BMSSCs/ABCs, as indicated by the accelerated matrix mineralization, up‐regulated alkaline phosphatase activity, cell‐cycle modification, and the expression of tooth‐specific proteins and genes. After cultured for 14 days in the renal capsules of rat hosts, recombined DPSC/ABC pellets formed typical tooth‐shaped tissues with balanced amelogenesis and dentinogenesis, whereas BMSSC/ABC recombinants developed into atypical dentin—pulp complexes without enamel formation. DPSC and BMSSC pellets in vivo produced osteodentin‐like structures and fibrous connective tissues respectively. Conclusions. DPSCs presented more striking odontogenic capability than BMSSCs under the induction of postnatal ABCs. This report provides critical insights into the selection of candidate cells for tooth regeneration between dental and non‐dental stem cell populations.  相似文献   

7.
Dental stem cells for dental pulp regeneration have become a new strategy for pulpitis treatment. Angiogenesis and neurogenesis play a vital role in the pulp-dentin complex regeneration, and appropriate growth factors will promote the process of angiogenesis and neurogenesis. Insulin-like growth factor-binding protein 5 (IGFBP5) is involved in the regulation of tooth growth and development. A previous study showed that IGFBP5 enhanced osteo/odontogenic differentiation of dental stem cells. Our research intends to reveal the function of IGFBP5 in the angiogenic and neurogenic differentiation of human dental stem cells. Human dental pulp stem cells (DPSCs) were used in the present study. Lentiviral IGFBP5 shRNA was used to silence the IGFBP5. Retroviruses expressing Wild-type IGFBP5 were used to over-express IGFBP5. Angiogenic and neurogenic differentiation were carried out by in vitro study. Real-time RT-PCR and western blot results showed that over-expression of IGFBP5 upregulated the expressions of angiogenic markers, including VEGF, PDGFA and ANG-1, and neurogenic markers, including NCAM, TH, Nestin, βIII-tubulin, and TH, in DPSCs. Moreover, microscope observation confirmed that over-expression of IGFBP5 enhanced neurosphere formation in DPSCs in size and amount. Immunofluorescence staining results showed that over-expression of IGFBP5 also prompted the percentage of Nestin and βIII-tubulin positive neurospheres in DPSCs. While depletion of IGFBP5 downregulated the expressions of VEGF, PDGFA, ANG-1, NCAM, TH, Nestin, βIII-tubulin, and TH, it decreased the neurosphere formation and percentage of Nestin and βIII-tubulin positive neurospheres in DPSCs. In conclusion, our results revealed that IGFBP5 promoted angiogenic and neurogenic differentiation potential of DPSCs in vitro and provided the possible potential target for enhancing directed differentiation of dental stem cells and dental pulp-dentin functional regeneration.  相似文献   

8.
9.
Dental pulp stem cells (DPSCs) are an attractive alternative mesenchymal stem cell (MSC) source because of their isolation simplicity compared with the more invasive methods associated with harvesting other MSC sources. However, the isolation method to be favored for obtaining DPSC cultures remains under discussion. This study compares the stem cell properties and multilineage differentiation potential of DPSCs obtained by the two most widely adapted isolation procedures. DPSCs were isolated either by enzymatic digestion of the pulp tissue (DPSC-EZ) or by the explant method (DPSC-OG), while keeping the culture media constant throughout all experiments and in both isolation methods. Assessment of the stem cell properties of DPSC-EZ and DPSC-OG showed no significant differences between the two groups with regard to proliferation rate and colony formation. Phenotype analysis indicated that DPSC-EZ and DPSC-OG were positive for CD29, CD44, CD90, CD105, CD117 and CD146 expression without any significant differences. The multilineage differentiation potential of both stem cell types was confirmed by using standard immuno(histo/cyto)chemical staining together with an in-depth ultrastructural analysis by means of transmission electron microscopy. Our results indicate that both DPSC-EZ and DPSC-OG could be successfully differentiated into adipogenic, chrondrogenic and osteogenic cell types, although the adipogenic differentiation of both stem cell populations was incomplete. The data suggest that both the enzymatic digestion and outgrowth method can be applied to obtain a suitable autologous DPSC resource for tissue replacement therapies of both bone and cartilage.  相似文献   

10.
目的探讨牙髓干细胞(DPSC)对牙周病,外伤及肿瘤等造成下颌骨缺损、口腔软组织与神经损伤的修复治疗作用。方法本研究利用组织块培养法分离出人体DPSC,用流式细胞仪进行了鉴定,并进行DPSC成骨、成脂、成神经的分化研究。结果分离出3株DPSC,流式细胞分析表明DPSC表达CD73和CD90标志物,但不表达生血干细胞标志物CD34。用茜素红染色表明DPSC能分化成骨细胞,油红O染色表明DPSC能分化成脂肪细胞,免疫免疫荧光染色表明DPSC分化的细胞表达神经细胞特异标志物TUJ1。结论组织块培养能够高效快速分离表达CD73和CD90的DPSC,在体外诱导条件下DPSC能分化为成骨细胞、脂肪细胞和神经细胞,此研究为DPSC在治疗和修复骨组织缺损和神经损伤中的临床应用提供了实验依据。  相似文献   

11.
ObjectivesConditioned medium (CM) from 2D cell culture can mitigate the weakened regenerative capacity of the implanted stem cells. However, the capacity of 3D CM to prime dental pulp stem cells (DPSCs) for pulp regeneration and its protein profile are still elusive. We aim to investigate the protein profile of CM derived from 3D tooth germs, and to unveil its potential for DPSCs‐based pulp regeneration.Materials and MethodsWe prepared CM of 3D ex vivo cultured tooth germ organs (3D TGO‐CM) and CM of 2D cultured tooth germ cells (2D TGC‐CM) and applied them to prime DPSCs. Influences on cell behaviours and protein profiles of CMs were compared. In vivo pulp regeneration of CMs‐primed DPSCs was explored using a tooth root fragment model on nude mice.ResultsTGO‐CM enhanced DPSCs proliferation, migration, in vitro mineralization, odontogenic differentiation, and angiogenesis performances. The TGO‐CM group generated superior pulp structures, more odontogenic cells attachment, and enhanced vasculature at 4 weeks post‐surgery, compared with the TGC‐CM group. Secretome analysis revealed that TGO‐CM contained more odontogenic and angiogenic growth factors and fewer pro‐inflammatory cytokines. Mechanisms leading to the differential CM profiles may be attributed to the cytokine–cytokine receptor interaction and PI3K‐Akt signalling pathway.ConclusionsThe unique secretome profile of 3D TGO‐CM made it a successful priming cocktail to enhance DPSCs‐based early pulp regeneration.  相似文献   

12.
13.
荣靖  周向荣  刘秋英  王一飞 《生命科学》2010,(10):1031-1034
牙髓干细胞是来源于牙髓组织中的一种成体干细胞,该种细胞具有高度增殖、自我更新的能力和多向分化潜能。牙髓干细胞的研究对牙髓再生、牙体修复等牙组织工程将产生重要的意义。该文就牙髓干细胞的研究现状作一综述,并对其应用前景进行探讨。  相似文献   

14.
15.
Dental pulp stem cells (DPSCs), precursor cells of odontoblasts, are ideal seed cells for tooth tissue engineering and regeneration. Our previous study has demonstrated that stem cells exist in dental pulp with deep caries and are called carious dental pulp stem cells (CDPSCs). The results indicated that CDPSCs had a higher proliferative and stronger osteogenic differentiation potential than DPSCs. However, the molecular mechanisms responsible for the biological differences between DPSCs and CDPSCs are poorly understood. The aim of this study was to define the molecular features of DPSCs and CDPSCs by comparing the proteomic profiles using two-dimensional fluorescence difference gel electrophoresis (2-D DIGE) in combination with matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). Our results revealed that there were 18 protein spots differentially expressed between DPSCs and CDPSCs in a narrow pH range of 4 to 7. These differently expressed proteins are mostly involved in the regulation of cell proliferation, differentiation, cell cytoskeleton and motility. In addition, our results suggested that CDPSCs had a higher expression of antioxidative proteins that might protect CDPSCs from oxidative stress. This study explores some potential proteins responsible for the biological differences between DPSCs and CDPSCs and expands our understanding on the molecular mechanisms of mineralization of DPSCs in the formation of the dentin-pulp complex.  相似文献   

16.
17.
Dental pulp stem cells (DPSCs) are shown to reside within the tooth and play an important role in dentin regeneration. DPSCs were first isolated and characterized from human teeth and most studies have focused on using this adult stem cell for clinical applications. However, mouse DPSCs have not been well characterized and their origin(s) have not yet been elucidated. Herein we examined if murine DPSCs are neural crest derived and determined their in vitro and in vivo capacity. DPSCs from neonatal murine tooth pulp expressed embryonic stem cell and neural crest related genes, but lacked expression of mesodermal genes. Cells isolated from the Wnt1-Cre/R26R-LacZ model, a reporter of neural crest-derived tissues, indicated that DPSCs were Wnt1-marked and therefore of neural crest origin. Clonal DPSCs showed multi-differentiation in neural crest lineage for odontoblasts, chondrocytes, adipocytes, neurons, and smooth muscles. Following in vivo subcutaneous transplantation with hydroxyapatite/tricalcium phosphate, based on tissue/cell morphology and specific antibody staining, the clones differentiated into odontoblast-like cells and produced dentin-like structure. Conversely, bone marrow stromal cells (BMSCs) gave rise to osteoblast-like cells and generated bone-like structure. Interestingly, the capillary distribution in the DPSC transplants showed close proximity to odontoblasts whereas in the BMSC transplants bone condensations were distant to capillaries resembling dentinogenesis in the former vs. osteogenesis in the latter. Thus we demonstrate the existence of neural crest-derived DPSCs with differentiation capacity into cranial mesenchymal tissues and other neural crest-derived tissues. In turn, DPSCs hold promise as a source for regenerating cranial mesenchyme and other neural crest derived tissues.  相似文献   

18.
Basic fibroblast growth factor (basic FGF) has pivotal roles in the function of various cell types. Here, we report the effects of basic FGF in the regulation of dental pulp stem cell (DPSC) behaviors including maintaining stemness and directing differentiation. Cells isolated from human dental pulp tissues exhibited stem cell properties including the expression of mRNA markers for embryonic and mesenchymal stem cells, the expression of Stro-1, and the multipotential differentiation. Basic FGF stimulated colony-forming units of DPSCs and up-regulated the expression of the embryonic stem cell markers; Oct4, Rex-1, and Nanog. Moreover, osteogenic medium containing basic FGF inhibited alkaline phosphatase enzymatic activity and mineralization of DPSCs. On the contrary, basic FGF appeared to be an influential growth factor in the neurogenic differentiation of DPSCs. In the presence of basic FGF, increased DPSCs neurosphere size and the up-regulation of neurogenic markers were noted. Inhibitors of FGFR or PLCγ were able to ablate the basic FGF-induced neuronal differentiation of DPSCs. Taken together, these results suggest basic FGF may be involved in the mechanisms controlling DPSCs cell fate decisions.  相似文献   

19.
The human dentition is indispensable for nutrition and physiology. The teeth have evolved for mastication of food. Caries is a common dental problem in which the dentin matrix is damaged. When the caries is deep and the dental pulp is exposed, the pulp has to be removed in many cases, resulting ultimately in loss of the tooth. Therefore, the regeneration of dentin-pulp complex is the long-term goal of operative dentistry and endodontics. The key elements of dentin regeneration are stem cells, morphogens such as bone morphogenetic proteins (BMPs) and a scaffold of extracellular matrix. The dental pulp has stem/progenitor cells that have the potential to differentiate into dentin-forming odontoblasts in response to BMPs. Pulpal wound healing consists of stem/progenitor cells release from dental pulp niche after noxious stimuli such as caries, migration to the injured site, proliferation and differentiation into odontoblasts. There are two main strategies for pulp therapy to regenerate dentin: (1) in vivo method of enhancing the natural healing potential of pulp tissue by application of BMP proteins or BMP genes, (2) ex vivo method of isolation of stem/progenitor cells, differentiation with BMP proteins or BMP genes and transplantation to the tooth. This review summarizes recent advances in application of BMPs for dentin regeneration and possible use in endodotic therapy.  相似文献   

20.
He H  Yu J  Liu Y  Lu S  Liu H  Shi J  Jin Y 《Cell biology international》2008,32(7):827-834
Two crucial growth factors, FGF2 and TGFbeta1, were investigated in this study to determine their inductive effects on the odontoblastic differentiation of human dental pulp stem cells (DPSCs) in vitro. DPSCs were isolated by immunomagnetic bead selection using the STRO-1 antibody, and then co-cultured respectively with FGF2, TGFbeta1 and FGF2+TGFbeta1. The results showed that FGF2 can exert a significant effect on the cell proliferation, while TGFbeta1 or FGF2+TGFbeta1 can initiate an odontoblast-like differentiation of DPSCs. Moreover, FGF2 can synergistically upregulate the effects of TGFbeta1 on the odontoblastic differentiation of DPSCs, as indicated by the increased alkaline phosphatase activity, the polarized cell appearance and secretary ultrastructural features, the formation of mineralized nodules and the gene/protein expression of dentin sialoprotein and dentin matrix protein-1. Together, FGF2 acted primarily on the cell proliferation, while TGFbeta1 and FGF2+TGFbeta1 mainly stimulated the odontoblastic differentiation of DPSCs. This study provides interesting progress in the odontoblastic differentiation of DPSCs induced by FGF2 and TGFbeta1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号