首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Low-molecular weight aliphatic acids, furaldehydes and a broad range of different aromatic compounds are known to inhibit the fermentation of lignocellulose hydrolysates by yeasts. In this work, a cocktail of different lignocellulose-derived inhibitors was used to compare the inhibitor resistance of eleven different industrial and laboratory Saccharomyces cerevisiae strains and two Zygosaccharomyces strains. The inhibitor cocktail was composed of two aliphatic acids, formic and acetic acid, two furaldehydes, furfural and 5-hydroxymethylfurfural (HMF), and two aromatic compounds, cinnamic acid and coniferyl aldehyde. Fermentations were performed under oxygen-limited conditions and with different levels (100, 75, 50, 25 and 0%) of the inhibitor cocktail present. The ethanol yield on initial glucose, the volumetric and specific ethanol productivity, the biomass yield and the glucose consumption rates were used as criteria for the performance of the strains. The results revealed major differences in inhibitor resistance between yeast strains within the same species. The ethanol yield of the S. cerevisiae strain that was least affected decreased only with 10% at an inhibitor cocktail concentration of 100%, while the decrease in ethanol yield for the most sensitive S. cerevisiae strain was more than 50% already at an inhibitor cocktail concentration of 25%. Ethanol formation was generally less affected than growth and ethanol yield less than ethanol productivity. The two most resistant strains were an S. cerevisiae strain isolated from a spent sulphite liquor plant and one of the laboratory S. cerevisiae strains. Additional fermentations with either HMF or coniferyl aldehyde revealed that the degree of resistance of different yeast strains was highly dependent on the inhibitor used. A mutant strain of S. cerevisiae displaying enhanced resistance against coniferyl aldehyde compared with the parental strains was identified.  相似文献   

2.
To improve production of fuel ethanol from renewable raw materials, laccase from the white rot fungus Trametes versicolor was expressed under control of the PGK1 promoter in Saccharomyces cerevisiae to increase its resistance to phenolic inhibitors in lignocellulose hydrolysates. It was found that the laccase activity could be enhanced twofold by simultaneous overexpression of the homologous t-SNARE Sso2p. The factors affecting the level of active laccase obtained, besides the cultivation temperature, included pH and aeration. Laccase-expressing and Sso2p-overexpressing S. cerevisiae was cultivated in the presence of coniferyl aldehyde to examine resistance to lignocellulose-derived phenolic fermentation inhibitors. The laccase-producing transformant had the ability to convert coniferyl aldehyde at a faster rate than a control transformant not expressing laccase, which enabled faster growth and ethanol formation. The laccase-producing transformant was also able to ferment a dilute acid spruce hydrolysate at a faster rate than the control transformant. A decrease in the content of low-molecular-mass aromatic compounds, accompanied by an increase in the content of high-molecular-mass compounds, was observed during fermentation with the laccase-expressing strain, illustrating that laccase was active even at the very low levels of oxygen supplied. Our results demonstrate the importance of phenolic compounds as fermentation inhibitors and the advantage of using laccase-expressing yeast strains for producing ethanol from lignocellulose.  相似文献   

3.
Lignocellulosic biomass from agricultural and agro-industrial residues represents one of the most important renewable resources that can be utilized for the biological production of ethanol. The yeast Saccharomyces cerevisiae is widely used for the commercial production of bioethanol from sucrose or starch-derived glucose. While glucose and other hexose sugars like galactose and mannose can be fermented to ethanol by S. cerevisiae, the major pentose sugars D-xylose and L-arabinose remain unutilized. Nevertheless, D-xylulose, the keto isomer of xylose, can be fermented slowly by the yeast and thus, the incorporation of functional routes for the conversion of xylose and arabinose to xylulose or xylulose-5-phosphate in Saccharomyces cerevisiae can help to improve the ethanol productivity and make the fermentation process more cost-effective. Other crucial bottlenecks in pentose fermentation include low activity of the pentose phosphate pathway enzymes and competitive inhibition of xylose and arabinose transport into the cell cytoplasm by glucose and other hexose sugars. Along with a brief introduction of the pretreatment of lignocellulose and detoxification of the hydrolysate, this review provides an updated overview of (a) the key steps involved in the uptake and metabolism of the hexose sugars: glucose, galactose, and mannose, together with the pentose sugars: xylose and arabinose, (b) various factors that play a major role in the efficient fermentation of pentose sugars along with hexose sugars, and (c) the approaches used to overcome the metabolic constraints in the production of bioethanol from lignocellulose-derived sugars by developing recombinant S. cerevisiae strains.  相似文献   

4.
Lignocellulosic biomass from agricultural and agro-industrial residues represents one of the most important renewable resources that can be utilized for the biological production of ethanol. The yeast Saccharomyces cerevisiae is widely used for the commercial production of bioethanol from sucrose or starch-derived glucose. While glucose and other hexose sugars like galactose and mannose can be fermented to ethanol by S. cerevisiae, the major pentose sugars D-xylose and L-arabinose remain unutilized. Nevertheless, D-xylulose, the keto isomer of xylose, can be fermented slowly by the yeast and thus, the incorporation of functional routes for the conversion of xylose and arabinose to xylulose or xylulose-5-phosphate in Saccharomyces cerevisiae can help to improve the ethanol productivity and make the fermentation process more cost-effective. Other crucial bottlenecks in pentose fermentation include low activity of the pentose phosphate pathway enzymes and competitive inhibition of xylose and arabinose transport into the cell cytoplasm by glucose and other hexose sugars. Along with a brief introduction of the pretreatment of lignocellulose and detoxification of the hydrolysate, this review provides an updated overview of (a) the key steps involved in the uptake and metabolism of the hexose sugars: glucose, galactose, and mannose, together with the pentose sugars: xylose and arabinose, (b) various factors that play a major role in the efficient fermentation of pentose sugars along with hexose sugars, and (c) the approaches used to overcome the metabolic constraints in the production of bioethanol from lignocellulose-derived sugars by developing recombinant S. cerevisiae strains.  相似文献   

5.
6.
In Saccharomyces cerevisiae, the Yap family of basic leucine zipper (bZip) proteins contains eight members. The Yap family proteins are implicated in a variety of stress responses; among these proteins, Yap1 acts as a major regulator of oxidative stress responses. However, the functional roles of the remaining Yap family members are poorly understood. To elucidate the function of Yap2, we mined candidate target genes of Yap2 by proteomic analysis. Among the identified genes, FRM2 was previously identified as a target gene of Yap2, which confirmed the validity of our screening method. YNL134C and YDL124W were also identified as candidate Yap2 target genes. These genes were upregulated in strains overexpressing Yap2 and possess Yap2 target sequences in their promoter regions. Furthermore, chromatin immunoprecipitation assays showed that YNL134C and YDL124W have Yap2 binding motif. These data will help to elucidate the functional role of Yap2.  相似文献   

7.
Recent results show that treatments with reducing agents, including the sulfur oxyanions dithionite and hydrogen sulfite, efficiently improve the fermentability of inhibitory lignocellulose hydrolysates, and that the treatments are effective when the reducing agents are added in situ into the fermentation vessel at low temperature. In the present investigation, dithionite was added to medium with model inhibitors (coniferyl aldehyde, furfural, 5-hydroxymethylfurfural, or acetic acid) and the effects on the fermentability with yeast were studied. Addition of 10 mM dithionite to medium containing 2.5 mM coniferyl aldehyde resulted in a nine-fold increase in the glucose consumption rate and a three-fold increase in the ethanol yield. To investigate the mechanism behind the positive effects of adding sulfur oxyanions, mixtures containing 2.5 mM of a model inhibitor (an aromatic compound, a furan aldehyde, or an aliphatic acid) and 15 mM dithionite or hydrogen sulfite were analyzed using mass spectrometry (MS). The results of the analyses, which were performed by using UHPLC-ESI-TOF-MS and UHPLC-LTQ/Orbitrap-MS/MS, indicate that the positive effects of sulfur oxyanions are primarily due to their capability to react with and sulfonate inhibitory aromatic compounds and furan aldehydes at low temperature and slightly acidic pH (such as 25°C and pH 5.5).  相似文献   

8.
9.
10.
11.
12.
13.
14.
15.
 The fermentation characteristics of Saccharomyces cerevisiae strains which overexpress a constitutive OLE1 gene were studied to clarify the relationship between the fatty acid composition of this yeast and its ethanol productivity. The growth yield and ethanol productivity of these strains in the medium containing 15% dextrose at 10 °C were greater than those of the control strains under both aerobic and anaerobic conditions but this difference was not observed under other culture conditions. During repeated-batch fermentation, moreover, the growth yield and ethanol productivity of the wild-type S. cerevisiae increased gradually and then were similar to those of the OLE1-overexpressing transformant in the last batch fermentation. However, the unsaturated fatty acid content (77.6%) of the wild-type cells was lower than that (86.2%) of the OLE1-recombinant cells. These results suggested that other phenomena caused by the overexpression of the OLE1 gene, rather than high unsaturated fatty acid content, are essential to ethanol fermentation by this yeast. Received: 11 June 1999 / Received last revision: 12 November 1999 / Accepted: 28 November 1999  相似文献   

16.
17.
18.
Bioethanol produced by microbial fermentations of plant biomass hydrolysates consisting of hexose and pentose mixtures is an excellent alternative to fossil transportation fuels. However, the yeast Saccharomyces cerevisiae, commonly used in bioethanol production, can utilize pentose sugars like l-arabinose or d-xylose only after heterologous expression of corresponding metabolic pathways from other organisms. Here we report the improvement of a bacterial l-arabinose utilization pathway consisting of l-arabinose isomerase from Bacillus subtilis and l-ribulokinase and l-ribulose-5-P 4-epimerase from Escherichia coli after expression of the corresponding genes in S. cerevisiae. l-Arabinose isomerase from B. subtilis turned out to be the limiting step for growth on l-arabinose as the sole carbon source. The corresponding enzyme could be effectively replaced by the enzyme from Bacillus licheniformis, leading to a considerably decreased lag phase. Subsequently, the codon usage of all the genes involved in the l-arabinose pathway was adapted to that of the highly expressed genes encoding glycolytic enzymes in S. cerevisiae. Yeast transformants expressing the codon-optimized genes showed strongly improved l-arabinose conversion rates. With this rational approach, the ethanol production rate from l-arabinose could be increased more than 2.5-fold from 0.014 g ethanol h(-1) (g dry weight)(-1) to 0.036 g ethanol h(-1) (g dry weight)(-1) and the ethanol yield could be increased from 0.24 g ethanol (g consumed l-arabinose)(-1) to 0.39 g ethanol (g consumed l-arabinose)(-1). These improvements make up a new starting point for the construction of more-efficient industrial l-arabinose-fermenting yeast strains by evolutionary engineering.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号