首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Process Biochemistry》2010,45(4):514-518
Whole cell-mediated methanolysis of renewable oils for biodiesel production has drawn much attention in recent years since it can avoid the complex preparation procedures of traditional immobilized lipase. During the cultivation of Rhizopus oryzae whole cell catalyst, plant oils are usually added into the medium as inducer for lipase synthesis. It was found that oil inducer not only influenced lipase production, but also led to varied whole cell's catalytic performance. In this paper, the related mechanisms were explored and it was found that the higher unsaturated fatty acid (UFA) was contained in oil inducer, the higher intracellular lipase could be obtained. Different oil inducers also resulted in varied compositions of cell membrane, which was further found to be responsible for the operational stability of the catalyst. Cells with membrane enriched with saturated fatty acid (SFA) exhibited better stability than those enriched with UFA. And further study showed that after glutaraldehyde cross-linking treatment, the operational stability of both UFA enriched cells and SFA enriched cells were enhanced greatly and no loss in cell's catalytic activity was detected after being repeatedly used for 15 batches.  相似文献   

2.
3.
A solvent engineering strategy was applied to the lipase-catalyzed methanolysis of triacylglycerols for biodiesel production. The effect of different pure organic solvents and co-solvent mixtures on the methanolysis was compared. The substrate conversions in the co-solvent mixtures were all higher than those of the corresponding pure organic solvents. Further study showed that addition of co-solvent decreased the values of |log Pinterface  log Psubstrate| and thus led to a faster reaction. The more the values of |log Pinterface  log Psubstrate| decreased, the faster the reaction proceeded and the higher the conversion attained. Different co-solvent ratio was further investigated. The co-solvent mixture of 25% t-pentanol:75% isooctane (v/v) was optimal, with which both the negative effects caused by excessive methanol and by-product glycerol could be eliminated. There was no obvious loss in lipase activity even after being repeatedly used for 60 cycles (720 h) with this co-solvent mixture as reaction medium. Other lipases and lipase combinations can also catalyze methanolysis in this co-solvent mixture. Furthermore, other vegetable oils were also explored for biodiesel production in this co-solvent mixture and it had been found that this co-solvent mixture media has extensive applicability.  相似文献   

4.
Biodiesel production catalyzed by free lipase has been drawing attention for its lower cost and faster reaction rate compared to immobilized lipase. It has been found that free lipase NS81006 could efficiently catalyze alkyl esters production and a certain amount of water is demonstrated to be necessary for the catalytic process. The effect of water content on liquid lipase NS81006-mediated methanolysis and ethanolysis for biodiesel production was first explored respectively in this paper. It was found that with water content ranging from 3% to 10% (based on oil weight), there was no significant difference in the final alkyl ester yield either in NS81006-mediated methanolysis or ethanolysis process, while the quality of biodiesel varied obviously. The acid value as well as the contents of monoglyceride and diglyceride were much lower in the lower water-containing system. With the water content decreasing from 10% to 3%, the acid value reduced from 8.24 to 4.89 mg KOH/g oil, and the content of MAG and DAG dropped to 0.31 and 0.22, from 0.62 and 0.74, respectively. Lipase could maintain rather good stability with proper alcohol adding strategy and the gradual reduction in biodiesel yield in the repeated uses resulted from the accumulation of by-product glycerol. The continuous running of lipase-mediated methanolysis of waste cooking oil was successfully realized at 30L reactor and a final methyl ester yield of over 90% could be obtained.  相似文献   

5.
A packed-bed reactor (PBR) system using fungus whole-cell biocatalyst was developed for biodiesel fuel production by plant oil methanolysis. Lipase-producing Rhizopus oryzae cells were immobilized within 6 mm × 6 mm × 3 mm cuboidal polyurethane foam biomass support particles (BSPs) during batch cultivation in a 20-l air-lift bioreactor. Emulsification of the reaction mixture containing soybean oils and water improved the methanolysis reaction rate. Using a high flow rate for the reaction mixture in the PBR caused exfoliation of the immobilized cells from the BSPs, while the inefficient mixing of the reaction mixture at low flow rates allowed the BSPs to be covered with a hydrophilic layer of high methanol concentration, leading to a significant decrease in lipase activity. A high methyl ester content of over 90% was achieved at a flow rate of 25 l/h in the first cycle of repeated batch methanolysis and a high value of around 80% was maintained even after the tenth cycle. Comparison with methanolysis reaction in a shaken bottle suggested that the PBR enhances repeated batch methanolysis by protecting immobilized cells from physical damage and excess amounts of methanol. The process presented here is therefore considered to be promising for industrial biodiesel-fuel production.  相似文献   

6.
To develop a robust whole-cell biocatalyst that works well at moderately high temperature (40–50 °C) with organic solvents, a thermostable lipase from Geobacillus thermocatenulatus (BTL2) was introduced into an Aspergillus oryzae whole-cell biocatalyst. The lipase-hydrolytic activity of the immobilized A. oryzae (r-BTL) was highest at 50 °C and was maintained even after an incubation of 24-h at 60 °C. In addition, r-BTL was highly tolerant to 30% (v/v) organic solvents (dimethyl carbonate, ethanol, methanol, 2-propanol or acetone). The attractive characteristics of r-BTL also worked efficiently on palm oil methanolysis, resulting in a nearly 100% conversion at elevated temperature from 40 to 50 °C. Moreover, r-BTL catalyzed methanolysis at a high methanol concentration without a significant loss of lipase activity. In particular, when 2 molar equivalents of methanol were added 2 times, a methyl ester content of more than 90% was achieved; the yield was higher than those of conventional whole-cell biocatalyst and commercial Candida antarctica lipase (Novozym 435). On the basis of the results regarding the excellent lipase characteristics and efficient biodiesel production, the developed whole-cell biocatalyst would be a promising biocatalyst in a broad range of applications including biodiesel production.  相似文献   

7.
A highly active whole cell lipase (WCL) for efficient methanolysis of palm oil (PO) to biodiesel (BD) was prepared by isolation, cultivation and immobilization of lipase producing fungi. Fungi were screened from soil and the best isolate (PDA-6) identified as Aspergillus nomius exhibited maximum WCL methanolysis activity (1.4 g h−1 g−1) when inexpensive waste cooking oil was used as carbon source. The maximum BD yield with PDA-6 WCL reached 95.3% after 40 h at a lipase load 10% (w/w) of PO and methanol to PO molar ratio 5:1. The immobilization of PDA-6 cells within biomass suspended particle (BSP) made of polyurethane foam improved the repeated use of WCL and the remaining activity after 10 cycles was 88.2%. The PDA-6 WCL was more active in methanolysis of PO to BD than most WCLs previously reported. The newly isolated A. nomius is not only potential for producing WCL but also utilizing waste cooking oil.  相似文献   

8.
《Process Biochemistry》2007,42(9):1367-1370
In this paper, immobilized lipase catalyzed biodiesel production from lard was studied. Using Candida sp. 99-125, the effect of temperature, water content, enzyme amount, solvent and three-step methanolysis were investigated. The optimal conditions for processing 1 g of lard were: 0.2 g immobilized lipase, 8 ml n-hexane as solvent, 20% water based on the fat weight, temperature 40 °C, and three-step addition of methanol. As a result, the fatty acid methyl esters (FAMEs) yield was 87.4%. The lipase was proved to be stable when used repeatedly for 180 h.  相似文献   

9.
To improve the production of biodiesel by enzymatic conversion of triglycerides in cottonseed oil, compatible solutes were added to the solvent-free methanolysis system to prevent competitive methanol inhibition on the immobilized lipase (Novozym® 435). The results indicated that the addition of ectoine increased biodiesel synthesis using a three-step methanol addition process. The concentration of methyl ester (ME) reached a maximum of 95.0% in the presence of 1.1 mmol/l ectoine, an increase of 20.9% compared to that in the absence of ectoine. On the other hand, excess ectoine decreased the ME concentration. Ectoine was also shown to enhance reuse of the immobilized lipase, significantly improving ME concentrations in each recycling test. Total concentrations of ME with added ectoine were about 1.5 times that without ectoine during five recycling tests (molar ratio of cottonseed oil to methanol, 1:4). Enzymatic reaction kinetics showed, in the concentration ranges of 0.8–1.14 mol/l and 0.03–8 mol/l for triglyceride and methanol, respectively, that ectoine had no effect on the initial reaction rates when methanol concentrations were below 0.5 mol/l. When methanol concentration exceeded 0.5 mol/l, the addition of 0.8 mmol/l ectoine increased the initial reaction rates, and the lipase exhibited a lower affinity for methanol and higher affinity for triglyceride (kinetic parameters of KmA increase, KmTG decrease). However, the initial reaction rates decreased significantly when 8 mmol/l ectoine was added, with the lipase having higher affinity for methanol and lower affinity for triglyceride (KmA decrease, KmTG increase). The supplementation of ectoine provided a new method for the purpose of improving yield of biodiesel catalyzed by enzyme.  相似文献   

10.
Enzymatic methanolysis of vegetable oils for biodiesel production has become a hot point recently, in which study on whole cell as catalyst is an important field. In this paper, whole cell (Rhizopus oryzae IFO 4697) was adopted directly as biocatalyst for biodiesel production. Effects of carbon source on cell growth and whole cell-catalyzed methanolysis of vegetable oils for biodiesel production were studied. The results showed that different oils contained in the cultivation medium had varied effects on the whole cell-catalyzed methanolysis of oils; with some specified oil as the carbon source for cell cultivation, those cells expressed higher catalytic activity in catalyzing the transesterification of the same oil for biodiesel production. The initial reaction rate was increased notably (204%) with oil pretreatment on the cells before catalyzing the reaction, which was possibly due to the improved mass transferring of substrates. Under the optimized conditions, the maximum methyl ester yield could reach 86%.  相似文献   

11.
Enzymatic methanolysis of vegetable oils for biodiesel production has become a hot point recently, in which study on whole cell as catalyst is an important field. In this paper, whole cell (Rhizopus oryzae IFO 4697) was adopted directly as biocatalyst for biodiesel production. Effects of carbon source on cell growth and whole cell-catalyzed methanolysis of vegetable oils for biodiesel production were studied. The results showed that different oils contained in the cultivation medium had varied effects on the whole cell-catalyzed methanolysis of oils; with some specified oil as the carbon source for cell cultivation, those cells expressed higher catalytic activity in catalyzing the transesterification of the same oil for biodiesel production. The initial reaction rate was increased notably (204%) with oil pretreatment on the cells before catalyzing the reaction, which was possibly due to the improved mass transferring of substrates. Under the optimized conditions, the maximum methyl ester yield could reach 86%.  相似文献   

12.
《Process Biochemistry》2010,45(10):1677-1682
A combination of two lipases was employed to catalyze methanolysis of soybean oil in aqueous medium for biodiesel production. The two lipase genes were cloned from fungal strains Rhizomucor miehei and Penicillium cyclopium, and each expressed successfully in Pichia pastoris. Activities of the 1,3-specific lipase from R. miehei (termed RML) and the non-specific mono- and diacylglycerol lipase from P. cyclopium (termed MDL) were 550 U and 1545 U per ml respectively, and enzymatic properties of these supernatant of fermentation broth (liquid lipase) were stable at 4 °C for >3 months. Under optimized conditions, the ratio of biodiesel conversion after 12 h at 30 °C, using RML alone, was 68.5%. When RML was assisted by addition of MDL, biodiesel conversion ratio was increased to >95% under the same reaction conditions. The results suggested that combination of lipases with different specificity, for enzymatic conversion of more complex lipid substrates, is a potentially useful strategy for biodiesel production.  相似文献   

13.
Candida sp. 99-125 lipase immobilized on textile membrane was pretreated with several methods to improve its activity and methanol tolerance for biodiesel production. Lipase pretreatments with short chain alcohols from n-propyl alcohol to isobutyl alcohol did not have any positive effect on the lipase activity and methanol tolerance. While lipase treated with methanol solutions from 10 to 20% volume concentrations did enhance the enzyme activity and methanol tolerance, and this lipase activation effect did not exist when methanol volume concentration was 40%. 1 mM salt solutions of (NH4)2SO4, CaCl2, KCl, K2SO4 and MgCl2 pretreatments were the useful tools to improve the lipase activity and methanol tolerance. The reason might be that salts could incorporate with the protein molecular to form a more stable molecular to resist conformation change induced by high methanol concentration. The operational stability of pretreated lipase was improved dramatically for biodiesel production during batch reactions.  相似文献   

14.
A commercial macroporous resin (D3520) was screened for lipase recovery by adsorption from the aqueous phase of biodiesel production. The influences of several factors on the adsorption kinetics were investigated. It was found that the kinetic behavior of lipase adsorption by macroporous resin could be well described by pseudo-first-order model. Temperature had no significant effects on lipase adsorption, while resin-to-protein ratio (R) significantly affected both rate constant (k1) and equilibrium adsorption capacity (Qe). No lipase was adsorbed when mixing (shaking) was not performed; however, protein recovery reached 98% after the adsorption was conducted at 200 rpm for 5 h in a shaker. The presence of methanol and glycerol showed significant negative influence on lipase adsorption kinetics. Particularly, increasing glycerol concentration could dramatically decrease k1 but not impact Qe. Biodiesel was found to dramatically decrease Qe even present at a concentration as low as 0.02%, while k1 was found to increase with biodiesel concentration. The adsorbed lipase showed a relatively stable catalytic activity in tert-butanol system, but poor stability in solvent-free system when used for biodiesel preparation. Oil and biodiesel were also found to adsorb onto resin during transesterification in solvent-free system. Therefore, the resin had to be washed by anhydrous methanol before re-used for lipase recovery.  相似文献   

15.
The enzymatic route for biodiesel production has been noted to be cost ineffective due to the high cost of biocatalysts. Reusing the biocatalyst for successive transesterification cycles is a potential solution to address such cost inefficiency. However, when organic solvent like methanol is used as acyl-acceptor in the reaction, the biocatalyst (lipase) gets severely inactivated due to the inhibitory effect of undissolved methanol in the reaction medium. Thus, organic solvent–tolerant lipase is highly desirable for enzymatic transesterification. In response to such desirability, a lipase (LS133) possessing aforesaid characteristic was extracted from Streptomyces sp. CS133. Relative molecular mass of the purified LS133 was estimated to be 39.8 kDa by SDS-PAGE. Lipase LS133 was stable in pH range 5.0–9.0 and at temperature lower than 50 °C while its optimum lipolytic activity was achieved at pH 7.5 and 40 °C. It showed the highest hydrolytic activity towards long chain p-nitrophenyl palmitate with Km and Vmax values of 0.152 mM and 270.2 mmol min?1 mg?1, respectively. It showed non-position specificity for triolein hydrolysis. The first 15 amino acid residues of its N-terminal sequence, AIPLRQTLNFQAXYQ, were noted to have partial similarity with some of the previously reported microbial lipases. Its catalytic involvement in biodiesel production process was confirmed by performing enzymatic transesterification of vegetable oils with methanol.  相似文献   

16.
Preparation of biodiesel from waste oils catalyzed by a novel Brønsted acidic ionic liquid with an alkane sulfonic acid group was investigated. The acidity and the activity of the ionic liquid were very low at lower temperature when the ionic liquid was crystalloid; they recovered at higher temperature when the crystallized ionic liquid was liquefied. When methanol:oils:catalyst molar ratios were 12:1:0.06, the yield of fatty acid methyl esters can reach 93.5% after the reaction of acidic oil with methanol had taken place at 170 °C for 4 h. In addition, the ionic liquid had a good reusability and can be easily separated from the biodiesel by simple decantation.  相似文献   

17.
《Process Biochemistry》2010,45(6):829-834
Biocatalytic synthesis is a promising environmentally friendly process for the production of biodiesel, a sustainable alternative fuel from renewable plant resources. In order to develop an economical heterogeneous biocatalyst, protein-coated microcrystals (PCMCs) were prepared from a commercial enzyme preparation from a recombinant Aspergillus strain expressing Thermomyces lanuginosus lipase and used for synthesis of biodiesel from palm olein by ethanolysis. Reaction parameters, including catalyst loading, temperature, and oil/alcohol molar ratio have been systematically optimized. Addition of tert-butanol was found to markedly increase the biocatalyst activity and stability resulting in improved product yield. Optimized reactions (20%, w/w PCMC-lipase to triacylglycerol and 1:4 fatty acid equivalence/ethanol molar ratio) led to the production of alkyl esters from palm olein at 89.9% yield on molar basis after incubation at 45 °C for 24 h in the presence of tert-butanol at a 1:1 molar ratio to triacylglycerol. Crude palm oil and palm fatty acid distillate were also efficiently converted to biodiesel with 82.1 and 75.5% yield, respectively, with continual dehydration by molecular sieving. Operational stability of PCMC-lipase could be improved by treatment with tert-butanol allowing recycling of the biocatalyst for at least 8 consecutive batches with only slight reduction in activity. This work thus shows a promising approach for biodiesel synthesis with microcrystalline lipase which could be further developed for cost-efficient industrial production of biodiesel.  相似文献   

18.
In this study, the methyl esters of the long chain fatty acids (biodiesel) were synthesized by methanolysis of canola oil by immobilized lipase. Lipase from Thermomyces lanuginosus was immobilized by both physical adsorption and covalent attachment onto polyglutaraldehyde activated styrene–divinylbenzene (STY–DVB) copolymer, which is synthesized by using high internal phase emulsion (polyHIPE). Two different STY–DVB copolymers were evaluated: STY–DVB copolymer and STY–DVB copolymer containing polyglutaraldehyde (STY–DVB–PGA). Lipase from T. lanuginosus was immobilized with 60% and 85% yield on the hydrophobic microporous STY–DVB and STY–DVB–PGA copolymer, respectively. Biodiesel production using the latter lipase preparation was realized by a three-step addition of methanol to avoid strong substrate inhibition. Under the optimized conditions, the maximum biodiesel yield was 97% at 50 °C in 24 h reaction. The immobilized enzyme retained its activity during the 10 repeated batch reactions.  相似文献   

19.
Lipase-catalysed synthesis of alkyl esters is regarded as a potential alternative to chemical catalysis. Owing to its availability as a waste material from the babaco fruit production, its strong lipolytic activity and its natural immobilization, the dried latex of Vasconcellea × heilbornii appears as a good candidate to produce alkyl esters. The ability and performance of this lipase to catalyse the alcoholysis of sunflower oil with various primary alcohols was evaluated in a solvent-free system. A linear correlation between the final reaction rate and the alcohol polarity was established. For methanolysis, the influence of substrates ratio on final conversion rate was studied at different temperatures. At 30 °C, the lipase was inactivated by shaking in a mixture containing more than 0.5 molar equivalents of methanol; the minimum methanol concentration for enzyme deactivation increased with temperature. Moreover, for a 0.5:1 methanol/TAG molar ratio, conversion rates of 73, 66 and 55% were obtained at 30, 40 and 55 °C respectively, showing that the increase of temperature diminished the final methanolysis conversion rate. These facts were associated to the miscibility of methanol in oil and to the thermodynamic state of the medium. To overcome the inactivation of the lipase by methanol, alcoholysis was carried out by fractionated addition of methanol. In those conditions, Vasconcellea × heilbornii latex could catalyse the conversion of 70% of sunflower TAGs in methyl esters at 30 °C.  相似文献   

20.
We have designed a kinetic model of biodiesel production using Novozym 435 (Nz435) with immobilized Candida antarctica lipase B (CALB) as a catalyst. The scheme assumed reversibility of all reaction steps and imitated phase effects by introducing various molecular species of water and methanol. The global model was assembled from separate reaction blocks analyzed independently. Computer simulations helped to explore behavior of the reaction system under different conditions. It was found that methanolysis of refined oil by CALB is slow, because triglycerides (T) are the least reactive substrates. Conversion to 95% requires 1.5–6 days of incubation depending on the temperature, enzyme concentration, glycerol inhibition, etc. Other substrates, free fatty acids (F), diglycerides (D) and monoglycerides (M), are utilized much faster (1–2 h). This means that waste oil is a better feedstock for CALB. Residual enzymatic activity in biodiesel of standard quality causes increase of D above its specification level because of the reaction 2M  D + G. Filtration or alkaline treatment of the product prior to storage resolves this problem. The optimal field of Nz435 application appears to be decrease of F, M, D in waste oil before the conventional alkaline conversion. Up to 30-fold reduction of F-content can be achieved in 1–2 h, and the residual enzyme (if any) does not survive the following alkaline treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号