首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A deletion mutant of the nucleocapsid protein (NPΔc375) of Newcastle disease virus self-assembles into a long helical structure when expressed in Escherichia coli. However, the NPΔc375 subjects to proteolytic activity of host cell endogenous proteases during the protein recovery process. Image analysis of Western blots using the Quantity One software was performed to identify the size of the degraded bands and hence the potential proteases cleavage sites were predicted. The data obtained from this image analysis were compared to those identified with the PeptideCutter program; the potential proteases that degrade the NPΔc375 were identified to be mainly the metallo and serine proteases. Combination of ethylenediaminetetraacetic acid and phenylmethylsulfonyl fluoride at their optimal concentration gave a synergistic effect and increased the NPΔc375 yield by 2.1-fold. The antigenicity and self-assembled long helical structure long helical structure of NPΔc375 were preserved after treatment with the protease inhibitors.  相似文献   

2.
It has been reported that certain inhibitors of serine proteases block intracellular protein breakdown in E. coli subjected to nutritional deprivation. We show here that the protease inhibitors p-toluene sulfonyl fluoride and pentamidine isethionate inhibit protein breakdown in E. coli deprived of glucose, but not in bacteria starved for inorganic phosphate or ammonia. Furthermore, we find that the protease inhibitors cause a drastic decline in cellular ATP levels when glucose is omitted from the incubation medium. It is concluded that these protease inhibitors influence protein breakdown by interfering with cellular energy production, rather than by interacting with a specific serine protease.  相似文献   

3.
The entomopathogenic fungus Verticillium lecanii is a well-known biocontrol agent. V. lecanii produces subtilisin-like serine protease (Pr1), which is important in the biological control activity of some insect pests by degrading insect cuticles. In this study, a subtilisin-like serine protease gene VlPr1 was cloned from the fungus and the VlPr1 protein was expressed in Escherichia coli. The VlPr1 gene contains an open reading frame (ORF) interrupted by three short introns, and encodes a protein of 379 amino acids. Protein sequence analysis revealed high homology with subtilisin serine proteases. The molecular mass of the protease was 38 kDa, and the serine protease exhibited its maximal activity at 40°C and pH 9.0. Protease activity was also affected by Mg2+ and Ca2+ concentration. The protease showed inhibitory activity against several plant pathogens, especially towards Fusarium moniliforme.  相似文献   

4.
Although several bee venom serine protease genes have been previously described, fibrin(ogen)olytic activity of these serine proteases has been reported for only two bumblebees to date, Bombus ignitus and B. terrestris. Here, we cloned venom serine proteases from the other bumblebee species, B. hypocrita sapporoensis and B. ardens ardens. The venom serine protease genes of B. h. sapporoensis and B. a. ardens consist of 358 amino acids and 357 amino acids, respectively. We compared the predicted mature protein sequences of these serine protease genes to those previously reported for other bees. A phylogenetic analysis shows that B. h. sapporoensis venom serine protease is further immediately close to B. ignitus and B. terrestris venom serine proteases, excluding the venom serine protease of B. a. ardens. Using B. h. sapporoensis venom serine protease (Bs-VSP), we identified that Bs-VSP acts as a fibrin(ogen)olytic enzyme. We also found that Bs-VSP activates prothrombin and directly degrades fibrinogen into fibrin degradation products. Our results further define roles for bumblebee venom serine proteases as fibrin(ogen)olytic agents.  相似文献   

5.
TheBombyx mori (B. mori) serine protease-like protein (BmSp) coding region (946 bp, GenBank accession number of mRNA, DQ118520; protein, AAZ40503) was generated from two separate and overlapping cDNA fragments using sequence homology withTrichoplusia ni azurocidin in aBombyx EST database (Silkbase; http://www.ab.a.u-tokyo.ac.jp/silkbase/). The deduced amino acid sequence of BmSp, which encodes 303 amino acids, shows 44% amino acid identity toA. gambiae serine protease (CAA89967), 43% amino acid identity toSarcophagi peregrina 26-kDa protease, an antibacterial protein and 31% identity toB. mori serine protease-2 (BmSP-2), a potential antiviral protein. Typical features of the BmSp included the serine protease active site triad His / Asp / Ser, three pairs of cysteine residues for disulfide bridges, and three residues, Asp / Gly / Gly, that help to confer trypsin-like specificity to the enzymes. Based on the result of sequence comparison and characterization, our results suggest that the BmSp probably the new subfamily of trypsin-like serine protease. Using RT-PCR and enzyme digestion, the full encoding sequence for BmSp was cloned into theE. coli expression vector pGEX-5X-1. The fusion protein GST-BmSp was effectively expressed inE. coli BL21(DE3) pLysS as inclusion bodies, and a denaturation and refolding procedure were performed to obtain soluble GST-BmSp. The purified protein was tested for antibacterial activity against Gram-positive and Gram-negative bacteria, but it did not show antibacterial activity in the agar well diffusion assay and liquid growth inhibition assay.  相似文献   

6.
A large strain collection comprising antagonistic bacteria was screened for novel detergent proteases. Several strains displayed protease activity on agar plates containing skim milk but were inactive in liquid media. Encapsulation of cells in alginate beads induced protease production. Stenotrophomonas maltophilia emerged as best performer under washing conditions. For identification of wash-active proteases, four extracellular serine proteases called StmPr1, StmPr2, StmPr3 and StmPr4 were cloned. StmPr2 and StmPr4 were sufficiently overexpressed in E. coli. Expression of StmPr1 and StmPr3 resulted in unprocessed, insoluble protein. Truncation of most of the C-terminal domain which has been identified by enzyme modeling succeeded in expression of soluble, active StmPr1 but failed in case of StmPr3.From laundry application tests StmPr2 turned out to be a highly wash-active protease at 45 °C. Specific activity of StmPr2 determined with suc-l-Ala-l-Ala-l-Pro-l-Phe-p-nitroanilide as the substrate was 17 ± 2 U/mg. In addition we determined the kinetic parameters and cleavage preferences of protease StmPr2.  相似文献   

7.
Nipah Virus (NiV) is an emerging zoonotic paramyxovirus that can be fatal in humans and various types of animals. The phospho (P) protein of NiV plays an important role in RNA synthesis, replication, and genome synthesis. In this study, the NiV P gene was cloned into a pTrcHis2-TOPO vector and the recombinant protein containing a His-tag was produced in Escherichia coli. SDS-PAGE and Western blot analysis using the anti-His antibody confirmed the protein expression. An optimization study of E. coli fermentation showed that the optimal cultivation temperature was 37°C, while the optimal induction time for P protein expression was at 9 h with 1 mM IPTG. Solubility analysis showed that E. coli cultivated at 37°C produced the highest fraction (70%) of soluble P protein. The recombinant P protein was purified from clarified E. coli lysate using an immobilized metal affinity chromatography (IMAC) technique to a purity of 92.67%, with a purification factor of 11.58. The purified P protein strongly reacted with the anti-NiV swine sera collected during a NiV outbreak, suggesting its potential as a diagnostic reagent.  相似文献   

8.
9.
Nipah virus (NiV), a highly pathogenic paramyxovirus, causes a systemic infection in vivo and is able to replicate in cultured cells of many species and organs. Such pantropic paramyxoviruses generally encode fusion (F) proteins with multibasic cleavage sites activated by furin or other ubiquitous intracellular host cell proteases. In contrast, NiV has an F protein with a single arginine (R109) at the cleavage site, as is the case with paramyxoviruses that are activated by trypsin-like proteases only present in specific cells or tissues and therefore only cause localized infections. Unlike these viruses, cleavage of the NiV F protein is ubiquitous and does not require the addition of exogenous proteases in cell culture. To determine the importance of the amino acid sequence at the NiV F protein cleavage site for ubiquitous activation, we generated NiV F proteins with mutations around R109. Surprisingly, neither the exchange of amino acids upstream of R109 nor replacement of the basic residue itself interfered with F cleavage. Thus, R109 is not essential for F cleavage and activation. Our data demonstrate that NiV F-protein activation depends on a novel type of proteolytic cleavage that has not yet been described for any other paramyxovirus F protein. NiV F activation is mediated by a ubiquitous protease that requires neither a monobasic nor a multibasic cleavage site and therefore differs from the furin- or trypsin-like proteases known to activate other ortho- and paramyxovirus fusion proteins.  相似文献   

10.
Cell Wall-Associated Proteases of Streptococcus cremoris Wg2   总被引:14,自引:12,他引:2       下载免费PDF全文
Two components of the proteolytic system, proteins A and B (J. Hugenholtz, F. Exterkate, and W. N. Konings, Appl. Environ. Microbiol. 48:1105-1110, 1984), have been studied in Streptococcus cremoris Wg2 by immunological methods. The components could not be separated by standard chromatography techniques because both proteins had almost identical molecular weights (about 140,000) and isoelectric points (pH 4.5). Specific antibodies were raised against proteins A and B by excision of the different immunoprecipitates from crossed immunoelectrophoresis gels. With these antibodies, protein A or B was removed from solutions containing both proteins. The purified proteins A and B possessed proteolytic activity and were inhibited by the serine protease inhibitor phenylmethylsulfonyl fluoride. Each of these proteins accounted for approximately 50% of the total proteolytic activity isolated from S. cremoris Wg2. The specific antibodies against the proteases were also used for immuno-gold labeling studies. The proteases were clearly seen to be located at the outside of the cell wall. The proteases had the same location when the genetic information coding for the proteases was cloned in Streptococcus lactis and Bacillus subtilis.  相似文献   

11.
Rhomboids are intramembrane serine proteases that play diverse biological roles, including some that are of potential therapeutical relevance. Up to date, rhomboid inhibitor assays are based on protein substrate cleavage. Although rhomboids have an overlapping substrate specificity, substrates cannot be used universally. To overcome the need for substrates, we developed a screening assay using fluorescence polarization activity-based protein profiling (FluoPol ABPP) that is compatible with membrane proteases. With FluoPol ABPP, we identified new inhibitors for the E. coli rhomboid GlpG. Among these was a structural class that has not yet been reported as rhomboid inhibitors: β-lactones. They form covalent and irreversible complexes with the active site serine of GlpG. The presence of alkyne handles on the β-lactones also allowed activity-based labeling. Overall, these molecules represent a new scaffold for future inhibitor and activity-based probe development, whereas the assay will allow inhibitor screening of ill-characterized membrane proteases.  相似文献   

12.
Miliin is a serine protease purified from the latex of Euphorbia milii. This work reports the effect of pH and temperature on the catalytic activity of miliin, using fluorescence resonance energy transfer (FRET) substrates. Miliin displayed the highest activity at pH 9 and 35 °C. Subsite mapping shows that subsites S2 to S2′ prefer uncharged residues. The S2 subsite prefers hydrophobic aliphatic amino acids (Val, Pro and Ile) and defines the cleavage site. This work is the first one that reports subsite mapping of Euphorbiacea proteases. The N-terminal sequence showed higher similarity (40%) with the serine protease LIM9 isolated from Lilium. The presence of Tyr, Pro and Lys at positions 2, 5 and 10 respectively, were observed for most of the serine proteases used for comparison. The N-terminal sequence has striking differences with those reported previously for milin and eumiliin, other serine proteases isolated from the latex of E. milii.  相似文献   

13.
Proteolysis is a vital mechanism to regulate the cellular proteome in all kingdoms of life, and ATP-dependent proteases play a crucial role within this process. In Escherichia coli, ClpYQ is one of the primary ATP-dependent proteases. In addition to function with removals of abnormal peptides in the cells, ClpYQ degrades regulatory proteins if necessary and thus let cells adjust to various environmental conditions. In E. coli, SulA, RcsA, RpoH and TraJ as well as RNase R, have been identified as natural protein substrates of ClpYQ. ClpYQ contains ClpY and ClpQ. The ATPase ClpY is responsible for protein recognition, unfolding, and translocation into the catalytic core of ClpQ. In this study, we use an indirect identification strategy to screen possible ClpY targets with E. coli K12 proteome chips. The chip assay results showed that YbaB strongly bound to ClpY. We used yeast two-hybrid assay to confirm the interactions between ClpY and YbaB protein and determined the Kd between ClpY and YbaB by quartz crystal microbalance. Furthermore, we validated that YbaB was successfully degraded by ClpYQ protease activity using ClpYQ in vitro and in vivo degradation assay. These findings demonstrated the YbaB is a novel substrate of ClpYQ protease. This work also successfully demonstrated that with the use of recognition element of a protease can successfully screen its substrates by indirect proteome chip screening assay.  相似文献   

14.
The M48 conserved family of peptidases contains a single catalytic zinc ion tetrahedrally co-ordinated by two histidines within an HEXXH motif. The proteases of this class are generally toxic to the cell and thus difficult to express and purify. Here, we report the expression and purification of the small HtpX-like heat shock metalloprotease from an unknown organism related to the obligate methylotrophic anaerobic bacterium, Methylobacillus flagellatus. The protease was expressed in the Escherichia coli vector — pT7. Optimization of expression was done to increase the yield and solubility of the expressed protein. Improved refolding procedures from inclusion bodies of pT7 E. coli system were devised to get the protease in an active and stable form. The protease was purified to near homogeneity in its active form from the refolded proteins of the inclusion bodies by a two-step (cation exchange followed by gel filtration) high performance liquid chromatography (HPLC). The purified protease was active on zymography and casein hydrolysis assays. The activity of the protease was found to be optimum at pH 7.4 and at a temperature of 37 °C but significant activity was also retained at higher temperatures of 45–50 °C. Centrifugal fractionation showed that it is a membrane localized endopeptidase. The methods described here can serve as guidelines to express and purify other homologues of M48 family of proteases for functional and structural studies.  相似文献   

15.
Protease inhibitors are well known to have several applications in medicine and biotechnology. Several plant sources are known to return potential protease inhibitors. In this study plants belonging to different families of Leguminosae, Malvaceae, Rutaceae, Graminae and Moringaceae were screened for the protease inhibitor. Among them Moringa oleifera, belonging to the family Moringaceae, recorded high level of protease inhibitor activity after ammonium sulfate fractionation. M. oleifera, which grows throughout most of the tropics and having several industrial and medicinal uses, was selected as a source of protease inhibitor since so far no reports were made on isolation of the protease inhibitor. Among the different parts of M. oleifera tested, the crude extract isolated from the mature leaves and seeds showed the highest level of inhibition against trypsin. Among the various extraction media evaluated, the crude extract prepared in phosphate buffer showed maximum recovery of the protease inhibitor. The protease inhibitor recorded high inhibitory activity toward the serine proteases thrombin, elastase, chymotrypsin and the cysteine proteases cathepsin B and papain which have more importance in pharmaceutical industry. The protease inhibitor also showed complete inhibition of activities of the commercially available proteases of Bacillus licheniformis and Aspergillus oryzae. However, inhibitory activities toward subtilisin, esperase, pronase E and proteinase K were negligible. Further, it was found that the protease inhibitor could prevent proteolysis in a commercially valuable shrimp Penaeus monodon during storage indicating the scope for its application as a seafood preservative. This is the first report on isolation of a protease inhibitor from M. oleifera.  相似文献   

16.
《Gene》1998,206(2):229-236
We have isolated the dipeptidyl aminopeptidase BI (DAP BI) gene from the plasmid library of Pseudomonas sp. WO24 chromosomal DNA by the enzymatic plate asaay using a chromogenic substrate. The DAP BI gene, designated dap b1, was further subcloned and sequenced. Sequence analysis of an approx. 3-kb fragment revealed an open reading frame of 2169 nucleotides, which was assigned to the dap b1 gene by N-terminal and internal amino acid sequences. The predicted amino acid sequence of DAP BI containing a serine protease Gly–X–Ser–X–Gly consensus motif displays extensive homologies to the several proteases belonging to the prolyl oligopeptidase family, a novel serine protease family possessing the catalytic triad with a specific array of Ser, Asp and His in this order, which is the hallmark of the member of this family including DAP IV. The dap b1 gene was expressed in Escherichia coli and the expressed enzyme was purified about 230-fold with 2.6% recovery from the cell-free extracts. The enzymatic properties such as molecular mass, substrate specificity and effect of inhibitor were similar to the native enzyme from Pseudomonas sp. WO24.  相似文献   

17.
Nematophagous fungi Pochonia chlamydosporia and P. rubescens colonize endophytically barley roots. During nematode infection, serine proteases are secreted. We have investigated whether such proteases are also produced during root colonization. Polyclonal antibodies against serine protease P32 of P. rubescens cross-reacted with a related protease (VCP1) of P. chlamydosporia, but not with barley proteases. These antibodies also detected an unknown ca. 65-kDa protein, labeled hyphae and appressoria of P. chlamydosporia and strongly reduced proteolytic activity of extracts from fungus-colonized roots. Mass spectrometry (MS) of 32-kDa protein bands detected peptides homologous to VCP1 only in Pochonia-colonized roots. Peptides homologous to barley serine carboxypeptidases were found in 65 kDa bands of all roots. RT-PCR detected expression of VCP1 and a new P. chlamydosporia serine carboxypeptidase (SCP1) genes only in fungus-colonized roots. SCP1 shared limited sequence homology with VCP1 and P32. Expression in roots of proteases from nematophagous fungi could be greatly relevant for nematode biocontrol.  相似文献   

18.
We demonstrate that enhanced lysozyme resistance of enteropathogenic Escherichia coli requires the plasmid-encoded regulator, Per, and is mediated by factors outside the locus for enterocyte effacement. EspC, a Per-activated serine protease autotransporter protein, conferred enhanced resistance on nonpathogenic E. coli, and a second Per-regulated, espC-independent lysozyme resistance mechanism was identified.  相似文献   

19.
BackgroundA prevailing action of the Type VI secretion system (T6SS) in several Gram-negative bacterial species is inter-bacterial competition. In the past several years, many effectors of T6SS were identified in different bacterial species and their involvement in inter-bacterial interactions were described. However, possible defence mechanisms against T6SS attack among prey bacteria were not well clarified yet.MethodsEscherichia coli was assessed for susceptibility to T6SS-mediated killing by Vibrio cholerae. TheT6SS-mediated bacterial killing assays were performed in absence or presence of different protease inhibitors and with different mutant E. coli strains. Expression levels of selected proteins were monitored using SDS-PAGE and immunoblot analyses.ResultsThe T6SS-mediated killing of E. coli by V. cholerae was partly blocked when the serine protease inhibitor Pefabloc was present. E. coli lacking the periplasmic protease inhibitor Ecotin showed enhanced susceptibility to killing by V. cholerae. Mutations affecting E. coli membrane stability also caused increased susceptibility to killing by V. cholerae. E. coli lacking the maltodextrin porin protein LamB showed reduced susceptibility to killing by V. cholerae whereas E. coli with induced high levels of LamB showed reduced survival in inter-bacterial competition.ConclusionsOur study identified two proteins in E. coli, the intrinsic protease inhibitor Ecotin and the outer membrane porin LamB, that influenced E. coli susceptibility to T6SS-mediated killing by V. cholerae.General significanceWe envision that it is feasible to explore these findings to target and modulate their expression to obtain desired changes in inter-bacterial competition in vivo, e.g. in the gastrointestinal microbiome.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号