首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Monosodium glutamate (MSG) is a controversial food additive reported to cause negative effects on public health. Adipose stem cells (ASCs) and their derived vesicles (MVs) represent a promising cure for human diseases. This work was planned to compare the therapeutic effects of adipose stem cells and microvesicles in MSG‐induced cerebellar damage. Forty adult healthy male Wister rats were equally divided into four groups: Group I (control group), group II (MSG‐treated), group III (MSG/ASCs‐treated), and group IV (MSG/MVs‐treated). Motor behaviour of rats was assessed. Characterization of ASCs and MVs was done by flow cytometry. The cerebellum was processed for light and electron microscopic studies, and immunohistochemical localization of PCNA and GFAP. Morphometry was done for the number of Purkinje cells in H&E‐stained sections, area per cent of GFAP immune reactivity and number of positive PCNA cells. Our results showed MSG‐induced deterioration in the motor part. Moreover, MSG increases oxidant and apoptotic with decreases of antioxidant biomarkers. Structural changes in the cerebellar cortex as degeneration of nerve cells and gliosis were detected. There were also a decrease in the number of Purkinje cells, an increase in the area per cent of GFAP immune reactivity and a decrease in the number of positive PCNA cells, as compared to the control. Rats treated with ASCs showed marked functional and structural improvement in comparison with MV‐treated rats. Thus, both ASCs and MVs had therapeutic potential for MSG‐induced cerebellar damage with better results in case of ASCs.  相似文献   

2.
Adipose stem cells (ASCs) are an appealing source of cells for therapeutic intervention; however, the environment from which ASCs are isolated may impact their usefulness. Using a range of functional assays, we have evaluated whether ASCs isolated from an obese environment are comparable to cells from non-obese adipose tissue. Results showed that ASCs isolated from obese tissue have a reduced proliferative ability and a loss of viability together with changes in telomerase activity and DNA telomere length, suggesting a decreased self-renewal capacity. Metabolic analysis demonstrated that mitochondrial content and function was impaired in obese-derived ASCs resulting in changes in favored oxidative substrates. These findings highlight the impact of obesity on adult stem properties. Hence, caution should be exercised when considering the source of ASCs for cellular therapies since their therapeutic potential may be impaired.  相似文献   

3.
Recently, preclinical studies have shown that allogeneic adipose-derived stem cells (ASCs), like bone marrow-derived mesenchymal stem cell (BMSCs) have significant clinical benefits in treating cardiovascular diseases, such as ischemic/infarcted heart. In this study, we tested whether ASCs are also immune tolerant, such that they can be used as universal donor cells for myocardial regenerative therapy. The study also focuses on investigating the potential therapeutic effects of human ASCs (hASCs) for myocardial infarction in xenotransplant model, and compares its effects with that of hBMSCs. The in vitro study confirms the superior proliferation potential and viability of hASCs under normoxic and stressed hypoxic conditions compared with hBMSCs. hASCs also show higher potential in adopting cardiomyocyte phenotype. The major findings of the in vivo study are that (1) both hASCs and hBMSCs implanted into immunocompetent rat hearts with acute myocardial infarction survived the extreme environment of xenogeneic mismatch for 6 weeks; (2) both hASCs and hBMSCs showed significant improvement in myocardial pro/anti-inflammatory cytokine levels with no detectable inflammatory reaction, despite the lack of any immunosuppressive therapy; and (3) hASCs contributed to the remarkable improvement in cardiac function and reduced infarction which was significantly better than that of hBMSC and untreated control groups. Thus, our findings suggest the feasibility of using ASCs, instead of BMSCs, as universal donor cells for xenogeneic or allogeneic cell therapy.  相似文献   

4.
Emerging evidence suggests that adipose tissue-derived stem cells (ASCs) can be used for the treatment of ischemic heart diseases. However, the mechanisms underlying their therapeutic effects have not been clearly defined. In this study cytokines released by ASCs were detected by ELISA and pro-angiogenic effects were assessed by tube formation assay. To define the anti-apoptotic effect of ASCs, neonatal rat cardiomyocytes were subjected to hypoxia condition in a co-culture system. Our data show that ASCs secrete significant amounts of VEGF (810.65 ± 56.92 pg/μg DNA) and IGF-I (328.33 ± 22.7 pg/μg DNA). Cardiomyocytes apoptosis was significantly prevented by ASCs and 62.5% of the anti-apoptotic effect was mediated by IGF-I and 34.2% by VEGF. ASCs promoted endothelial cell tube formation by secreting VEGF. In conclusion we demonstrated that ASCs have a marked impact on anti-apoptosis and angiogenesis and helps to explain data of stem cells benefit without transdifferentiation.  相似文献   

5.
Adipose-derived mesenchymal stem cells (ASCs) transplantation has shown great promise for treating various diseases; however, poor viability of transplanted ASCs because of oxidative stress has limited its therapeutic efficiency. Plant saponins are recently been reported to have antioxidant activity tested in various cancer cell lines. This study was designed to investigate the protective effects of Tribulus terrestris saponins (TTS) on the proliferation of ASCs. The cytotoxic activity of hydrogen peroxide (H2O2) was determined by treating ASCs with 100, 200, 300, 400, and 500 µM H2O2 for 2 hours. ASCs were treated with 6.25, 12.5, 25, 50, and 100 µg/mL concentrations of TTS for the proliferative experiment. To check the protective effect of TTS, experiments were designed in two ways. In one set, ASCs were pretreated with different concentrations of TTS for 2 hours and then apoptosis was induced by treating them with 400 µM H2O2 for next 2 hours, while in other set, ASCs were first treated with 400 µM H2O2 for 2 hours and subsequently with different concentrations of TTS for 24 hours. The vitality and proliferation potential of cells were detected by 3-(4,5-Dimethylthiazol-2-Yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The result of the current study shows that in response to stress-induced by H2O2 at concentration of 400 µM, ASCs underwent growth arrest and cell viability was reduced to half while treatment with TTS before and after H2O2 exposure significantly prevents premature apoptosis. The findings suggest that saponins may act as an effective protective agent against oxidative stress–induced ASCs apoptosis.  相似文献   

6.
Multiple sclerosis (MS), characterized by chronic inflammation, demyelination, and axonal damage, is a complicated neurological disease of the human central nervous system. Recent interest in adipose stromal/stem cell (ASCs) for the treatment of CNS diseases has promoted further investigation in order to identify the most suitable ASCs. To investigate whether MS affects the biologic properties of ASCs and whether autologous ASCs from MS-affected sources could serve as an effective source for stem cell therapy, cells were isolated from subcutaneous inguinal fat pads of mice with established experimental autoimmune encephalomyelitis (EAE), a murine model of MS. ASCs from EAE mice and their syngeneic wild-type mice were cultured, expanded, and characterized for their cell morphology, surface antigen expression, osteogenic and adipogenic differentiation, colony forming units, and inflammatory cytokine and chemokine levels in vitro. Furthermore, the therapeutic efficacy of the cells was assessed in vivo by transplantation into EAE mice. The results indicated that the ASCs from EAE mice displayed a normal phenotype, typical MSC surface antigen expression, and in vitro osteogenic and adipogenic differentiation capacity, while their osteogenic differentiation capacity was reduced in comparison with their unafflicted control mice. The ASCs from EAE mice also demonstrated increased expression of pro-inflammatory cytokines and chemokines, specifically an elevation in the expression of monocyte chemoattractant protein-1 and keratin chemoattractant. In vivo, infusion of wild type ASCs significantly ameliorate the disease course, autoimmune mediated demyelination and cell infiltration through the regulation of the inflammatory responses, however, mice treated with autologous ASCs showed no therapeutic improvement on the disease progression.  相似文献   

7.
《Cytotherapy》2014,16(3):346-356
Background aimsAdipose-derived mesenchymal stromal cells (ASCs) are promising tools for delivery of cytotherapy against cancer. However, ASCs can exert profound effects on biological behavior of tumor cells. Our study aimed to examine the influence of ASCs on gene expression and epigenetic methylation profiles of prostate cancer cells as well as the impact of expressing a therapeutic gene on modifying the interaction between ASCs and prostate cancer cells.MethodsASCs were modified by lentiviral transduction to express either green fluorescent protein as a control or pigment epithelium–derived factor (PEDF) as a therapeutic molecule. PC3 prostate cancer cells were cultured in the presence of ASC culture–conditioned media (CCM), and effects on PC3 or DU145. Ras cells were examined by means of real-time quantitative polymerase chain reaction, EpiTect methyl prostate cancer–focused real-time quantitative polymerase chain reaction arrays, and luciferase reporter assays.ResultsASCs transduced with lentiviral vectors were able to mediate expression of several tumor-inhibitory genes, some of which correlated with epigenetic methylation changes on cocultured PC3 prostate cancer cells. When PC3 cells were cultured with ASC-PEDF CCM, we observed a shift in the balance of gene expression toward tumor inhibition, which suggests that PEDF reduces the potential tumor-promoting activity of unmodified ASCs.ConclusionsThese results suggest that ASC-PEDF CCM can promote reprogramming of tumor cells in a paracrine manner. An improved understanding of genetic and epigenetic events in prostate cancer growth in response to PEDF paracrine therapy would enable a more effective use of ASC-PEDF, with the goal of achieving safer yet more potent anti-tumor effects.  相似文献   

8.
Adipose tissue is a source of multipotent stem cells and it has the ability to differentiate into several types of cell lineages such as neuron cells, osteogenic and adipogenic cells. Most studies on human adipose-derived stem cells (ASCs) have been carried out at the early passages. For clinical usage, ASCs need to be expanded in vitro for a period of time to get sufficient cells for transplantation into patients. However, the impact of long-term culture on ASCs molecular characteristics has not been established yet. Several studies have also shown that osteogenic and adipogenic cells have the ability to switch pathways during in vitro culture as they share the same progenitor cells. This data is important to ensure their functionality and efficacy before being used clinically in the treatment of bone diseases. Therefore, we aim to investigate the effect of long-term culture on the adipogenic, stemness and osteogenic genes expression during osteogenic induction of ASCs. In this study, the molecular characteristics of ASCs during osteogenic induction in long-term culture was analysed by observing their morphological changes during induction, analysis of cell mineralization using Alizarin Red staining and gene expression changes using quantitative RT-PCR. Morphologically, cell mineralization at P20 was less compared to P5, P10 and P15. Adipogenesis was not observed as negative lipid droplets formation was recorded during induction. The quantitative PCR data showed that adipogenic genes expression e.g. LPL and AP2 decreased but PPAR-γ was increased after osteogenic induction in long-term culture. Most stemness genes decreased at P5 and P10 but showed no significant changes at P15 and P20. While most osteogenic genes increased after osteogenic induction at all passages. When compared among passages after induction, Runx showed a significant increased at P20 while BSP, OSP and ALP decreased at later passage (P15 and P20). During long-term culture, ASCs were only able to differentiate into immature osteogenic cells.  相似文献   

9.
BACKGROUND INFORMATION: DMD (Duchenne muscular dystrophy) is a devastating X-linked disorder characterized by progressive muscle degeneration and weakness. The use of cell therapy for the repair of defective muscle is being pursued as a possible treatment for DMD. Mesenchymal stem cells have the potential to differentiate and display a myogenic phenotype in vitro. Since liposuctioned human fat is available in large quantities, it may be an ideal source of stem cells for therapeutic applications. ASCs (adipose-derived stem cells) are able to restore dystrophin expression in the muscles of mdx (X-linked muscular dystrophy) mice. However, the outcome when these cells interact with human dystrophic muscle is still unknown. RESULTS: We show here that ASCs participate in myotube formation when cultured together with differentiating human DMD myoblasts, resulting in the restoration of dystrophin expression. Similarly, dystrophin was induced when ASCs were co-cultivated with DMD myotubes. Experiments with GFP (green fluorescent protein)-positive ASCs and DAPI (4',6-diamidino-2-phenylindole)-stained DMD myoblasts indicated that ASCs participate in human myogenesis through cellular fusion. CONCLUSIONS: These results show that ASCs have the potential to interact with dystrophic muscle cells, restoring dystrophin expression of DMD cells in vitro. The possibility of using adipose tissue as a source of stem cell therapies for muscular diseases is extremely exciting.  相似文献   

10.
Background aimsAdipose tissue-derived mesenchymal stromal cells (ASCs) are of interest as a cell therapeutic agent for immunologic and degenerative diseases. During in vitro expansion, ASCs may be at risk for genetic alterations, and genetic screening is a prerequisite. We examined the presence of aneuploidy in ASCs and its origin and development during culture and evaluated the implications of aneuploidy for therapeutic use of ASCs.MethodsAdipose tissue of healthy individuals was used for isolation and expansion of ASCs. Chromosome copy numbers were studied using fluorescence in situ hybridization analysis. Aneuploidy was studied in freshly isolated ASCs, in ASCs cultured for 0–16 passages and in senescent cultures. To evaluate the plasticity of ploidy, ASCs were cloned, and the variation of ploidy in the clones was examined. Tumorigenicity was studied by subcutaneous injection of aneuploid ASCs in immunodeficient NOD/SCID mice.ResultsNo aneuploidy was detected in freshly isolated ASCs. In low passages (passages 0–4), aneuploidy was detected in 3.4% of ASCs. Prolonged culture expansion of ASCs (passages 5–16) resulted in a significant increase of aneuploidy to 7.1%. With senescence, aneuploidy increased further to 19.8%. Aneuploidy was observed in clones of diploid ASCs, demonstrating the de novo development of aneuploidy. No transformation of ASCs was observed, and in contrast to cancer cell lines, aneuploid ASCs were incapable of tumor formation in immunodeficient mice.ConclusionsASC cultures contain a stable percentage of aneuploid cells. Aneuploidy was not a predecessor of transformation or tumor formation. This finding indicates that aneuploidy is culture-induced but unlikely to compromise clinical application of ASCs.  相似文献   

11.
Pathological scarring and scleroderma, which are the most common conditions of skin fibrosis, pathologically manifest as fibroblast proliferation and extracellular matrix (ECM) hyperplasia. Fibroblast proliferation and ECM hyperplasia lead to fibrotic tissue remodeling, causing an exaggerated and prolonged wound-healing response. The pathogenesis of these diseases has not been fully clarified and is unfortunately accompanied by exceptionally high medical needs and poor treatment effects. Currently, a promising and relatively low-cost treatment has emerged-adipose-derived stem cell (ASC) therapy as a branch of stem cell therapy, including ASCs and their derivatives-purified ASC, stromal vascular fraction, ASC-conditioned medium, ASC exosomes, etc., which are rich in sources and easy to obtain. ASCs have been widely used in therapeutic settings for patients, primarily for the defection of soft tissues, such as breast enhancement and facial contouring. In the field of skin regeneration, ASC therapy has become a hot research topic because it is beneficial for reversing skin fibrosis. The ability of ASCs to control profibrotic factors as well as anti-inflammatory and immunomodulatory actions will be discussed in this review, as well as their new applications in the treatment of skin fibrosis. Although the long-term effect of ASC therapy is still unclear, ASCs have emerged as one of the most promising systemic antifibrotic therapies under development.  相似文献   

12.
Jin  Lianhua  Lu  Na  Zhang  Wenxin  Zhou  Yan 《Cytotechnology》2021,73(4):657-667

Adipose-derived stromal cells (ASCs) are now recognized as an accessible, abundant, and reliable stem cells for tissue engineering and regenerative medicine. However, ASCs should be expanded long term in order to harvest higher cell number for clinical application. In this study, ASCs isolated from human subcutaneous adipose tissue and senescence after long-term expansion was evaluated. The results showed that following in vitro expansion to the 15th passage, ASCs show changes in morphology (toward the “fried egg” morphology) and decrease in proliferation potential. Nonetheless, ASCs maintained differentiation potential toward osteoblasts, chondrocytes, and adipocytes. The senescent ASCs show impaired migration capacity under the same basal conditions. OXPHOS and glycolysis decreased slightly in culture from passage 5 to passage 15. ASCs also showed increased accumulation of beta-galactosidase in culture. Expression of senescence markers p53, p16, and p21 were also increased accompanied with the increase of passages. Experiment data showed that ASCs biological characteristics depended and changed with age. We recommend the use of early-passage cells, particularly those before passage 5, for efficacious therapeutic application of stem cells.

  相似文献   

13.
Background information. DMD (Duchenne muscular dystrophy) is a devastating X‐linked disorder characterized by progressive muscle degeneration and weakness. The use of cell therapy for the repair of defective muscle is being pursued as a possible treatment for DMD. Mesenchymal stem cells have the potential to differentiate and display a myogenic phenotype in vitro. Since liposuctioned human fat is available in large quantities, it may be an ideal source of stem cells for therapeutic applications. ASCs (adipose‐derived stem cells) are able to restore dystrophin expression in the muscles of mdx (X‐linked muscular dystrophy) mice. However, the outcome when these cells interact with human dystrophic muscle is still unknown. Results. We show here that ASCs participate in myotube formation when cultured together with differentiating human DMD myoblasts, resulting in the restoration of dystrophin expression. Similarly, dystrophin was induced when ASCs were co‐cultivated with DMD myotubes. Experiments with GFP (green fluorescent protein)‐positive ASCs and DAPI (4′,6‐diamidino‐2‐phenylindole)‐stained DMD myoblasts indicated that ASCs participate in human myogenesis through cellular fusion. Conclusions. These results show that ASCs have the potential to interact with dystrophic muscle cells, restoring dystrophin expression of DMD cells in vitro. The possibility of using adipose tissue as a source of stem cell therapies for muscular diseases is extremely exciting.  相似文献   

14.
Clinical application of mesenchymal stem cells (MSCs) represents a potential novel therapy for currently intractable deteriorating diseases or traumatic injuries, including myocardial infarction. However, the molecular mechanisms of the therapeutic effects have not been precisely revealed. Herein, we report that conditioned media (CM) from rat adipose tissue-derived MSCs (ASCs) protected adult cardiomyocytes from oxygen/glucose deprivation (OGD)-induced cell death. We focused on furin/PCSK protease activity in ASC-CM because many therapeutic factors of MSCs and soluble cardioprotective factors include the PCSK cleavage site. We found that recombinant furin protected cardiomyocytes from OGD-induced cell death. The ASC-CM had potent furin/PCSK protease activity and the cardioprotective effect of the CM from ASCs in the OGD-assay was abolished by an inhibitor of the furin/PCSK-like enzyme. Microarray analysis and Western blot analysis showed PCSK5A, the secreted type of PCSK5, is the most abundantly secreted PCSK among 7 PCSK family members in ASC. Finally, knockdown of PCSK5A in ASCs decreased both the furin/PCSK protease activity and cardioprotective activity in the CM. These findings indicate an involvement of furin/PCSK-type protease(s) in the anti-ischemic activity of ASCs, and suggest a new mechanism of the therapeutic effect of MSCs.  相似文献   

15.
Taking advantage of homogeneously marked cells from green fluorescent protein (GFP) transgenic mice, we have recently reported that adipose-derived stromal cells (ASCs) could differentiate into mesenchymal lineages in vitro. In this study, we performed neural induction using ASCs from GFP transgenic mice and were able to induce these ASCs into neuronal and glial cell lineages. Most of the neurally induced cells showed bipolar or multipolar appearance morphologically and expressed neuronal markers. Electron microscopy revealed their neuronal morphology. Some cells also showed glial phenotypes, as shown immunocytochemically. The present study clearly shows that ASCs derived from GFP transgenic mice differentiate into neural lineages in vitro, suggesting that these cells might provide an ideal source for further neural stem cell research with possible therapeutic application for neurological disorders.  相似文献   

16.
Tissue engineering provides new potential treatments for the repair of bone defects. Bone-marrow-derived mesenchymal stem cells (BMSCs) represent an attractive cell source for therapeutic applications involving tissue engineering, although disadvantages, such as pain of harvest and low proliferation efficiency, are major limitations to the application of BMSCs in the clinic. Adipose-derived stem cells (ASCs) with their multilineage potential and satisfactory proliferation potential can be induced into the osteogenic lineage in vitro and can be anchored onto suitable scaffolds as seed cells to repair bone defects successfully in an autologous setting. Previous studies have indicated that both undifferentiated BMSCs and ASCs exhibit immunosuppression and immunoprivilege properties. We compare the immuno-function of undifferentiated and osteo-differentiated ASCs in vitro and explore the feasibility of applying allogeneic ASCs to the repair of ulnar bone defects in the rabbit model. Our study demonstrates that allogeneic osteogenic differentiated ASCs maintain low immunogenicity and negative immunomodulation. The allogeneic osteogenic differentiated ASCs combined with demineralized bone matrix successfully regenerate ulnar bone defects in rabbits without immunosuppressive therapies.  相似文献   

17.
Angiogenesis is a crucial process for the maintenance of normal tissue physiology and it is involved in tissue remodeling and regeneration. This process is essential for adipose tissue maintenance. The adipose tissue is composed by different cell types including stromal vascular cells as well as adipose stem cells (ASCs). In particular, ASCs are multipotent somatic stem cells that are able to differentiate and secrete several growth factors; they are recently emerging as a new cell reservoir for novel therapies and strategies in many diseases. Several studies suggest that ASCs have peculiar properties and participate in different disease-related processes such as angiogenesis. Furthermore, pathological expansion of adipose tissue brings to hypoxia, a major condition of unhealthy angiogenesis.Recent evidences have shown that microRNAs (miRNAs) play a crucial role also on ASCs as they take part in stemness maintenance, proliferation, and differentiation. It has been suggested that some miRNAs (MIR126, MIR31, MIR221 MIR222, MIR17-92 cluster, MIR30, MIR100 and MIR486) are directly involved in the angiogenic process by controlling multiple genes involved in this pathway. With the present review, we aim at providing an updated summary of the importance of adipose tissue under physiological and pathological conditions and of its relationship with neovascularization process. In particular, we report an overview of the most important miRNAs involved in angiogenesis focusing on ASCs. Hopefully the data presented will bring benefit in developing new therapeutic strategies.  相似文献   

18.
《Cytotherapy》2022,24(5):500-507
The therapeutic potential of culture-adapted adipose-derived stromal cells (ASCs) is largely related to their production of immunosuppressive factors that are inducible in vitro by priming with inflammatory stimuli, in particular tumor necrosis factor-α (TNFα) and interferon-γ (IFNγ). In vivo, obesity is associated with chronic inflammation of white adipose tissue, including accumulation of neutrophils, infiltration by IFNγ/TNFα-producing immune cells, and ASC dysfunction. In the current study, we identified in obese patients a simultaneous upregulation of CD40Lin the adipose tissue stroma vascular fraction (AT-SVF), correlated with the Th1 gene signature, and an overexpression of CD40 by native ASCs. Moreover, activated CD4+ T cells upregulated CD40 on culture-expanded ASCs and triggered their production of IL-8 in a CD40L-dependent manner, leading to an increased capacity to recruit neutrophils. Finally, activation of ASCs by sCD40L or CD40L-expressing CD4+ T cells relies on both canonical and non-canonical NF-κB pathways, and IL-8 was found to be coregulated with NF-κB family members in AT-SVF. These data identify the CD40-CD40L axis as a priming mechanism of ASCs, able to modulate their cross talk with neutrophils in an inflammatory context, and their functional capacity for therapeutic applications.  相似文献   

19.
Adipose tissue-derived mesenchymal stromal cells (ASCs) hold the promise of achieving successful immunotherapeutic results due to their ability to regulate different T-cell fate. ASCs also show significant adaptability to environmental stresses by modulating their immunologic profile. Cell-based therapy for inflammatory diseases requires a detailed understanding of the molecular relation between ASCs and Th17 lymphocytes taking into account the influence of inflammation and cell ratio on such interaction. Accordingly, a dose-dependent increase in Th17 generation was only observed in high MSC:T-cell ratio with no significant impact of inflammatory priming. IL-23 receptor (IL-23R) expression by T cells was not modulated by ASCs when compared to levels in activated T cells, while ROR-γt expression was significantly increased reaching a maximum in high (1:5) unprimed ASC:T-cell ratio. Finally, multiplex immunoassay showed substantial changes in the secretory profile of 15 cytokines involved in the Th17 immune response (IL-1β, IL-4, IL-6, IL-10, IL-17A, IL-17F, IL-22, IL-21, IL-23, IL-25, IL-31, IL-33, IFN-γ, sCD40, and TNF-α), which was modulated by both cell ratio and inflammatory priming. These findings suggest that Th17 lymphocyte pathway is significantly modulated by ASCs that may lead to immunological changes. Therefore, future ASC-based immunotherapy should take into account the complex and detailed molecular interactions that depend on several factors including inflammatory priming and cell ratio.  相似文献   

20.
Adipose stem cell (ASC) transplantation is a promising therapeutic strategy for diabetic renal fibrosis. Hypoxia-inducible factor 1α (HIF1α) is a negative regulatory factor of mitochondrial function. In the current study, we aimed to explore if HIF1α deletion protects against hyperglycemia-induced ASC damage and enhances the therapeutic efficiency of ASCs in diabetic renal fibrosis. Our data indicated that HIF1α was upregulated in ASCs in response to high glucose stimulation. Higher HIF1α expression was associated with ASC apoptosis and proliferation arrest. Loss of HIF1α activated mitophagy protecting ASCs against high glucose-induced apoptosis via preserving mitochondrial function. Transplanting HIF1α-deleted ASCs in db/db mice improved the abnormalities in glucose metabolic parameters, including the levels of glucose, insulin, C-peptide, HbA1c, and inflammatory markers. In addition, the engraftment of HIF1α-modified ASCs also reversed renal function, decreased renal hypertrophy, and ameliorated renal histological changes in db/db mice. Functional studies confirmed that HIF1α-modified ASCs reduced renal fibrosis. Collectively, our results demonstrate that ASCs may be a promising therapeutic treatment for ameliorating diabetes and the development of renal fibrosis and that the loss of HIF1α in ASCs may further increase the efficiency of stem cell-based therapy. These findings provide a new understanding about the protective effects of HIF1α silencing on ASCs and offer a new strategy for promoting the therapeutic efficacy of ASCs in diabetic renal fibrosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号