首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The enzymatic reaction of benzoic acid and glycerol in the absence of organic solvents to obtain the 1- or 3-monobenzoate glycerol (α-MBG) is studied. Esterification runs were batch wise performed with a concentration of enzyme of 30 g/L, changing the initial concentration of the acid in glycerol from 20 to 60 g/L, and temperature from 50 to 70 °C. In these conditions, the most active lipase among those tested for this synthesis was lipase B isozyme from Candida antarctica (CALB), obtaining conversion values higher than 80% and a significant selectivity to α-MBG. Unlike the synthesis in organic media, water did not have an inhibitory behaviour; hence control of water activity was unnecessary. Temperature and benzoic acid act synergically as deactivating factors. Considering the aforementioned, a kinetic model according to a Michaelis–Menten mechanism is proposed. This model considers a partial enzymatic deactivation mechanism with two terms, one of them accounting for the deactivating action of the acid.  相似文献   

2.
Monoacylglycerols are increasingly used in several industrial applications as effective and cheap emulsifiers. In the present work monostearin synthesis has been studied, using lipase as a biocatalyst of the esterification reaction of stearic acid with (R,S)-1,2-O-iso-propylidene glycerol (solketal). The lipase from Candida antarctica (CaL B) was immobilized in AOT/isooctane water in oil microemulsions. Optimization of the reaction conditions have shown that the highest production (80% in 30 min) could be achieved at 40 °C, in microemulsions with relatively low water content (wo = 8). Kinetic studies have shown that the esterification reaction of stearic acid with solketal catalyzed by CaL B occurs via the ordered bi–bi mechanism, in which inhibition by the acid was identified. Moreover, at high fixed solketal concentrations a negative cooperativity is pronounced, which means that binding of the alcohol lowers the affinity of the enzyme for binding of the acid. Values of all kinetic parameters have been determined.  相似文献   

3.
《Process Biochemistry》2010,45(4):593-597
This paper reports a simple method for producing macroporous silica-monoliths with controllable porosity that can be used for the immobilization of lipases to generate an active and stable micro-reactor for biocatalysis. A range of commercially available lipases has been examined using the hydrolysis reactions of 4-nitrophenyl butyrate in water–decane media. The kinetic studies performed have identified that a similar value for kcat is obtained for the immobilized Candida antarctica lipase A (0.13 min−1) and the free lipase in solution (0.12 min−1) whilst the immobilized apparent Michaelis constant Km (3.1 mM) is 12 times lower than the free lipase in solution (38 mM). A 96% conversion was obtained for the immobilized C. antarctica lipase A compared to only 23% conversion for the free lipase. The significant higher conversions obtained with the immobilized lipases were mainly attributed to the formation of a favourable biphasic system in the continuous flowing micro-reactor system, where a significant increase in the interfacial activation occurred. The immobilized C. antarctica lipase A on the monolith also exhibited improved stability, showing 64% conversion at 80 °C and 70% conversion after continuous running for 480 h, compared to 40 and 20% conversions under the same temperature and reaction time for the free lipase.  相似文献   

4.
A facile continuous flow-through Candida antarctica lipase B immobilized silica microstructured optical fiber (SMOF) microreactor for application in lipid transformations has been demonstrated herewith. The lipase was immobilized on the amino activated silica fiber using glutaraldehyde as a bifunctional reagent. The immobilized lipase activity in the SMOF was tested calorimetrically by determination of p-nitrophenyl butyrate hydrolysis products. The specific activity of the immobilized lipase was calculated to be 0.91 U/mg. The SMOF microreactor performance was evaluated by using it as a platform for synthesis of butyl laurate from lauric acid and n-butanol in n-hexane and n-heptane at 50 °C, with products identified by gas chromatography–mass spectrometry (GC–MS). Different substrate mole ratios were evaluated, with 1:3, lauric acid:n-butanol showing best performance. Remarkably, percentage yields of up to 99% were realized with less than ∼38 s microreactor residence time. In addition, the SMOF microreactor could be reused many times (at least 7 runs) with minimal reduction in the activity of the enzyme. The enzyme stability did not change even with storage of the microreactor in ambient conditions over one month.  相似文献   

5.
4-Chloro-2-methylphenoxyacetic acid (MCPA) is a selective systemic herbicide which is absorbed by leaves and roots. MCPA esters are preferred due to their low water solubility and environmental friendliness. Esterification of MCPA with n-butanol was investigated as a model reaction using immobilized enzymes under the influence of microwave irradiation. Different immobilized enzymes such as Novozym 435, Lipozyme TL IM, Lipozyme RM IM and Lipase AYS Amano were studied under microwave irradiation amongst which Novozym 435 (immobilized Candida antarctica lipase B) was the best catalyst. Effects of various parameters were systematically studied on rates and conversion. Under microwave irradiation, the initial rates were observed to increase up to 2-fold. Under optimized conditions of 0.1 mmol MCPA and 0.3 mmol n-butanol in 15 mL 1,4-dioxane as solvent, Novozym 435 showed a conversion of 83% at 60 °C in 6 h. Based on initial rate and progress curve data, the reaction was shown to follow the Ping Pong bi–bi mechanism with inhibition by MCPA and n-butanol. Esterification of MCPA was also studied with different alcohols such as isopropyl alcohol, n-pentanol, n-hexanol, benzyl alcohol and 2-ethyl-1-hexanol.  相似文献   

6.
A Metarhizium anisopliae spore surface lipase (MASSL) strongly bound to the fungal spore surface has been purified by ion exchange chromatography on DEAE sepharose followed by ultrafiltration and hydrophobic interaction chromatography on phenyl sepharose. Electrophoretic analyses showed that the molecular weight of this lipase is ~66 kDa and pI is 5.6. Protein sequencing revealed that identified peptides in MASSL shared identity with several lipases or lipase-related sequences. The enzyme was able to hydrolyze triolein, the animal lipid cholesteryl stearate and all ρNP ester substrates tested with some preference for esters with a short acyl chain. The values of Km and Vmax for the substrates ρNP palmitate and ρNP laurate were respectively 0.474 mM and 1.093 mMol min?1 mg?1 and 0.712 mM and 5.696 mMol min?1 mg?1. The optimum temperature of the purified lipase was 30 °C and the enzyme was most stable within the most acid pH range (pH 3–6). Triton X-100 increased and SDS reduced enzyme lipolytic activity. MASSL activity was stimulated by Ca2+, Mg2+ and Co2+ and inhibited by Mn2+. The inhibitory effect on activity exerted by EDTA and EGTA was limited, while the lipase inhibitor Ebelactone B completely inhibited MASSL activity as well as PMSF. Methanol 0.5% apparently did not affect MASSL activity while β-mercaptoethanol activated the enzyme.  相似文献   

7.
We have analyzed the effects of the buffer nature on the stability of immobilized lipases. Commercial phospholipase Lecitase Ultra (LU), lipase B from Candida antarctica (CALB) and lipase from Thermomyces lanuginosus (TLL) have been immobilized on octyl-glyoxyl agarose beads. The enzymes were readily inactivated using 4 M sodium phosphate but 6 M NaCl did not inactivate them. Using 2 M of sodium phosphate, the inactivation of the 3 immobilized enzymes still was very significant even at 25 °C but at lower rate than with higher phosphate concentration. Thermal stress inactivations of the immobilized enzymes revealed that even 100 mM sodium phosphate produced a significant decrease in enzyme stability; this effect was less pronounced for Lecitase but dramatic for CALB. While 6 M NaCl presented slightly positive (LU) or negative (TLL) effects on their thermal stabilities of, CALB was thermally stabilized under the same conditions. Results were very different using free enymes. Fluorescence spectroscopy revealed dramatic structural rearrangements of the immobilized enzymes in the presence of high phosphate concentration. From these results, the use of sodium phosphate does not seem to be recommended for studies on thermal stability of lipases, although this should be verified for each enzyme and immobilized preparation.  相似文献   

8.
In human milk fat (HMF), palmitic acid (20–30%), the major saturated fatty acid, is mostly esterified at the sn-2 position of triacylglycerols, while unsaturated fatty acids are at the sn-1,3 positions, conversely to that occurring in vegetable oils.This study aims at the production of HMF substitutes by enzyme-catalyzed interesterification of tripalmitin with (i) oleic acid (system I) or (ii) omega-3 polyunsaturated fatty acids (omega-3 PUFA) (system II) in solvent-free media. Interesterification activity and batch operational stability of commercial immobilized lipases from Rhizomucor miehei (Lipozyme RM IM), Thermomyces lanuginosa (Lipozyme TL IM) and Candida antarctica (Novozym 435) from Novozymes, DK, and Candida parapsilosis lipase/acyltransferase immobilized on Accurel MP 1000 were evaluated. After 24-h reaction at 60 °C, molar incorporation of oleic acid was about 27% for all the commercial lipases tested and 9% with C. parapsilosis enzyme. Concerning omega-3 PUFA, the highest incorporations were observed with Novozym 435 (21.6%) and Lipozyme RM IM (20%), in contrast with C. parapsilosis enzyme (8.5%) and Lipozyme TL IM (8.2%). In system I, Lipozyme RM IM maintained its activity for 10 repeated 23-h batches while for Lipozyme TL IM, Novozym 435 and C. parapsilosis enzyme, linear (half-life time, t1/2 = 154 h), series-type (t1/2 = 253 h) and first-order (t1/2 = 34.5 h) deactivations were respectively observed. In system II, Lipozyme RM IM showed linear deactivation (t1/2 = 276 h), while Novozym 435 (t1/2 = 322 h) and C. parapsilosis enzyme (t1/2 = 127 h), presented series-type deactivation. Both activity and stability of the biocatalysts depended on the acyl donor used.  相似文献   

9.
Microbial lipase from Thermomyces lanuginosus (formerly Humicola lanuginosa) was immobilized by covalent binding on a novel microporous styrene–divinylbenzene polyglutaraldehyde copolymer (STY–DVB–PGA). The response surface methodology (RSM) was used to optimize the conditions for the maximum activity and to understand the significance and interaction of the factors affecting the specific activity of immobilized lipase. The central composite design was employed to evaluate the effects of enzyme concentration (4–16%, v/v), pH (6.0–8.0), buffer concentration (20–100 mM) and immobilization time (8–40 h) on the specific activity. The results indicated that enzyme concentration, pH and buffer concentration were the significant factors on the specific activity of immobilized lipase and quadratic polynomial equation was obtained for specific activity. The predicted specific activity was 8.78 μmol p-NP/mg enzyme min under the optimal conditions and the subsequent verification experiment with the specific activity of 8.41 μmol p-NP/mg enzyme min confirmed the validity of the predicted model. The lipase loading capacity was obtained as 5.71 mg/g support at the optimum conditions. Operational stability was determined with immobilized lipase and it indicated that a small enzyme deactivation (12%) occurred after being used repeatedly for 10 consecutive batches with each of 24 h. The effect of methanol and tert-butanol on the specific activity of immobilized lipase was investigated. The immobilized lipase was almost stable in tert-butanol (92%) whereas it lost most of its activity in methanol (80%) after 15 min incubation.  相似文献   

10.
The acylation of isoamyl alcohol with acetic anhydride catalyzed by immobilized Candida antarctica lipase B was studied in ionic liquids (ILs) based on quaternary imidazolium cations with alkyl, alkenyl, alkynyl, benzyl, alkoxyl or N-aminopropyl side chains. Among the tested ILs, the highest enzyme activity together with the highest isoamyl acetate yield were obtained in [C7mmim][Tf2N]. No loss of lipase B activity was observed during one-month incubation in this hydrophobic IL without the presence of substrates. Isoamyl acetate synthesis using [C7mmim][Tf2N] as solvent was further studied in a continuously operated miniaturized enzymatic packed bed reactor at various flow rates and temperatures. Up to 92% isoamyl acetate yield could be obtained within 15 min by using 0.5 M acetic anhydride and 1.5 M isoamyl alcohol inlet concentrations at 55 °C, corresponding to the volumetric productivity of 61 mmol l?1 min?1, which to the best of our knowledge is the highest reported so far for this reaction. No decrease in productivity was experienced during the subsequent runs of continuous microbioreactor operation performed within 14 consecutive days. The benefits of reactor miniaturization along with the green solvent application were therefore successfully exploited for the development of a sustainable flavour ester production.  相似文献   

11.
In this study, we report the enzymatic production of glycerol acetate from glycerol and methyl acetate. Lipases are essential for the catalysis of this reaction. To find the optimum conditions for glycerol acetate production, sequential experiments were designed. Type of lipase, lipase concentration, molar ratio of reactants, reaction temperature and solvents were investigated for the optimum conversion of glycerol to glycerol acetate. As the result of lipase screening, Novozym 435 (Immobilized Candida antarctica lipase B) was turned out to be the optimal lipase for the reaction. Under the optimal conditions (2.5 g/L of Novozym 435, 1:40 molar ratio of glycerol to methyl acetate, 40 °C and tert-butanol as the solvent), glycerol acetate production was achieved in 95.00% conversion.  相似文献   

12.
《Process Biochemistry》2014,49(8):1304-1313
Pseudomonas cepacia lipase (PCL) was immobilized on ternary blend biodegradable polymer made up of polylactic acid (PLA), chitosan (CH), and polyvinyl alcohol (PVA). Immobilized biocatalyst was characterized using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), % water content, protein and lipase activity assay. The lipase activity assay showed enhanced activity of immobilized lipase than crude lipase. Higher half life time (t1/2) and lower deactivation rate constant (Kd) was found for the n-hexane among various tested solvent. Influence of various reaction parameters on enzyme activity were studied in detail. When geraniol (1 mmol) and vinyl acetate (4 mmol) in toluene (3 mL) were reacted with 50 mg immobilized lipase at 55 °C; then 99% geraniol was converted to geranyl acetate after 3 h. Various kinetic parameters such as rmax, Ki(A), Km(A), Km(B) were determined using non-linear regression analysis for ternary-complex and Bi–Bi ping-pong mechanism. The kinetic study showed that reaction followed ternary-complex mechanism with inhibition by geraniol. Activation energy (Ea) was found to be lower for immobilized lipase (13.76 kCal/mol) than crude lipase (19.9 kCal/mol) indicating better catalytic efficiency of immobilized lipase. Immobilized biocatalyst demonstrated 4 fold increased catalytic activity than crude lipase and recycled five times.  相似文献   

13.
《Process Biochemistry》2014,49(3):437-444
Lipase from Candida rugosa was immobilized on a polyvinylidene fluoride membrane for synthesis of rose flavor ester, 2-phenylethyl acetate. Response surface methodology (RSM) was employed for kinetic modeling of process and prediction the yield. The RSM was used in practice for determining the kinetic models by fitting the initial rate dates based on the equations of ping-pong bi–bi and order bi–bi model. The maximum reaction rate and kinetic constants were matched with the order bi–bi model. The specificity constant of the immobilized lipase was 10-folds higher than the free form indicated the enzyme–substrate affinity, and catalytic ability was enhanced after immobilization. Moreover, the effects of reaction parameters on the yield were evaluated by RSM using a Box–Behnken experimental design. Based on a ridge max analysis, the maximum conversion was 95.33 ± 2.57% at 38.78 h, 35.85 °C, and substrate mole ratio of 3.65:1. Furthermore, the order bi–bi kinetic model was simulated successfully in a batch reaction. A good prediction existed between the RSM results and integrated equation was found.  相似文献   

14.
Enzymatic synthesis of aromatic esters of four different sugar alcohols (xylitol, arabitol, mannitol, and sorbitol) with 3-(4-hydroxyphenyl)propionic acid was performed in organic solvent medium, using immobilized Candida antarctica lipase (Novozyme 435), and molecular sieves for control of the water content. The influence of reaction parameters on the conversion has been investigated, including reaction time, temperature, alcohol/acid molar ratio, and enzyme amount. The highest conversions (94% for xylitol, 98% for arabitol, 80% for mannitol, and 93% for sorbitol) were obtained in pure tert-butanol at 60 °C and 72 h reaction time, 0.3 alcohol/acid molar ratio, and 0.5 g/mol enzyme/substrate ratio. The isolated new sugar alcohols esters were identified by different spectral analyses. MALDI-TOF MS analysis showed the formation of monoesters, diesters, and small quantities of triesters for all investigated sugar alcohols. The catalytic efficiency of the enzyme was higher for the pentitol substrates, decreasing in the following order: arabitol > xylitol > sorbitol > mannitol. These new compounds could have interesting applications in food, pharmaceutical and cosmetic formulations.  相似文献   

15.
Mesoporous activated carbon (MAC) derived from rice husk is used for the immobilization of acidic lipase (ALIP) produced from Pseudomonas gessardii. The purified acidic lipase had the specific activity and molecular weight of 1473 U/mg and 94 kDa respectively. To determine the optimum conditions for the immobilization of lipase onto MAC, the experiments were carried out by varying the time (10–180 min), pH (2–8), temperature (10–50 °C) and the initial lipase activity (49 × 103, 98 × 103, 147 × 103 and 196 × 103 U/l in acetate buffer). The optimum conditions for immobilization of acidic lipase were found to be: time—120 min; pH 3.5; temperature—30 °C, which resulted in achieving a maximum immobilization of 1834 U/g. The thermal stability of the immobilized lipase was comparatively higher than that in its free form. The free and immobilized enzyme kinetic parameters (Km and Vmax) were found using Michaelis–Menten enzyme kinetics. The Km values for free enzyme and immobilized one were 0.655 and 0.243 mM respectively. The immobilization of acidic lipase onto MAC was confirmed using Fourier Transform-Infrared Spectroscopy, X-ray diffraction analysis and scanning electron microscopy.  相似文献   

16.
Candida antarctica lipase B, immobilized as cross linked enzyme aggregates (CLEAs) was used to mediate the Baeyer–Villiger oxidation of cyclohexanone to ɛ-caprolactone, and the reaction was compared with the one using Novozym® 435 as catalyst. The conversion was dependent on the initial concentration of cyclohexanone, and was about 90% after 48 h at concentrations of up to 0.25 M but was decreased at higher concentrations. Caprolactone concentrations up to 0.6 M had no effect on the reaction efficiency. Among the cyclic ketones tested, the highest degree of conversion was achieved for cyclopentanone (88%) and the lowest for cyclooctanone (about 2%). The effect of methyl substitution and position of substitution on the cycloketone was studied using methylcyclohexanone and it has shown to influence the conversion efficiency. Both hydrogen peroxide and the reaction by-product acetic acid had a deleterious effect on the stability of the biocatalyst.  相似文献   

17.
Sugar esters of fatty acids have many applications as biocompatible and biodegradable emulsifiers, which are determined by their degrees of esterification (DE). Direct esterification of fructose with lauric acid in organic media used commercial immobilized Candida antarctica lipase B (CALB) was investigated for DE. Significant difference of DE was observed between 2-methyl-2-butanol (2M2B) and methyl ethyl ketone (MEK), as di-ester/mono-ester molar ratio of 1.05:1 in 2M2B and 2.79:1 in MEK. Fourier transform infrared (FTIR) spectra showed that the secondary structure of the enzyme binding mono-ester presented distinct difference in 2M2B and MEK. Contents of β-turn and antiparallel β-sheet of CALB in 2M2B were 26.9% and 16.2%, respectively, but 19.1% and 13.2% in MEK. To understand the relationship between the conformational changes and differences of DE, mono-ester and fatty acid were directly employed for synthesis of di-ester. The maximum initial velocity of di-ester synthesis in MEK was 0.59 mmol g (enzyme)−1 h−1, which was 2.19-fold as greater as that in 2M2B, indicating that CALB conformation in MEK was preferred for the synthesis of di-ester. These results demonstrated that the conformation of CALB binding mono-ester affected by organic solvents essentially determined DE.  相似文献   

18.
The novel whole-cell biocatalyst Candida antarctica lipase B displaying-Pichia pastoris (Pp-CALB) is characterized by its low preparation cost and could be an alternative to the commercial immobilized Candida antarctica lipase B (CALB). This study addresses the feasibility of using Pp-CALB in large scale glucose fatty acid esters production. 1,2-O-Isopropylidene-α-d-glucofuranose (IpGlc) was used as the acyl acceptor to overcome the low solubility of glucose in an organic solvent and to avoid the addition of toxic co-solvents. IpGlc significantly improved the Pp-CALB catalyzing esterification efficiency when using long chain fatty acids as the acyl donor. Under the preferred operating conditions (50 °C, 40 g/L molecular sieve dosage and 200 rpm mixing intensity), 60.5% of IpGlc converted to 6-O-myristate-1, 2-O-isopropylidene-α-d-glucofuranose (C14-IpGlc) after a 96-h reaction in a 2-L stirred reactor. In a 5-L pilot scale test, Pp-CALB also showed a similar substrate conversion rate of 55.4% and excellent operational stability. After C14-IpGlc was collected, 70% trifluoroacetic acid was adopted to hydrolyze C14-IpGlc to myristate glucose ester (C14-Glc) with a high yield of 95.3%. In conclusion, Pp-CALB is a powerful biocatalyst available for industrial synthesis, and this study describes an applicable and economical process for the large scale production of myristate glucose ester.  相似文献   

19.
A novel lipase encoding gene, TALipB from Trichosporon asahii MSR54 was heterologously expressed in Escherichia coli using three vectors, pET22b, pET28a & pEZZ18. The three recombinant proteins, viz. C-hexahistidine fused HLipB, N and C-hexahistidine fused HLipBH and ZZ-fused ZZLipB were purified using affinity chromatography. All the three enzymes were mid to long fatty acyl chain selective on p-NP esters and S-enantioselective irrespective of tags. HLipB had lowest activation energy (3.5 Kcal mol−1) and highest catalytic efficiency (254 mM−1 min−1) on p-NP caprate followed by HLipBH and ZZLipB. However, ZZLipB demonstrated best pH stability (pH 6–10), thermostability (t1/2 of 50 min at 70 °C) and stability toward the denaturant Guanidium chloride (300 mM). Far-UV CD and fluorescence studies confirmed the role of N-terminal ZZ-tag in stabilizing the protein by altering its secondary and tertiary structures. All the three proteins were thiol activated. ZZLipB required higher concentration of β-mercaptoethanol as compared to the other two proteins to attain similar velocity. This indicated the involvement of additional disulfide bonds in its conformational stability. In silico analysis suggested low sequence identity of the enzyme with the available database but a close structural homology with Candida antarctica lipase B (CALB) was revealed by PHYRE2. MULTALIN with CALB predicted the active site residues (Ser137–Asp228–His261) which were confirmed by superimposition and site directed mutagenesis.  相似文献   

20.
The lipase secreted by Burkholderia cepacia ATCC 25416 was particularly attractive in detergent and leather industry due to its specific characteristics of high alkaline and thermal stability. The lipase gene (lipA), lipase chaperone gene (lipB), and native promoter upstream of lipA were cloned. The lipA was composed of 1095 bp, corresponding to 364 amino acid residues. The lipB located immediately downstream of lipA was composed of 1035 bp, corresponding to 344 amino acid residues. The lipase operon was inserted into broad host vector pBBRMCS1 and electroporated into original strain. The homologous expression of recombinant strain showed a significant increase in the lipase activity. LipA was purified by three-step procedure of ammonium sulfate precipitation, phenyl-sepharose FF and DEAE-sepharose FF. SDS-PAGE showed the molecular mass of the lipase was 33 kDa. The enzyme optimal temperature and pH were 60 °C and 11.0, respectively. The enzyme was stable at 30–70 °C. After incubated in 70 °C for 1 h, enzyme remained 72% of its maximal activity. The enzyme exhibited a good stability at pH 9.0–11.5. The lipase preferentially hydrolyzed medium-chain fatty acid esters. The enzyme was strongly activated by Mg2+, Ca2+, Cu2+, Zn2+, Co2+, and apparently inhibited by PMSF, EDTA and also DTT with SDS. The enzyme was compatible with various ionic and non-ionic surfactants as well as oxidant H2O2. The enzyme had good stability in the low- and non-polar solvents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号