首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Regioselective enzymatic acylations of 1-β-d-arabinofuranosylcytosine (ara-C) with vinyl laurate (VL) in binary organic solvents were explored for the preparation of 5′-O-laurate of ara-C. Among the nine kinds of enzymes, Novozym 435 showed the highest regioselectivity (>99.9%) towards the 5′-OH of ara-C. This lipase showed higher catalytic activity in hexane–pyridine than in other tested solvent mixtures. The most suitable VL to ara-C molar ratio, initial water activity, and reaction temperature were shown to be 15:1, 0.07, and 50 °C, respectively, under which the initial reaction rate and the maximum substrate conversion were as high as 84.0 mmol L?1 h?1 and 98.1%, respectively. The product of Novozym 435-catalyzed acylation was characterized by 13C NMR and confirmed to be 5′-O-laurate of ara-C.  相似文献   

2.
《Process Biochemistry》2007,42(6):1021-1027
Candida rugosa lipase (CRL) was immobilized on Amberlite XAD 7 and the advantage of immobilization under the best reaction conditions in achieving high activity and enantioselectivity was shown for the hydrolysis of racemic Naproxen methyl ester. The performance of CRL was found to be better when the enzyme was immobilized at the temperature and pH values where higher conversion and enantioselectivity were obtained. The effects of immobilized lipase load, temperature, pH and substrate concentration on the conversion and enantioselectivity toward S-Naproxen production in aqueous phase/isooctane biphasic batch system were also evaluated. The increase in immobilized lipase load in 320–800 U/mL range increased the conversion of the substrate and enantioselectivity for S-Naproxen. The kinetic resolution of racemic Naproxen methyl ester conducted at the temperatures of 40, 45 and 50 °C and at the pH values of 4, 6, 7.5 and 9 resulted in the highest conversion and enantioselectivity at 45 °C and pH 6. Higher concentration of racemic Naproxen methyl ester than 10 mg/mL decreased both the conversion and enantioselectivity. CRL, which was immobilized at the temperature and pH values where the enzyme was more enantioselective, was successfully used in three successive batch runs each of 180 h. The highest enantiomeric ratio achieved in the S-Naproxen production was 174.2 with the conversion of 49%.  相似文献   

3.
Pseudomonas sp. lipase was immobilized onto glutaraldehyde-activated Florisil® support via Schiff base formation and stabilized by reducing Schiff base with sodium cyanoborohydride. The immobilization performance was evaluated in terms of bound protein per gram of support (%) and recovered activity (%). A 4-factor and 3-level Box–Behnken design was applied for the acylation of (±)-2-(propylamino)-1-phenylethanol, a model substrate, with vinyl acetate and the asymmetric acylations of other (±)-2-amino-1-phenylethanols with different alkyl substituents onto nitrogen atom such as (±)-2-(methylamino)-1-phenylethanol, (±)-2-(ethylamino)-1-phenylethanol, (±)-2-(butylamino)-1-phenylethanol and (±)-2-(hexylamino)-1-phenylethanol were performed under the optimized conditions. The optimal conditions were bulk water content of 1.8%, reaction temperature of 51.5 °C, initial molar ratio of vinyl acetate to amino alcohol of 1.92, and immobilized lipase loading of 47 mg mL?1. (R)-enantiomers of tested amino alcohols were preferentially acylated and the reaction purely took place on the hydroxyl group of 2-amino-1-phenylethanols. The increase of alkyl chain length substituted onto nitrogen atom caused an increase in the acylation yield and ee values of (S)-enantiomers. Enantiomeric ratio values were >200 for all the reactions. Our results demonstrate that the immobilized lipase is a promising biocatalyst for the preparation of (S)-2-amino-1-phenylethanols and their corresponding (R)-esters via O-selective acylation of (±)-2-amino-1-phenylethanols with vinyl acetate.  相似文献   

4.
《Process Biochemistry》2010,45(4):593-597
This paper reports a simple method for producing macroporous silica-monoliths with controllable porosity that can be used for the immobilization of lipases to generate an active and stable micro-reactor for biocatalysis. A range of commercially available lipases has been examined using the hydrolysis reactions of 4-nitrophenyl butyrate in water–decane media. The kinetic studies performed have identified that a similar value for kcat is obtained for the immobilized Candida antarctica lipase A (0.13 min−1) and the free lipase in solution (0.12 min−1) whilst the immobilized apparent Michaelis constant Km (3.1 mM) is 12 times lower than the free lipase in solution (38 mM). A 96% conversion was obtained for the immobilized C. antarctica lipase A compared to only 23% conversion for the free lipase. The significant higher conversions obtained with the immobilized lipases were mainly attributed to the formation of a favourable biphasic system in the continuous flowing micro-reactor system, where a significant increase in the interfacial activation occurred. The immobilized C. antarctica lipase A on the monolith also exhibited improved stability, showing 64% conversion at 80 °C and 70% conversion after continuous running for 480 h, compared to 40 and 20% conversions under the same temperature and reaction time for the free lipase.  相似文献   

5.
Immobilization of Saccharomyces cerevisiae lipase by physical adsorption on Mg–Al hydrotalcite with a Mg/Al molar ratio of 4.0 led to a markedly improved performance of the enzyme. The immobilized lipase retained activity over wider ranges of temperature and pH than those of the free lipase. The immobilized lipase retained more than 95% relative activity at 50 °C, while the free lipase retained about 88%. The kinetic constants of the immobilized and free lipases were also determined. The apparent activation energies (Ea) of the free and immobilized lipases were estimated to be 6.96 and 2.42 kJ mol?1, while the apparent inactivation energies (Ed) of free and immobilized lipases were 6.51 and 6.27 kJ mol?1, respectively. So the stability of the immobilized lipase was higher than that of free lipase. The water content of the oil must be kept below 2.0 wt% and free fatty acid content of the oil must be kept below 3.5 mg KOH g [oil]?1 in order to get the best conversion. This immobilization method was found to be satisfactory to produce a stable and functioning biocatalyst which could maintain high reactivity for repeating 10 batches with ester conversion above 81.3%.  相似文献   

6.
Mesoporous activated carbon (MAC) derived from rice husk is used for the immobilization of acidic lipase (ALIP) produced from Pseudomonas gessardii. The purified acidic lipase had the specific activity and molecular weight of 1473 U/mg and 94 kDa respectively. To determine the optimum conditions for the immobilization of lipase onto MAC, the experiments were carried out by varying the time (10–180 min), pH (2–8), temperature (10–50 °C) and the initial lipase activity (49 × 103, 98 × 103, 147 × 103 and 196 × 103 U/l in acetate buffer). The optimum conditions for immobilization of acidic lipase were found to be: time—120 min; pH 3.5; temperature—30 °C, which resulted in achieving a maximum immobilization of 1834 U/g. The thermal stability of the immobilized lipase was comparatively higher than that in its free form. The free and immobilized enzyme kinetic parameters (Km and Vmax) were found using Michaelis–Menten enzyme kinetics. The Km values for free enzyme and immobilized one were 0.655 and 0.243 mM respectively. The immobilization of acidic lipase onto MAC was confirmed using Fourier Transform-Infrared Spectroscopy, X-ray diffraction analysis and scanning electron microscopy.  相似文献   

7.
The Talaromyces thermophilus lipase (TTL) was immobilized by different methods namely adsorption, ionic binding and covalent coupling, using various carriers. Chitosan, pre-treated with glutaraldehyde, was selected as the most suitable support material preserving the catalytic activity almost intact and offering maximum immobilization capacity (76% and 91%, respectively). The chitosan-immobilized lipase could be reputably used for ten cycles with more than 80% of its initial hydrolytic activity. Shift in the optimal temperature from 50 to 60 °C and in the pH from 9.5 to 10, were observed for the immobilized lipase when compared to the free enzyme.The catalytic esterification of oleic acid with 1-butanol has been carried out using hexane as organic solvent. A high performance synthesis of 1-butyl oleate was obtained (95% of conversion yield) at 60 °C with a molar ratio of 1:1 oleic acid to butanol and using 100 U (0.2 g) of immobilized lipase. The esterification product is analysed by GC/MS to confirm the conversion percentage calculated by titration.  相似文献   

8.
A biocatalyst with high activity retention of lipase was fabricated by the covalent immobilization of Candida rugosa lipase on a cellulose nanofiber membrane. This nanofiber membrane was composed of nonwoven fibers with 200 nm nominal fiber diameter. It was prepared by electrospinning of cellulose acetate (CA) and then modified with alkaline hydrolysis to convert the nanofiber surface into regenerated cellulose (RC). The nanofiber membrane was further oxidized by NaIO4. Aldehyde groups were simultaneously generated on the nanofiber surface for coupling with lipase. Response surface methodology (RSM) was applied to model and optimize the modification conditions, namely NaIO4 content (2–10 mg/mL), reaction time (2–10 h), reaction temperature (25–35 °C) and reaction pH (5.5–6.5). Well-correlating models were established for the residual activity of the immobilized enzyme (R2 = 0.9228 and 0.8950). We found an enzymatic activity of 29.6 U/g of the biocatalyst was obtained with optimum operational conditions. The immobilized lipase exhibited significantly higher thermal stability and durability than equivalent free enzyme.  相似文献   

9.
This study illustrates the benefits of Celite® supported lipase sol–gels for the transesterification of triolein to produce methyl oleate. A ping–pong bi–bi kinetic model was developed and validated taking into account the inhibition effects of methanol and glycerol as well as the effect of temperature. Although initial reaction rate models are useful for predicting the kinetics in the absence of products, a kinetic model beyond the initial conditions that considers glycerol inhibition is important. The model developed was consistent with the experimental data (R2 = 0.95) predicting an increase in methyl oleate production with increasing methanol concentration up to an optimal range of 1.3 M to 2.0 M depending on the temperature. In general, increasing the temperature increased the initial reaction rate for the immobilized lipase over the temperature range of 40–60 °C. Based on the kinetic constants, the maximum velocity of the reverse reaction is about 25% slower than that of the forward reaction and glycerol inhibition has a more significant effect on the reaction kinetics than methanol inhibition. The model developed would be useful for understanding the effects of methanol and glycerol inhibition as well as temperature on the production of methyl oleate using lipase-mediated enzymatic transesterification.  相似文献   

10.
Racemic DL-tert-leucine (DL-Tle) was resolved to obtain enantiopure L-Tle through enantioselective hydrolysis of its N-phenylacetyl derivative with immobilized penicillin G acylase (PGA). The effects of pH, reaction temperature, substrate concentration and reaction time on the reaction were investigated. The reaction was conveniently carried out at 0.4 M substrate concentration in water at pH 8.0 and 30 °C. Under the optimized reaction conditions, L-Tle was obtained in an enantiopure form (>99% ee) with 45.8% substrate conversion after 4 h. The thermal stability and operational stability of immobilized PGA were examined. Furthermore, the preparation of L-Tle was successfully performed in a recirculating packed bed reactor (RPBR) system and immobilized PGA exhibited a long-term stability for 51 days with a slight decrease of activity. The isolated D-enantiomer was racemized at 160 °C for 15 min and reused as substrate. The results obtained clearly demonstrated a potential for industrial application of immobilized PGA in the preparation of L-Tle through enantioselective hydrolysis of its N-phenylacetyl derivative.  相似文献   

11.
Zirconia nanoparticles modified with carboxylic acid with a long alkyl chain can significantly enhance the activity of immobilized lipases used for asymmetric synthesis in organic media. In this study, various carboxylic acids with different alkyl chain lengths were grafted to zirconia. Lipase from Pseudomonas cepacia (PCL) was immobilized on the modified zirconia nanoparticles and used for the resolution of (R,S)-1-phenylethanol through acylation in isooctane. The results showed that among the straight-chained carboxylic acids that formed a closely packed layer on the support, stearic acid with a long alkyl chain gave the best activity/enantioselectivity. The initial activity obtained was about 10 times higher than that from lipase loaded onto unmodified zirconia. This improvement could be attributed to the interaction between the long hydrophobic chain of the modifier and the lipase, leading to an interfacial activation effect. The stability of the immobilized PCL was investigated, and the lipase was found to be stable for at least ten consecutive runs with a substrate concentration of 5 g/L. At a high substrate concentration of ca. 100 g/L, the activity of the lipase gradually decreased, which suggests that deactivation was induced by substrate toxicity.  相似文献   

12.
Industrial application of α-galactosidase requires efficient methods to immobilize the enzyme, yielding a biocatalyst with high activity and stability compared to free enzyme. An α-galactosidase from tomato fruit was immobilized on galactose-containing polymeric beads. The immobilized enzyme exhibited an activity of 0.62 U/g of support and activity yield of 46%. The optimum pH and temperature for the activity of both free and immobilized enzymes were found as pH 4.0 and 37 °C, respectively. Immobilized α-galactosidase was more stable than free enzyme in the range of pH 4.0–6.0 and more than 85% of the initial activity was recovered. The decrease in reaction rate of the immobilized enzyme at temperatures above 37 °C was much slower than that of the free counterpart. The immobilized enzyme shows 53% activity at 60 °C while free enzyme decreases 33% at the same temperature. The immobilized enzyme retained 50% of its initial activity after 17 cycles of reuse at 37 °C. Under same storage conditions, the free enzyme lost about 71% of its initial activity over a period of 7 months, whereas the immobilized enzyme lost about only 47% of its initial activity over the same period. Operational stability of the immobilized enzyme was also studied and the operational half-life (t1/2 was determined as 6.72 h for p-nitrophenyl α-d-galactopyranoside (PNPG) as substrate. The kinetic parameters were determined by using PNPG as substrate. The Km and Vmax values were measured as 1.07 mM and 0.01 U/mg for free enzyme and 0.89 mM and 0.1 U/mg for immobilized enzyme, respectively. The synthesis of the galactose-containing polymeric beads and the enzyme immobilization procedure are very simple and also easy to carry out.  相似文献   

13.
Maltase from Bacillus licheniformis KIBGE-IB4 was immobilized within calcium alginate beads using entrapment technique. Immobilized maltase showed maximum immobilization yield with 4% sodium alginate and 0.2 M calcium chloride within 90.0 min of curing time. Entrapment increases the enzyme–substrate reaction time and temperature from 5.0 to 10.0 min and 45 °C to 50 °C, respectively as compared to its free counterpart. However, pH optima remained same for maltose hydrolysis. Diffusional limitation of substrate (maltose) caused a declined in Vmax of immobilized enzyme from 8411.0 to 4919.0 U ml?1 min?1 whereas, Km apparently increased from 1.71 to 3.17 mM ml?1. Immobilization also increased the stability of free maltase against a broad temperature range and enzyme retained 45% and 32% activity at 55 °C and 60 °C, respectively after 90.0 min. Immobilized enzyme also exhibited recycling efficiency more than six cycles and retained 17% of its initial activity even after 6th cycles. Immobilized enzyme showed relatively better storage stability at 4 °C and 30 °C after 60.0 days as compared to free enzyme.  相似文献   

14.
l-Ascorbyl laurate is a fatty acid derivative of l-ascorbic acid which can be widely used as a natural antioxidant in both lipid containing food and cosmetic applications. To avoid any possible harmful effects from chemically synthesized product, the enzymatic synthesis appears to be the best way to satisfy the consumer demand for natural antioxidants. The ability of immobilized lipase from Candida antarctica (Novozym® 435) to catalyze the direct esterification between l-ascorbic acid and lauric acid was investigated. Response surface methodology (RSM) and 5-level-4-factor central composite rotatable design (CCRD) were employed to evaluate the effects of synthesis parameters, such as reaction time (2–10 h), temperature (25–65 °C), enzyme amount (10–50% w/w of l-ascorbic acid), and substrate molar ratio of l-ascorbic acid to lauric acid (1:1–1:5) on percentage molar conversion to l-ascorbyl laurate. Based on the analysis result of ridge max, the optimal enzymatic synthesis conditions were predicted as follows: reaction time 6.7 h, temperature 30.6 °C, enzyme amount 34.5%, substrate molar ratio 1:4.3; and the optimal actual yield was 93.2%.  相似文献   

15.
(−)-Epigallocatechin-3-O-gallate (EGCG) acetylated derivatives, which can be widely used as a natural antioxidant in both lipid containing food and cosmetic applications, were prepared by lipase catalyzed acylation of EGCG with vinyl acetate. Response surface methodology (RSM) and 5-level-4-factor central composite rotatable design (CCRD) were employed to evaluate the effects of synthesis parameters, such as reaction time (6–10 h), temperature (30–50 °C), enzyme amount (1.5–2.5% (w/w) of substrate), and substrate molar ratio of EGCG to vinyl acetate (0.5–1.5) on conversion of EGCG. By using multiple regression analysis, the experimental data were fitted to a second order polynomial model. The most suitable combination of variables was 40 °C, 2.12%, 10 h and 1.13 for the reaction temperature, the enzyme amount, the reaction time, and EGCG/vinyl acetate mole ratio, respectively. At these optimal conditions, the conversion yield reached 87.37%. The presence of mono-, di- and tri-acetylated derivatives in acetylated EGCG was confirmed by LC–MS-MS and identified as 5″-O-acetyl-EGCG, 3″, 5″-2-O-acetyl-EGCG and 5′, 3″, 5″-3-O-acetyl-EGCG by NMR.  相似文献   

16.
Bovine liver catalase was covalently immobilized onto Eupergit C. Optimum conditions of immobilization: pH, buffer concentration, temperature, coupling time and initial catalase amount per gram of carrier were determined as 7.5, 1.0 M, 25 °C, 24 h and 4.0 mg/g, respectively. Vmax and Km were determined as 1.4(±0.2) × 105 U/mg protein and 28.6 ± 3.6 mM, respectively, for free catalase, and as 3.7(±0.4) × 103 U/mg protein and 95.9 ± 0.6 mM, respectively, for immobilized catalase. The thermal stability of the immobilized catalase in terms of half-life time (29.1 h) was comparably higher than that of the free catalase (9.0 h) at 40 °C. Comparison of storage stabilities showed that the free catalase completely lost its activity at the end of 11 days both at room temperature and 5 °C. However, immobilized catalase retained 68% of its initial activity when stored at room temperature and 79% of its initial activity when stored at 5 °C at the end of 28 days. The highest reuse number of immobilized catalase was 22 cycles of batch operation when 40 mg of immobilized catalase loaded into the reactor retaining about 50% of its original activity. In the plug flow type reactor, the longest operation time was found as 82 min at a substrate flow rate of 2.3 mL/min when the remaining activity of 40 mg immobilized catalase was about 50% of its original activity. The resulting immobilized catalase onto Eupergit C has good reusability, thermal stability and long-term storage stability.  相似文献   

17.
An industrial enzyme, alkaline serine endopeptidase, was immobilized on surface modified SBA-15 and MCF materials by amide bond formation using carbodiimide as a coupling agent. The specific activities of free enzyme and enzyme immobilized on SBA-15 and MCF were studied using casein (soluble milk protein) as a substrate. The highest activity of free enzyme was obtained at pH 9.5 while this value shifted to pH 10 for SBA-15 and MCF immobilized enzyme. The highest activity of immobilized enzymes was obtained at higher temperature (60 °C) than that of the free enzyme (55 °C). Kinetic parameters, Michaelis–Menten constant (Km) and maximum reaction velocity (Vmax), were calculated as Km = 13.375, 11.956, and 8.698 × 10?4 mg/ml and Vmax = 0.156, 0.163 and 0.17 × 10?3 U/mg for the free enzyme and enzyme immobilized on SBA-15 and MCF, respectively. The reusability of immobilized enzyme showed 80% of the activity retained even after 15 cycles. Large pore sized MCF immobilized enzyme was found to be more promising than the SBA-15 immobilized enzyme due to the availability of larger pores of MCF, which offer facile diffusion of substrate and product molecules.  相似文献   

18.
Lipase (E.C.3.1.1.3) from Thermomyces lanuginosus (TL) was directly bonded, through multiple physical interactions, on citric acid functionalized monodispersed Fe3O4 nanoparticles (NPs) in presence of a small amount of hydrophobic functionalities. A very promising scalable synthetic approach ensuring high control and reproducibility of the results, and an easy and green immobilization procedure was chosen for NPs synthesis and lipase anchoring. The size and structure of magnetic nanoparticles were characterized by transmission electron microscopy (TEM) and X-ray diffraction (XRD). The samples at different degree of functionalization were analysed through thermogravimetric measurements. Lipase immobilization was further confirmed by enzymatic assay and Fourier transform infrared (FT-IR) spectra. Immobilized lipase showed a very high activity recovery up to 144% at pH = 7 and 323% at pH = 7.5 (activity of the immobilized enzyme compared to that of its free form). The enzyme, anchored to the Fe3O4 nanoparticles, to be easy recovered and reused, resulted more stable than the native counterpart and useful to produce banana flavour. The immobilized lipase results less sensitive to the temperature and pH, with the optimum temperature higher of 5 °C and optimum pH up shifted to 7.5 (free lipase optimum pH = 7.0). After 120 days, free and immobilized lipases retained 64% and 51% of their initial activity, respectively. Ester yield at 40 °C for immobilized lipase reached 88% and 100% selectivity.  相似文献   

19.
In this study, polyurethane foam (PUF) was used for immobilization of Yarrowia lipolytica lipase Lip2 via polyethyleneimine (PEI) coating and glutaraldehyde (GA) coupling. The activity of immobilized lipases was found to depend upon the size of the PEI polymers and the way of GA treatment, with best results obtained for covalent-bind enzyme on glutaraldehyde activated PEI-PUF (MW 70,000 Da), which was 1.7 time greater activity compared to the same enzyme immobilized without PEI and GA. Kinetic analysis shows the hydrolytic activity of both free and immobilized lipases on triolein substrate can be described by Michaelis–Menten model. The Km for the immobilized and free lipases on PEI-coated PUF was 58.9 and 9.73 mM, respectively. The Vmax values of free and immobilized enzymes on PEI-coated PUF were calculated as 102 and 48.6 U/mg enzyme, respectively. Thermal stability for the immobilization preparations was enhanced compared with that for free preparations. At 50 °C, the free enzyme lost most of its initial activity after a 30 min of heat treatment, while the immobilized enzymes showed significant resistance to thermal inactivation (retaining about 70% of its initial activity). Finally, the immobilized lipase was used for the production of lauryl laurate in hexane medium. Lipase immobilization on the PEI support exhibited a significantly improved operational stability in esterification system. After re-use in 30 successive batches, a high ester yield (88%) was maintained. These results indicate that PEI, a polymeric bed, could not only bridge support and immobilized enzymes but also create a favorable micro-environment for lipase. This study provides a simple, efficient protocol for the immobilization of Y. lipolytica lipase Lip2 using PUF as a cheap and effective material.  相似文献   

20.
ZnO nanowires were successfully introduced into a macroporous SiO2 by in situ hydrothermal growth in 3D pores. The obtained composites were characterized by SEM and XRD, and used as supports to immobilize Candida antarctica lipase B (CALB) through adsorption. The high specific surface area (233 m2/g) and strong electrostatic interaction resulted that the average loading amount of the composite supports (196.8 mg/g) was 3–4 times of that of macroporous SiO2 and approximate to that of a silica-based mesoporous material. Both adsorption capacity and the activity of the CALB immobilized on the composite supports almost kept unchanged as the samples were soaked in buffer solution for 48 h. The chiral resolution of 2-octanol was catalyzed by immobilized CALB. A maximum molar conversion of 49.1% was achieved with 99% enantiomeric excess of (R)-2-octanol acetate under the optimal condition: a reaction using 1.0 mol/L (R,S)-2-octanol, 2.0 mol/L vinyl acetate and 4.0 wt.% water content at 60 °C for 8 h. After fifteen recycles the immobilized lipase could retain 96.9% of relative activity and 93.8% of relative enantioselectivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号