首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Photomodification of ssDNA by binary systems of oligonucleotide conjugates complementary to the adjacent sequences of the target DNA was studied. One of the conjugates comprised a substituted anthracene as a sensitizer; the other,p-azidotetrafluorobenzaldehyde 3-aminopropionylhydrazone as a photoreagent. The sensitized photomodification is initiated by the 365–580-nm light through an efficient energy transfer from the photoexcitated sensitizer onto the photoreagent in a complementary complex of the binary system with the DNA target where the sensitizer and the photoreagent are sterically converged. Influence of substituents in the anthracene residue on the efficiency of the DNA sensitized photomodification was considered. The oligonucleotide conjugate of anthracene-9-al 3-aminopropionylhydrazone allows highly specific initiation of the sensitized photomodification upon irradiation with visible light at >460 nm in conditions generating no photoreaction in the sensitizer’s absence. For Part V, see [1]; prefix “d” in designations of oligonucleotides is omitted.  相似文献   

2.
A sensitized photomodification of several single-stranded target DNAs by binary systems of oligonucleotide conjugates complementary to the adjacent regions of DNA was performed. One of the conjugates contained a sensitizer (pyrene, anthracene, or 1,2-benzanthracene), and another conjugate contained a photoreagent 4-azidotetrafluorobenzalhydrazone. The sensitized photomodification is initiated by irradiation at 365-580 nm due to effective energy transfer from the excited sensitizer to the photoreagent in a complementary complex of the binary system with the target DNA where the sensitizer and photoreagent are brought sterically together. Conditions for the quantitative photomodification of a single-stranded DNA by the binary system of oligonucleotide conjugates were found. The maximum degree of photomodification depends on the number of guanosine residues in the (pG)n sequence of the target DNA at the modification site: at n = 1 the yield of covalent adducts was 62-68%, at n = 2, 75-82%, and at n = 4, 98-99%.  相似文献   

3.
The photomodification of single-stranded DNA sensitized to visible light (450-580 nm) by a binary system of oligonucleotide conjugates complementary to adjacent DNA sequences was studied. One oligonucleotide carries a residue of the photoreagent p-azidotetrafluorobenzaldehyde hydrazone at its 3'-terminal phosphate, and the other has a residue of the sensitizer, perylene or 1,2-benzanthracene, at the 5'-terminal phosphate. The rate of photomodification sensitized by the perylene derivative is 300,000-fold higher than the rate of photomodification in the absence of the sensitizer. Since the excitation energy of perylene is lower than the energy necessary for the initiation of azide photodecomposition, it is likely that the sensitization in the complementary complex occurs by electron transfer from the azido group of the photoreagent to the excited sensitizer. The sensitization by the 1,2-benzanthracene oligonucleotide derivative occurs by means of singlet-singlet energy transfer, which enables this sensitizer to act as a unconsumable catalyst each molecule of which is able to initiate the photomodification of more than 20 DNA molecules. By both mechanisms, the photomodification occurs with high specificity on the G11 residue of the target DNA. The degree of sensitized photomodification reaches 72%.  相似文献   

4.
Site-specific modification of single-stranded DNA by oligonucleotide derivatives of p-azido-O-(4-aminobutyl)tetrafluorobenzaldoxime sensitized by an oligonucleotide derivative of pyrenylethylamine was studied. Upon irradiation with the long-wave UV light (365-390 nm) of a DNA target-oligonucleotide reagent complementary complex, a considerable increase in the rate of sensitized photomodification at the G11 residue of the target relative to the direct photomodification was observed owing to the singlet-single energy transfer from the sensitizer onto the photoreagent. Upon simultaneous irradiation of the complex with UV and visible light in the region of the triplet-triplet absorption of pyrene (360-580 nm), an additional increase in the modification rate and a change in its site-direction (from the G11 to T13 residue) occurred through the two-photon triplet-triplet sensitization. The total extent of the structure photomodification amounted to 80%.  相似文献   

5.
To enhance the specificity of polymerase photoaffinity labeling, a novel approach based on sensitized photomodification has been developed. A base-substituted analog of TTP containing a pyrene group (PyrdUTP) was synthesized and used as an active site-bound photosensitizer for photoaffinity modification of DNA polymerase beta (pol beta). 5'-[32P]-labeled primer was elongated in situ by pol beta with a photoreactive analog of TTP (FAB-4-dUTP). The pyrene sensitizer (PyrdUTP), excited by light (365-450 nm), can activate the photoreagent, cross-linking it to pol beta as a result of fluorescence resonance energy transfer. The initial rate of pol beta photomodification was shown to increase by a factor of ten. The selectivity of pol beta photosensitized modification was proved by adding human replication protein A.  相似文献   

6.
Photomodification of a 302-membered single-stranded DNA fragment by 5'-mono- and 3',5'-di-N-(2-oxyethyl)phenazine (Phn) derivatives of oligonucleotides has been investigated. Under strong laser irradiation (lambda 532 nm; power density 2,5 GV/cm2, irradiation dose 30 J) the DNA fragment in the presence of Phn-reagents was significantly destructed (up to 70-95%). The level of complementary addressed modification (24-51%) is a direct function of the length of oligonucleotide address of the photoreagent and the amount of Phn residues, stabilizing the complementary complex. The character of the nonaddressed modification is close to the statistic one, although for a number of photoreagents a rather efficient nonspecific modification of 5'-terminal sequence of target DNA has been detected. Of interest also is an unusually broad positional direction of the DNA fragment photomodification in the area of perfect complementary coupling of 5'-Phn-reagents.  相似文献   

7.
Quantitative characteristics of thermodynamic and kinetic cooperativity arising in the process of photomodification of a single-stranded DNA fragment with binary systems of oligonucleotide conjugates forming an active site on the target were studied. Oligonucleotides of the binary system were complementary to adjacent segments of the DNA target, and contained arylazide (X) and perylene (S) residues covalently attached to their terminal phosphates. Upon irradiation at the perylene absorption wavelength, the target was modified by the arylazide residue, which was activated owing to the contiguity with the sensitizing perylene group in the tandem complex. Basing on the kinetic data, the constants of association of both derivatives of oligonucleotides with the target were determined: K x = 1.13 · 106 M–1, K s = 1.49 · 104 M–1. It was determined that association of both oligonucleotides with the target proceeded with a positive cooperativity characterized by parameter = 45. The kinetic cooperativity parameter was found to be approximately equal to 200; this characterized the acceleration of target modification in complex with the binary reagent versus that in the absence of sensitizer.  相似文献   

8.
Highly effective site-specific photomodification of a DNA-target was carried out with oligonucleotide reagents carrying aromatic azido groups. Oligonucleotide derivatives with a photoactive function R on the 5'-terminal phosphate and at C-5 atom of deoxyuridine were synthesized: R1NH(CH2)3NHpd(TCCACTT) and d(ULNHRCCACTT), where R1 is p-azidotetrafluorobenzoyl, R2 is 2-nitro, 5-azidobenzoyl, R3 is p-azidobenzoyl; LNH = -CH2NH-, -CH2OCH2CH2NH- or -CH2NHCOCH2CH2NH-. The prepared compounds form stable complementary complexes and effect site-specific photomodification of the target DNA. The modification of pentadecanucleotide d(TAAGTGGAGTTTGGC) with the reagents was investigated. Maximum extent of modification strongly depended on the reagent's type, the photoreagent with R1 being the most effective. Whatever the binding site was, this agent provided a 65-70% modification in all cases except LNH = -CH2NH-, when the yield was twice lower. For the reagents bearing R1 the modification sites were identified. Selective modification at the G9 residue was detected in the case of LNH = -CH2OCH2CH2NH- and when a photoactive group was linked to the terminal phosphate.  相似文献   

9.
Photoactive derivatives of oligonucleotides are widely used as affinity reagents for the study of structures and functions of nucleic acids and proteins. Between them the binary reagents are the more attractive in the last time. They represent the tandem of two oligonucleotide derivatives complementary to a target sequence and carrying photoactive and sensitizing groups. The efficiency of target modification in this case depends on the mutual arrangement in the nick region of photoactive and sensitizing groups, attached to the oligonucleotides. The use of binary reagents in affinity modification permits to reach the high selectivity of the process. In this work we report our studies on the thermodynamic and structural peculiarities of complementary tandem complex between DNA target and binary oligonucleotide reagent. The complex consisted of the target d(TTGAAGGGGACCGC)and two 7-mer oligonucleotide conjugates,one of which was modified on its 3'-phosphate with a photoreactive p-azidote-trafluorobenzaldehydehydrazone-group,and the other one was linked through its 5'-phosphate to a sensitizing perylene-group. Optical melting curves and thermal changes in circular dichroism (CD)spectra were detected for all possible oligonucleotide and/or conjugate combinations.In addition,molecular modeling simulation of the complex structure was carried out.It was found that CD spectra did not show serious changes in the B-helix structure of the duplex.The interaction between perylene-and azido-groups at the oligonucleotide junction led to considerable increase in duplex stability. CD and molecular modeling data clearly indicated that perylene-group interacted with the duplex in an intercalative manner,but azido-group located on the side of DNA chain minor groove.  相似文献   

10.
Recently we have developed an approach to superspecific photomodification of nucleic acids by binary systems of oligonucleotides conjugated to precursor groups capable of assembling into photoactivatable structure upon simultaneous binding of the conjugates to the target. We have investigated the solution structure of a model binary system 1:2:3, where 1 is the target 12-mer 5'-pdGTATCAGTTTCT, 2 is the photoreactive conjugate 5'-dAGAAACp-NH(CH2)2NH-Az and 3 is the sensitizing conjugate 5'-Pyr-pdTGATAC (Az is p-azidotetrafluorobenzoyl group and Pyr is the pyrenyl-1-methylamino group). The photoreaction within this complex results in crosslinking of reagent 2 with N7-position of the G7 residue of the target thus indicating that the photoreactive Az residue is located in the major groove near the G7 residue. The center-to-center distances between the Pyr and Az moieties in complex 1:2:3 independently determined by the Pyr-group fluorescence quenching and the Az-group sensitized photodecomposition were 11.2 and 12.6 A, respectively.  相似文献   

11.
A binary system of photoaffinity reagents for selective affinity labeling of DNA polymerases has been developed. The photoreactive probe was formed in nuclear extract, using an end-labeled oligonucleotide containing a synthetic abasic site. This site was incised by apurinic/apyrimidinic endonuclease and then dNMPs carrying a photoreactive adduct were added to the 3(') hydroxyl using base-substituted arylazido derivatives of dUTP or dCTP. This results in the synthesis of photoreactive base excision repair (BER) intermediates. The photoreactive group was then activated, either directly (UV light exposure 320nm) or in the presence of the sensitizer of dTTP analog containing a pyrene group (Pyr-dUTP) under UV light 365nm. DNA polymerase beta was the main target crosslinked by photoreactive BER intermediates in this nuclear extract. In contrast, several proteins were labeled under the conditions of direct activation of arylazido group.  相似文献   

12.
Antisense oligonucleotide conjugates, bearing constructs with two imidazole residues, were synthesized using a precursor-based technique employing post-synthetic histamine functionalization of oligonucleotides bearing methoxyoxalamido precursors at the 5′-termini. The conjugates were assessed in terms of their cleavage activities using both biochemical assays and conformational analysis by molecular modelling. The oligonucleotide part of the conjugates was complementary to the T-arm of yeast tRNAPhe (44–60 nt) and was expected to deliver imidazole groups near the fragile sequence C61-ACA-G65 of the tRNA. The conjugates showed ribonuclease activity at neutral pH and physiological temperature resulting in complete cleavage of the target RNA, mainly at the C63–A64 phosphodiester bond. For some constructs, cleavage was completed within 1–2 h under optimal conditions. Molecular modelling was used to determine the preferred orientation(s) of the cleaving group(s) in the complexes of the conjugates with RNA target. Cleaving constructs bearing two imidazole residues were found to be conformationally highly flexible, adopting no preferred specific conformation. No interactions other than complementary base pairing between the conjugates and the target were found to be the factors stabilizing the ‘active’ cleaving conformation(s).  相似文献   

13.
Abstract

A binary system of oligonucleotides conjugated to perfluoroarylazide and perylene for sequence-specific photomodification of nucleic acids has been developed. The system can be activated by visible light (450-580 nm), reacts 300000 times faster than azide in the absence of perylene and provides highly efficient (up to 99%) photomodification of target ssDNA.  相似文献   

14.
A binary system of photoaffinity reagents was proposed earlier for highly efficient labeling of DNA polymerases by 5"-[32P]DNA primers. In the present study we demonstrate the feasibility of this approach to increase the efficiency of DNA polymerase labeling. A photoactive 2,3,5,6-tetrafluoro-4-azidobenzoyl (FAB) group was incorporated at the 3"-end of 5"-[32P]DNA primers synthesized by DNA polymerase or Tte in the presence of one of the dTTP analogs—FAB-4-dUTP, FAB-9-dUTP, or FAB-4-ddUTP. The reaction mixture was irradiated by light with wavelength of 334-365 nm (direct labeling) or 365-450 nm in the presence of photosensitizer, one of dTTP analogs containing a pyrene moiety, Pyr-6-dUTP or Pyr-8-dUTP. In the case of the binary system of photoaffinity reagents, a FAB group is activated by energy transfer from sensitizer localized in the dNTP-binding site of DNA polymerase in the triple complex, comprised by reagent, DNA polymerase, and Pyr-6(8)-dUTP. Direct activation of the FAB group under these conditions is negligible. The most efficient photolabeling of DNA polymerases was observed with a primer containing a FAB-4-dUMP group at the 3"-end, and Pyr-6-dUTP as a photosensitizer. Using 10-fold molar excess of photoreagent to DNA polymerase , the labeling efficiency was shown to achieve 60%, which is 2-fold higher than the efficiency of the direct DNA polymerase labeling under harsher conditions (334-365 nm).  相似文献   

15.
Antisense oligonucleotides are potentially powerful tools for selective control of cellular and viral gene expression. Crucial to successful application of this approach is the specificity of the oligonucleotide for the chosen RNA target. Here we apply DNA array technology to examine the specificity of antisense oligonucleotide treatments. The molecules used in these studies consisted of phosphorothioate oligomers linked to the Antennapedia (Ant) delivery peptide. The antisense oligonucleotide component was complementary to a site flanking the AUG of the MDR1 message, which codes for P-glycoprotein, a membrane ATPase associated with multidrug resistance in tumor cells. Using a DNA array of 2059 genes, we analyzed cellular responses to molecules comprised of Ant peptide-oligonucleotide conjugates, as well as to the Ant peptide alone. Besides the expected reduction in MDR1 message level, 37 other genes (approximately 2% of those tested) showed changes of comparable magnitude. The validity of the array results was confirmed for selected genes using Northern blots to assess messenger RNA levels. These results suggest that studies using antisense oligonucleotide technology to modulate gene expression need to be interpreted with caution.  相似文献   

16.
Y B Shi  J E Hearst 《Biochemistry》1987,26(13):3792-3798
The photoreactions of HMT [4'-(hydroxymethyl)-4,5',8-trimethylpsoralen] monoadducts in double-stranded DNA have been studied with complementary oligonucleotides. The HMT was first attached to the thymidine residue in the oligonucleotide 5'-GAAGCTACGAGC-3' as either a furan-side monoadduct or a pyrone-side monoadduct. The HMT-monoadducted oligonucleotide was then hybridized to the complementary oligonucleotide 5'-GCTCGTAGCTTC-3' and irradiated with monochromatic light. In the case of the pyrone-side monoadducted oligonucleotide, photoreversal was the predominant reaction, and very little cross-link was formed at all wavelengths. The course of the photoreaction of the double-stranded furan-side monoadducted oligonucleotide was dependent on the irradiation wavelength. At wavelengths below 313 nm, both photoreversal and photo-cross-linking occurred. At wavelengths above 313 nm, photoreversal of the monoadduct could not be detected, and photo-cross-linking occurred efficiently with a quantum yield of 2.4 X 10(-2).  相似文献   

17.
Pools of oligonucleotide conjugates consisting of 10-400 different molecular species were synthesized. The conjugates contained a varying number of ethylene glycol units attached to 3'-terminal, 5'-terminal and internal positions of the oligonucleotides. Conjugate synthesis was performed by phosphoramidite solid phase chemistry using suitably protected polyethylene glycol phosphoramidites and PEG-derivatized solid supports containing polydisperse PEGs of various molecular weight ranges. The pools were analyzed and fractionated by chromatographic and electrophoretic techniques, and the composition of isolated conjugates was revealed by matrix-assisted laser desorption/ionization mass spectrometry. The number and attachment sites of coupled ethylene glycol units greatly influence the hydrophobicity of the conjugates, as well as their electrophoretic mobilities. Conjugation had little effect on the hybridization behavior of oligonucleotide conjugates with unmodified complementary oligonucleotide strands. Melting temperatures were between 67 and 73 degrees C, depending on the size and number of coupled PEG chains, compared to 68 degrees C for the unmodified duplex. Conjugates with PEG coupled to both 3'- and 5'-terminal positions showed a more than 10-fold increase in exonuclease stability.  相似文献   

18.

Background  

Most current DNA diagnostic tests for identifying organisms use specific oligonucleotide probes that are complementary in sequence to, and hence only hybridise with the DNA of one target species. By contrast, in traditional taxonomy, specimens are usually identified by 'dichotomous keys' that use combinations of characters shared by different members of the target set. Using one specific character for each target is the least efficient strategy for identification. Using combinations of shared bisectionally-distributed characters is much more efficient, and this strategy is most efficient when they separate the targets in a progressively binary way.  相似文献   

19.
Oligonucleotide derivatives with a fluorescent dye were designed for exhibiting a measurable signal only when they bind to complementary DNA in aqueous solution. The oligonucleotide with a dansyl group at the specific 2'-sugar residue was synthesized by using the protected 2'-dansylaminouridine phosphorobisamidite. The dansyl-oligonucleotide conjugate binds to its complementary DNA to form duplex with a normal stability and exhibits enhanced fluorescence together with a blue-shift in emission maxima after the hybridization. Another possible candidate involved the use of pyrene-excimer emission upon forming ternary complex between two pyrene-labeled oligonucleotide probes with target DNA. A new and general method for introduction of a pyrene fluorophore into the 3'- or 5'-terminal hydroxyl group of oligonucleotides via different linkers was developed.  相似文献   

20.
Covalent conjugates consisting of streptavidin and a 24-mer single-stranded DNA oligonucleotide have been oligomerized by cross-linking with a 5',5'-bis-biotinylated 169-base-pair double-stranded DNA (dsDNA) fragment. The oligomeric conjugates formed have been analyzed by nondenaturing gel electrophoresis and scanning-force microscopy (SFM). The comparison of analogous oligomers, prepared from native STV and the bis-biotinylated dsDNA fragment, revealed that the covalent STV-oligonucleotide hybrid conjugates self-assemble to generate oligomeric aggregates of significant smaller size, containing on average only about 2.5 times less dsDNA fragments per aggregate. Likely, this is a consequence of electrostatic or steric repulsion between the dsDNA and the single-stranded oligomer covalently attached to the hybrid, as indicated from control experiments. Nevertheless, the single-stranded oligonucleotide moiety within the oligomeric conjugates can be used as a selective molecular handle for further functionalization and manipulation. For instance, it was used for specific DNA-directed immobilization at a surface, previously functionalized with complementary capture oligonucleotides. Moreover, we demonstrate that macromolecules, such as STV and antibody molecules, which are tagged with the complementary oligonucleotide, specifically bind to the supramolecular DNA-STV oligomeric conjugates. This leads to a novel class of functional DNA-protein conjugates, suitable, for instance, as reagents in immuno-PCR or as building blocks in molecular nanotechnology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号