首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Vasoactive intestinal peptide (VIP) has potent antiproliferative and anti-inflammatory functions in the immune system. Two structurally distinct G-protein-associated receptors, VIP receptor type 1 (VPAC1) and VIP receptor type 2 (VPAC2), mediate the biological effects of VIP. The regulation of VIP receptor gene expression and the distribution of these receptors in different compartments of the human immune systems are unknown. This study reports, for the first time, a quantitative analysis of VPAC1 and VPAC2 mRNA expression in resting and activated T cells as well as in resting monocytes. Purified human peripheral blood CD4(+) T cells and CD8(+) T cells were stimulated via the TCR/CD3 receptor complex. Using the novel fluorometric-based kinetic (real-time) RT-PCR, we determined that VPAC1 is constitutively expressed in resting T cells and monocytes; the levels of expression were significantly higher in monocytes and CD4(+) T cells than in CD8(+) T cells. VPAC1 mRNA expression is significantly higher relative to VPAC2 in resting CD4(+) T cells and CD8(+) T cells. VPAC2 is expressed at very low levels in resting T cells but is not detectable in resting monocytes. In vitro stimulation of Th cells with soluble anti-CD3 plus PMA induced a T cell activation-dependent down-regulation of VPAC1. VPAC1 is down-regulated under conditions of optimal T cell stimulation. Our results suggest that selective VIP effects on T cell function may be mediated via selective expression of VPAC1 and VPAC2 on T cells and monocytes. Furthermore, down-regulation of VPAC1 in CD4(+) T cell subpopulations is highly correlated with T cell activation.  相似文献   

3.
Pregnancy outcome relies on the maintenance of immune and metabolic homeostasis at the maternal fetal interface. Maternal and perinatal morbidity and mortality is associated with impaired placental development. Multiple regulatory effects of the endogenous-produced vasoactive intestinal peptide (VIP) on vascular, metabolic and immune functions at the maternal-fetal interface have been reported. Here we studied the involvement of the two primary high affinity receptors for VIP (VPAC1 and VPAC2) on maternal immune response, placental homeostasis and pregnancy outcome. Targeted disruption of each receptor gene led to altered placental structure, vascular and trophoblast functional markers and shaped the functional profiles of macrophages and neutrophils towards a proinflammatory state. Several changes in pregnant mice were receptor specific: ROS production elicited by VIP on neutrophils was selectively dependent on the presence of VPAC1 whereas apoptosis rate was associated with the VPAC2 deletion. In peritoneal macrophages from pregnant mice, levels of MHC-II, TLR2, and IL-10 were selectively altered in VPAC2 receptor-deficient mice, whereas IL-6 gene expression was reduced only in mice lacking VPAC1 receptors. Additionally, MMP9 mRNA in isolated TGCs was reduced in VPAC2 receptor deleted mice, while the percentage of IL-12 cells in post-phagocytosis macrophage cultures was selectively reduced in VPAC2 receptor deficient mice. The results indicate that manipulation of VPAC1 and VPAC2 receptor affects immune, vascular and metabolic environment at the maternal fetal interface. These mouse models offer new approaches to study pregnancy complications adding new perspectives to the development of VPAC receptor-selective drugs.  相似文献   

4.
Vasoactive intestinal peptide (VIP) is a neurotransmitter with neurotropic effects. VIP functions through two distinct G-protein-coupled receptor subtypes (VPAC1 and VPAC2). We have demonstrated expression of VPAC1 in pediatric nervous system tumors, including medulloblastoma arising in the cerebellum and neuroblastoma arising in the adrenal medulla. More recently, we have reported the differentiation of neuroblastoma cells by upregulation of VIP type 1 receptor suggesting a role for VPAC1 in neuronal development.To understand the molecular mechanisms regulating VPAC1 expression in both cerebellum and adrenal medulla, we have cloned the human VPAC1 gene and sequenced 2.6-kb of the 5'-flanking sequence. Expression of the luciferase reporter gene under the control of this 2.6-kb human VPAC1 promoter was induced 35-fold in a human medulloblastoma cell line (DAOY) and 36-fold in a human neuroblastoma cell line (SKNSH). Analysis of 5'-unidirectional deletion derivatives of the 2.6-kb fragment demonstrated that a 241-bp sequence immediately upstream of the VPAC1 coding region retains high activity, suggesting that it contains the core promoter region. Quantitative RT-PCR analysis demonstrated that VPAC1 is expressed in mouse cerebellar and adrenal tissues. The VPAC1 promoter also directed expression of a reporter gene in cerebellum and adrenal medulla in transgenic mice. Along with our previous findings, these results suggest that VPAC1 may play a functional role in development of both cerebellum and adrenal medulla.  相似文献   

5.
The human VPAC1 receptor for vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase activating peptide (PACAP) belongs to the class II family of G protein coupled receptors with seven transmembrane segments. It recognizes several VIP-related peptides and displays a very low affinity for secretin despite >70% homology between VIP and secretin. Conversely, the human secretin receptor has high affinity for secretin but low affinity for VIP. We took advantage of this reversed selectivity to identify a domain of the VPAC1 receptor responsible for selectivity toward secretin by constructing human VPAC1-secretin receptor chimeras. A first set of chimeras consisted of exchanging the entire N-terminal ectodomain or large parts of this domain. They were constructed by overlap PCR, transfected in COS-7 cells, and their ligand selectivity, expressed as the ratio of EC(50) for secretin/EC(50) for VIP (referred to as S/V), in stimulating cAMP production was measured. Two very informative chimeras respectively referred to as S144V and S123V were obtained by replacing the entire ectodomain or only the first 123 amino acids of the VPAC1 receptor by the corresponding sequences of the secretin receptor. Whereas S144V no longer discriminated between VIP and secretin (S/V = 1.2), S123V discriminated between the two peptides (S/V = 300) in the same manner as the wild-type VPAC1 receptor. The motif responsible for discrimination was determined by introducing small blocks or individual amino acids of secretin receptor in the 123-144 sequence of the S123V chimera. The data obtained from 14 new chimeras sustained that two nonadjacent pairs of amino acids, Gln(135) Thr(136) and Gly(140) Ser(141) in the C-terminal end of the N-terminal VPAC1 receptor ectodomain constitute a selective filter that strongly restricts access of secretin to the VPAC1 receptor.  相似文献   

6.
The seven-transmembrane (7TM) G-protein-coupled neuroendocrine receptors VPAC1 (HGNC approved gene symbol VIPR1) and VPAC2 (HGNC approved gene symbol VIPR2) are expressed in different tissues and involved in the regulation of important biological functions. We now report the identification and characterization of novel five-transmembrane(5TM) forms of both human VPAC1 and human VPAC2. These alternatively spliced variant mRNAs result from the skipping of exons 10/11, spanning the third intracellular loop, the fourth extracellular loop, and the transmembrane regions 6 and 7, producing in-frame 5TM receptors predicted to lack a G-protein-binding motif. RT-PCR showed that these 5TM receptors are differentially expressed in transformed and normal cells. Translation of the 5TM protein was demonstrated by transfection and expression in CHO cells. Following agonist stimulation, differential signaling of the 7TM versus 5TM forms was shown both for the activation of adenylate cyclase and for tyrosine phosphorylation. The identification of these splice variants in various cells and their expression and differential signal transduction compared to the 7TM form suggest that these novel receptors have biological relevance.  相似文献   

7.
We mutated the vasoactive intestinal peptide (VIP) Asp(3) residue and two VPAC(1) receptor second transmembrane helix basic residues (Arg(188) and Lys(195)). VIP had a lower affinity for R188Q, R188L, K195Q, and K195I VPAC(1) receptors than for VPAC(1) receptors. [Asn(3)] VIP and [Gln(3)] VIP had lower affinities than VIP for VPAC(1) receptors but higher affinities for the mutant receptors; the two basic amino acids facilitated the introduction of the negatively charged aspartate inside the transmembrane domain. The resulting interaction was necessary for receptor activation. 1/[Asn(3)] VIP and [Gln(3)] VIP were partial agonists at VPAC(1) receptors; 2/VIP did not fully activate the K195Q, K195I, R188Q, and R188L VPAC(1) receptors; a VIP analogue ([Arg(16)] VIP) was more efficient than VIP at the four mutated receptors; and [Asn(3)] VIP and [Gln(3)] VIP were more efficient than VIP at the R188Q and R188L VPAC(1) receptors; 3/the [Asp(3)] negative charge did not contribute to the recognition of the VIP(1) antagonist, [AcHis(1),D-Phe(2),Lys(15),Arg(16),Leu(27)] VIP ()/growth hormone releasing factor (8-27). This is the first demonstration that, to activate the VPAC(1) receptor, the Asp(3) side chain of VIP must penetrate within the transmembrane domain, in close proximity to two highly conserved basic amino acids from transmembrane 2.  相似文献   

8.
The cytoplasmic domain of transferrin receptor (TR) is essential for endocytosis of this transmembrane protein. We have investigated by electron microscopy the association of wild-type and cytoplasmic deletion mutant human TR with coated pits at the surface of transfected L cell lines. Approximately 15% of wild-type TR was concentrated in coated pits, regardless of the level of TR expression. In contrast, only 2% of deletion mutant TR was present in these structures. We also correlated the frequency of coated pits with the level of TR expression in different transfected L cell lines. Expression of more than 3 x 10(6) wild-type TR per cell was accompanied by up to a 4-fold increase in coated pits compared with nontransfected Ltk- cells. No such increase was observed in a cell line expressing a similarly high level of cytoplasmic deletion mutant TR. These results indicate that the cytoplasmic domain plays an active role in sorting and endocytosis of TR by providing an assembly site for coated pit formation.  相似文献   

9.
The heterodimeric peptide transporter TAP belongs to the ABC transporter family. Sequence comparisons with the P-glycoprotein and cystic fibrosis transmembrane conductance regulator and the functional properties of selective amino acids in these ABC transporters postulated that the glutamic acid at position 263 and the phenylalanine at position 265 of the TAP1 subunit could affect peptide transporter function. To define the role of both amino acids, TAP1 mutants containing a deletion or a substitution to alanine at position 263 or 265 were generated and stably expressed in murine and human TAP1(-/-) cells. The different TAP1 mutants were characterized in terms of expression and function of TAP, MHC class I surface expression, immune recognition, and species-specific differences. The phenotype of murine and human cells expressing human TAP1 mutants with a deletion or substitution of Glu(263) was comparable to that of TAP1(-/-) cells. In contrast, murine and human TAP1 mutant cells containing a deletion or mutation of Phe(265) of the TAP1 subunit exhibit wild-type TAP function. This was associated with high levels of MHC class I surface expression and recognition by specific CTL, which was comparable to that of wild-type TAP1-transfected control cells. Thus, biochemical and functional evidence is presented that the Glu(263) of the TAP1 protein, but not the Phe(265), is critical for proper TAP function.  相似文献   

10.
11.
Vasoactive intestinal peptide (VIP) is a neuromediator expressed widely in the nervous, gastrointestinal, respiratory, and immune systems. Two G protein-coupled receptors (GPCRs), designated VPAC1 and VPAC2, bind VIP with high affinity and transduce increases in [cyclic AMP](i) and [Ca(2+)](i). As there are no potent VPAC1- or VPAC2-selective antagonists, a hammerhead ribozyme (Rz) strategy capable of in vivo application was adopted to inactivate individual domains of VPAC1. Three Rzs were designed to cleave mRNA encoding the amino terminus, the third intracellular loop, and the cytoplasmic tail of human VPAC1 and were introduced by transfection into HEK-293 cells expressing recombinant human VPAC1. Each Rz specifically degraded VPAC1 mRNA and down-regulated VPAC1 protein and VIP-binding activity, as assessed by ribonuclease protection assays, Western blots, and binding of (125)I-VIP. Rz-mediated down-regulation of VPAC1 was associated with up to 75% suppression of VIP signaling of increases in [cyclic AMP](i) and [IP3](i), and of cyclic AMP response element-luciferase reports. The Rz specific for the amino terminus inhibited VPAC1 expression and signaling to the greatest extent. VIP-evoked cellular responses thus appear to be proportional to the level of VPAC1 expression. Specific Rzs may be powerful tools for manipulating tissue-specific contributions of GPCRs in vitro and in vivo.  相似文献   

12.

Background

The human Vasoactive Intestinal Peptide (VIP) is a neurokine with effects on the immune system where it is involved in promoting tolerance. In this context, one of its receptors, VPAC1, has been found to be down-modulated in cells of the immune network in response to activating stimuli. In particular, the bacterial liposaccaride (LPS), a strong activator of the innate immune system, induces a rapid decrease of VPAC1 expression in monocytes and this event correlates with polymorphisms in the 3′-UTR of the gene.

Methodology/Principal Findings

MicroRNA 525-5p, having as putative target the 3′-UTR region of VPAC1, has been analysed for its expression in monocytes and for its role in down-modulating VPAC1 expression. We report here that miR-525-5p is promptly up-regulated in LPS-treated monocytes. This microRNA, when co-transfected in 293T cells together with a construct containing the 3′-UTR of the VPAC1 gene, significantly reduced the luciferase activity in a standard expression assay. The U937 cell line as well as primary monocytes enforced to express miR-525-5p, both down-modulate VPAC1 expression at similar extent.

Conclusions/Significance

Our results show that the response to an inflammatory stimulus elicits in monocytes a rapid increase of miR-525-5p that targets a signaling pathway involved in the control of the immune homeostasis.  相似文献   

13.
VIP and PACAP are distributed in nerve fibers throughout the respiratory tract acting as potent bronchodilators and secretory agents. By using RT-PCR and immunoblotting techniques, we have previously shown the expression of common VIP/PACAP (VPAC(1) and VPAC(2)) and specific PACAP (PAC(1)) receptors in human lung. Here we extend our aims to investigate by immunohistochemistry their localization and distribution at this level. A clear immunopositive reaction was obtained in human lung sections by using either anti-VPAC(1) or -VPAC(2) receptor antibodies but not with anti-PAC(1) receptor antibody. However, PAC(1) receptor (and VPAC(1) and VPAC(2) receptors) could be identified in lung membranes by immunoblotting which supports that the PAC(1) receptor is expressed at a low density. Both VPAC(1) and VPAC(2) receptors showed similar immunohistochemical patterns appearing in smooth muscle cells in the wall of blood vessels and in white blood cells (mainly in areas with inflammatory responses). The results agree with previous evidence on the importance of both peptides in the immune system and support their anti-inflammatory and protective roles in lung.  相似文献   

14.
Distinct roles of the two T cell G protein-coupled receptors for vasoactive intestinal peptide (VIP), termed VPAC1 and VPAC2, in VIP regulation of autoimmune diseases were investigated in the dextran sodium sulfate (DSS)-induced murine acute colitis model for human inflammatory bowel diseases. In mice lacking VPAC2 (VPAC2-KO), DSS-induced colitis appeared more rapidly with greater weight loss and severe histopathology than in wild-type mice. In contrast, DSS-induced colitis in VPAC1-KO mice was milder than in wild-type mice and VPAC2-KO mice. Tissues affected by colitis showed significantly higher levels of myeloperoxidase, IL-6, IL-1β and MMP-9 in VPAC2-KO mice than wild-type mice, but there were no differences for IL-17, IFN-γ, IL-4, or CCR6. Suppression of VPAC1 signals in VPAC2-KO mice by PKA inhibitors reduced the clinical and histological severity of DSS-induced colitis, as well as tissue levels of IL-6, IL-1β and MMP-9. Thus VIP enhancement of the severity of DSS-induced colitis is mediated solely by VPAC1 receptors.  相似文献   

15.
16.
The human receptor subtype for VIP and PACAP, referred to as VPAC(1) receptor, has a large N-terminal extracellular domain which is critical for VIP binding. We further investigated this domain by mutating 12 amino acid residues which could participate in the formation of a tight bend (W67) or a coiled coil motif. They were changed to alanine (A) and the cDNAs were transiently transfected into Cos cells. All mutants but W67A exhibited K(d) values similar to that of the wild-type receptor. For the W67A mutant, no specific (125)I-VIP binding could be observed. Mutants at the W67 site were further characterized after stable transfection of epitope-tagged VPAC(1) receptor-GFP fusion proteins into CHO cells. W67A, W67E, W67H, and W67K mutants neither bound VIP nor mediated adenylyl cyclase activation by VIP. The W67F mutant mediated stimulation of adenylyl cyclase only at high VIP concentrations. Microscopic analysis and antibody binding experiments showed that all mutants were similarly expressed at the cell surface of CHO cells. Therefore tryptophan 67 in the human VPAC(1) receptor plays a crucial role in VIP binding due, in part, to its aromatic moiety.  相似文献   

17.
Human pro-tumor necrosis factor (pro-TNF) is a type II transmembrane protein with a highly conserved 76-residue leader sequence. We have analyzed the behavior, both in a microsomal translocational system and by transfection, of a series of mutants with deletions from the cytoplasmic, transmembrane, and linking domains. Cytoplasmic deletions included the Arg doublet at -49 and -48 and/or the Lys doublet at -58 and -57; additional mutants included deletion of residues -73 to -55 and -73 to -55, -49, and -48. The transmembrane and linking domain mutants included deletions in the -42 to -35 region, combined with the deletion of residues -32 to -1. Two hybrid mutants combined the cytoplasmic deletions with the deletion of residues -32 to -1. All of the cytoplasmic deletion mutants were properly translocated, as were the transmembrane deletion mutants with deletions up to residues -36, -35, -32 to -1, although the last one exhibited reduced efficiency; further incremental deletions, including deletions of residues -38 to -35 and -32 to -1, completely blocked translocation. Both hybrid mutants were effectively translocated; furthermore, transfection analysis revealed competent expression and maturation of both the cytoplasmic and hybrid mutants. Thus, proper expression and maturation of human pro-TNF can be accomplished with as few as approximately 12 of the 26 residues of the native transmembrane domain and with a net negative charge in the cytoplasmic domain flanking the transmembrane region.  相似文献   

18.
The human VPAC(1) receptor for vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase activating peptide belongs to the class II family of G-protein-coupled receptors with seven transmembrane segments. Like for all class II receptors, the extracellular N-terminal domain of the human VPAC(1) receptor plays a predominant role in peptide ligand recognition. To determine the three-dimensional structure of this N-terminal domain (residues 1-144), the Protein Data Bank (PDB) was screened for a homologous protein. A subdomain of yeast lipase B was found to have 27% sequence identity and 50% sequence homology with the N-terminal domain (8) of the VPAC(1) receptor together with a good alignment of the hydrophobic clusters. A model of the N-terminal domain of VPAC(1) receptor was thus constructed by homology. It indicated the presence of a putative signal sequence in the N-terminal extremity. Moreover, residues (Glu(36), Trp(67), Asp(68), Trp(73), and Gly(109)) which were shown to be crucial for VIP binding are gathered around a groove that is essentially negatively charged. New putatively important residues for VIP binding were suggested from the model analysis. Site-directed mutagenesis and stable transfection of mutants in CHO cells indicated that Pro(74), Pro(87), Phe(90), and Trp(110) are indeed important for VIP binding and activation of adenylyl cyclase activation. Combination of molecular modeling and directed mutagenesis provided the first partial three-dimensional structure of a VIP-binding domain, constituted of an electronegative groove with an outspanning tryptophan shell at one end, in the N-terminal extracellular region of the human VPAC(1) receptor.  相似文献   

19.
20.
The stimulatory effect of vasoactive intestinal peptide (VIP) on the intracellular calcium concentration ([Ca(2+)](i)) has been investigated in Chinese hamster ovary cells stably transfected with the reporter gene aequorin, and expressing human VPAC(1), VPAC(2), chimaeric VPAC(1)/VPAC(2) or mutated receptors. The VIP-induced increase in [Ca(2+)](i) was linearly correlated with receptor density, and was higher in cells expressing VPAC(1) receptors than in cells expressing a similar density of VPAC(2) receptors. The study was performed to establish the receptor sequence responsible for this difference. VPAC(1)/VPAC(2) chimaeric receptors were first used for broad positioning: those receptors having the third intracellular loop (IC3) of the VPAC(1) or the VPAC(2) receptor behaved, in this respect, phenotypically like VPAC(1) and VPAC(2) receptors respectively. Replacement in the VPAC(2) receptor of the sequence comprising residues 315-318 (VGGN) within IC3 by its VPAC(1) receptor counterpart (residues 328-331; IRKS) and the introduction of VGGN instead of IRKS into VPAC(1) was sufficient to mimic VPAC(1) and VPAC(2) receptor characteristics respectively. Thus a small sequence in the IC3 domain of the VPAC(1) receptor is responsible for the efficient agonist-stimulated increase in [Ca(2+)](i).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号