首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three different cloned segments of African green monkey DNA that contain α-satellite sequences linked to a previously undescribed, distinct monkey satellite (called deca-satellite) are described here. The cloned segments were derived from a monkey DNA library in λCharon4A that was constructed to select for junctions between α-satellite and other DNA sequences.The structure of the deca-satellite and of a junction between deca-satellite and α-satellite were studied by subcloning appropriate fragments of the original cloned segments and by sequence analysis. Deca-satellite has a ten base-pair repeat unit: the consensus sequence of the repeat units is 5′ A-A-A-C-C-G-G-N-T-C. Sequences homologous to the deca-satellite are in the middle repeated class of genomic DNA. Analysis of the organization of deca-satellite sequences by digestion of total DNA with various restriction endonucleases and hybridization with a cloned deca-satellite probe revealed extensive polymorphism in the genomes of different individual monkeys but not among the tissues of one organism. These observations indicate that the arrangement of deca-satellite sequences is continually changing.An unusual α-satellite repeat unit occurs at a junction between the α-satellite and deca-satellite. It resembles the major baboon α-satellite more closely than it does monkey α-satellite and thereby provides evidence in favor of the “library” hypothesis for satellite evolution.  相似文献   

2.
Chromosome identification is essential in oyster genomic research. Fluorescence in situ hybridization (FISH) offers new opportunities for the identification of oyster chromosomes. It has been used to locate satellite DNAs, telomeres or ribosomal DNA sequences. However, regarding chromosome identification, no study has been conducted with simple sequence repeats (SSRs). FISH was used to probe the physical organization of three particular SSRs, (GGAT)(4), (GT)(7) and (TA)(10) onto metaphase chromosomes of the Pacific oyster, Crassostrea gigas. Hybridization signals were observed in all the SSR probes, but the distribution and intensity of signals varied according to the oligonucleotide repeat. The intercalary, centromeric and telomeric bands were observed along the chromosomes, and for each particular repeat every chromosome pair presented a similar pattern, allowing karyotypic analysis with all the SSRs tested. Our study is the first in mollusks to show the application of SSR in situ hybridization for chromosome identification and karyotyping. This technique can be a useful tool for oyster comparative studies and to understand genome organization in different oyster taxa.  相似文献   

3.
A complete 120 bp genomic consensus sequence for the mouse minor satellite has been determined from enriched L929 centromeric sequences. The extensive sequence homology existing between the major and minor satellite suggests an evolutionary relationship. Some sequences flanking the minor satellite has also been identified and they provide insight into centromeric DNA organization. Isotopic in situ hybridization analysis of the minor satellite to mouse L929 and Mus musculus metaphase spreads showed that this repetitive DNA class is localized specifically to centromeres of all chromosomes of the karyotype. With the use of high resolution non-isotopic fluorescence in situ hybridization the minor satellite is further localized to the outer surface of the centromere in a discrete region at or immediately adjacent to the kinetochore. Our cytological data suggests that the minor satellite might play a role in the organization of the kinetochore region rather than, as previously suggested, sites for general anchoring of the genome to the nuclear matrix.  相似文献   

4.
The euchromatic regions of chimpanzee (Pan troglodytes) genome share approximately 98% sequence similarity with the human (Homo sapiens), while the heterochromatic regions display considerable divergence. Positive heterochromatic regions revealed by the CBG-technique are confined to pericentromeric areas in humans, while in chimpanzees, these regions are pericentromeric, telomeric, and intercalary. When human chromosomes are digested with restriction endonuclease AluI and stained by Giemsa (AluI/Giemsa), positive heterochromatin is detected only in the pericentromeric regions, while in chimpanzee, telomeric, pericentromeric, and in some chromosomes both telomeric and centromeric, regions are positive. The DA/DAPI technique further revealed extensive cytochemical heterogeneity of heterochromatin in both species. Nevertheless, the fluorescence in situ hybridization technique (FISH) using a centromeric alpha satellite cocktail probe revealed that both primates share similar pericentromeric alpha satellite DNA sequences. Furthermore, cross-hybridization experiments using chromosomes of gorilla (Gorilla gorilla) and orangutan (Pongo pygmaeus) suggest that the alphoid repeats of human and great apes are highly conserved, implying that these repeat families were present in their common ancestor. Nevertheless, the orangutan's chromosome 9 did not cross-hybridize with human probe. The euchromatic regions of chimpanzee (Pan troglodytes) genome share approximately 98% sequence similarity with the human (Homo sapiens), while the heterochromatic regions display considerable divergence. Positive heterochromatic regions revealed by the CBG-technique are confined to pericentromeric areas in humans, while in chimpanzees, these regions are pericentromeric, telomeric, and intercalary. When human chromosomes are digested with restriction endonuclease AluI and stained by Giemsa (AluI/Giemsa), positive heterochromatin is detected only in the pericentromeric regions, while in chimpanzee, telomeric, pericentromeric, and in some chromosomes both telomeric and centromeric, regions are positive. The DA/DAPI technique further revealed extensive cytochemical heterogeneity of heterochromatin in both species. Nevertheless, the fluorescence in situ hybridization technique (FISH) using a centromeric alpha satellite cocktail probe revealed that both primates share similar pericentromeric alpha satellite DNA sequences. Furthermore, cross-hybridization experiments using chromosomes of gorilla (Gorilla gorilla) and orangutan (Pongo pygmaeus) suggest that the alphoid repeats of human and great apes are highly conserved, implying that these repeat families were present in their common ancestor. Nevertheless, the orangutan's chromosome 9 did not cross-hybridize with human probe. © 1995 Wiley-Liss, Inc.  相似文献   

5.
Constitutive heterochromatin of a karyotypically conserved species of harvest mouse was compared to that of three karyotypically derived species of harvest mice by examining banding patterns produced on metaphase patterns produced by two of these restriction endonucleases (EcoRI and MboI) were compared to published G- and C-banded karyotypes and in situ hybridization of a satellite DNA repeat for these taxa. The third restriction endonuclease (PstI) did not produce a detectable pattern of digestion. For the most part, patterns produced by EcoRI and MboI can be related to C-banded chromosomes and in situ hybridization of satellite DNA sequences. Moreover, digestion with EcoRI reveals bands not apparent with these other techniques, suggesting that restriction endonuclease digestion of metaphase chromosomes may provide additional insight into the structure and organization of metaphase chromosomes. The patterns produced by restriction endonuclease digestion are compatible with the chromosomal evolution of these taxa, documenting that in the highly derived taxa not only are the chromosomes rearranged but the abundance of certain sequences is highly variable. However, technical variation and difficulty in producing consistent results even on a single slide with some restriction endonucleases documents the problems associated with this method.  相似文献   

6.
着丝粒在真核生物有丝分裂和减数分裂染色体正常的分离和传递中起着重要的作用。通过构建5个稻属二倍体野生种的基因组BAC文库, 采用菌落杂交和FISH技术, 筛选和鉴定了各染色体组着丝粒克隆, 并且分析了这些克隆在不同基因组间的共杂交情况, 结果表明: (1) C染色体组的野生种O. officinalis 和F染色体组的野生种O. brachyantha具有各自着丝粒特异的卫星DNA序列, 并且O. brachyantha着丝粒还具有特异的逆转座子序列; (2) A、B和E染色体组的野生稻O. glaberrima、O. punctata和O. australiensis着丝粒区域都含有与栽培稻着丝粒重复序列CentO和CRR同源的序列; (3) C染色体组野生稻O. officinalis的2条体细胞染色体着丝粒具有CentO的同源序列, 同时也发现其所有着丝粒区域都包含栽培稻CRR的同源序列。这些结果对克隆稻属不同染色体组的着丝粒序列、研究不同染色体组间着丝粒的进化关系和稻属不同着丝粒DNA序列与功能之间的关系均具有重要意义。  相似文献   

7.
We have investigated the organization and complexity of alpha satellite DNA on chromosomes 10 and 12 by restriction endonuclease mapping, in situ hybridization (ISH), and DNA-sequencing methods. Alpha satellite DNA on both chromosomes displays a basic dimeric organization, revealed as a 6- and an 8-mer higher-order repeat (HOR) unit on chromosome 10 and as an 8-mer HOR on chromosome 12. While these HORs show complete chromosome specificity under high-stringency ISH conditions, they recognize an identical set of chromosomes under lower stringencies. At the nucleotide sequence level, both chromosome 10 HORs are 50% identical to the HOR on chromosome 12 and to all other alpha satellite DNA sequences from the in situ cross-hybridizing chromosomes, with the exception of chromosome 6. An 80% identity between chromosome 6- and chromosome 10-derived alphoid sequences was observed. These data suggest that the alphoid DNA on chromosomes 6 and 10 may represent a distinct subclass of the dimeric subfamily. These sequences are proposed to be present, along with the more typical dimeric alpha satellite sequences, on a number of different human chromosomes.  相似文献   

8.
The organization of the mouse satellite DNA at centromeres   总被引:2,自引:0,他引:2  
The mouse genome contains a major and a minor satellite DNA family of repetitive DNA sequences. The use of 5-azacytidine has allowed us to demonstrate that these satellite DNAs are organized in two separate domains at the centromeres of mouse chromosomes. The minor satellite is closer to the short arms of the acrocentric chromosomes than the major satellite. The major satellite is farther away, flanking the minor satellite and adjacent to the euchromatic long arm of each mouse chromosome. At the level of resolution afforded by the in situ hybridization technique it would appear that the organization of the centromeric domain of the mouse is similar to that in man. That is, both contain two repetitive DNA sequence families arranged in major blocks.  相似文献   

9.
The uniform distribution of satellite DNA II and IV has been revealed using in situ hybridization and differential staining in centromeric regions of autosomes. The sex chromosomes have not found such nucleotide blocks. There is only minor satellite IV block inside Y chromosome short arm. The Y chromosome has got some (TG)n enriched blocks distributed also among other parts of genome and one copy of sequences like human ZFY gene. The high repetitive fraction of bovine genomic DNA have not revealed RFLP. However, the difference has been found by blot hybridization between genomic organization of satellite IV in cattle and yak chromosomal DNA. Non-Mendelian distribution of some such nucleotide blocks has been obtained for interspecies crosses of cattle and yak.  相似文献   

10.
Page BT  Wanous MK  Birchler JA 《Genetics》2001,159(1):291-302
Previous work has identified sequences specific to the B chromosome that are a major component of the B centromere. To address the issue of the origin of the B and the evolution of centromere-localized sequences, DNA prepared from plants without B chromosomes was probed to seek evidence for related sequences. Clones were isolated from maize line B73 without B chromosomes by screening DNA at reduced stringency with a B centromeric probe. These clones were localized to maize centromere 4 using fluorescence in situ hybridization. They showed homology to a maize centromere-mapped sequence, to maize B chromosome centromere sequences, and to a portion of the unit repeat of knobs, which act as neocentromeres in maize. A representative copy was used to screen a BAC library to obtain these sequences in a larger context. Each of the six positive BACs obtained was analyzed to determine the nature of centromere 4-specific sequences present. Fifteen subclones of one BAC were sequenced and the organization of this chromosome 4-specific repeat was examined.  相似文献   

11.
A complete understanding of chromosomal disjunction during mitosis and meiosis in complex genomes such as the human genome awaits detailed characterization of both the molecular structure and genetic behavior of the centromeric regions of chromosomes. Such analyses in turn require knowledge of the organization and nature of DNA sequences associated with centromeres. The most prominent class of centromeric DNA sequences in the human genome is the alpha satellite family of tandemly repeated DNA, which is organized as distinct chromosomal subsets. Each subset is characterized by a particular multimeric higher-order repeat unit consisting of tandemly reiterated, diverged alpha satellite monomers of approximately 171 base pairs. The higher-order repeat units are themselves tandemly reiterated and represent the most recently amplified or fixed alphoid sequences. We present evidence that there are at least two independent domains of alpha satellite DNA on chromosome 7, each characterized by their own distinct higher-order repeat structure. We determined the complete nucleotide sequences of a 6-monomer higher-order repeat unit, which is present in approximately 500 copies per chromosome 7, as well as those of a less-abundant (approximately 10 copies) 16-monomer higher-order repeat unit. Sequence analysis indicated that these repeats are evolutionarily distinct. Genomic hybridization experiments established that each is maintained in relatively homogeneous tandem arrays with no detectable interspersion. We propose mechanisms by which multiple unrelated higher-order repeat domains may be formed and maintained within a single chromosomal subset.  相似文献   

12.
Mehes-Smith M  Michael P  Nkongolo K 《Génome》2010,53(10):769-777
Genome organization in the family Pinaceae is complex and largely unknown. The main purpose of the present study was to develop and physically map species-diagnostic and species-specific molecular markers in pine and spruce. Five RAPD (random amplified polymorphic DNA) and one ISSR (inter-simple sequence repeat) species-diagnostic or species-specific markers for Picea mariana, Picea rubens, Pinus strobus, or Pinus monticola were identified, cloned, and sequenced. In situ hybridization of these sequences to spruce and pine chromosomes showed the sequences to be present in high copy number and evenly distributed throughout the genome. The analysis of centromeric and telomeric regions revealed the absence of significant clustering of species-diagnostic and species-specific sequences in all the chromosomes of the four species studied. Both RAPD and ISSR markers showed similar patterns.  相似文献   

13.
The composition and homology of centromeric heterochromatin DNA has been compared in representatives of the Asian race and two chromosomal forms (Eastern European and Southern European) of the European race of the pygmy wood mouse Sylvaemus uralensis by means of in situ hybridization with metaphase chromosomes of microdissection DNA probes obtained from centromeric C-blocks of mice of the Southern European chromosomal form and the Asian race. Joint hybridization of both DNA probes yielded all possible variants of centromeric regions in terms of the presence of repetitive sequences homologous to those of some or another dissection region, which indicates a diversity of centromeric regions differing in DNA composition. However, most variations of the fluorescent in situ hybridization (FISH) patterns are apparently related to quantitative differences of repetitive elements of the genome. Experiments with the DNA probe obtained from the genome of the Southern European form of the pygmy wood mouse have shown that the number of intense FISH signals roughly corresponds to the number of large C-segments in representatives of the European race, which is characterized by a large amount of the centromeric C-heterochromatin in the karyotype. However, intense signals have been also detected in experiments on hybridization of this probe with chromosomes of representatives of the Asian race, which has no large C-blocks in the karyotype; thus, DNA sequences homologous to heterochromatic ones are also present in nonheterochromatic regions adjacent to C-segments. Despite the variations of the numbers of both intense and weak FISH signals, all chromosomal forms/races of S. uralensis significantly differ of the samples from one another in these characters. The number of intense FISH signals in DNA in pygmy wood mice of the samples from eastern Turkmenistan (the Kugitang ridge) and southern Omsk oblast (the vicinity of the Talapker railway station) was intermediate between those in the European and Asian races, which is apparently related to a hybrid origin of these populations (the hybridization having occurred long ago in the former case and recently in the latter case).  相似文献   

14.
Satellite DNA sequences were isolated from the water buffalo (Bubalus bubalis) after digestion with two restriction endonucleases, BamHI and StuI. These satellite DNAs of the water buffalo were classified into two types by sequence analysis: one had an approximately 1,400 bp tandem repeat unit with 79% similarity to the bovine satellite I DNA; the other had an approximately 700 bp tandem repeat unit with 81% similarity to the bovine satellite II DNA. The chromosomal distribution of the satellite DNAs were examined in the river-type and the swamp-type buffaloes with direct R-banding fluorescence in situ hybridization. Both the buffalo satellite DNAs were localized to the centromeric regions of all chromosomes in the two types of buffaloes. The hybridization signals with the buffalo satellite I DNA on the acrocentric autosomes and X chromosome were much stronger than that on the biarmed autosomes and Y chromosome, which corresponded to the distribution of C-band-positive centromeric heterochromatin. This centromere-specific satellite DNA also existed in the interstitial region of the long arm of chromosome 1 of the swamp-type buffalo, which was the junction of the telomere-centromere tandem fusion that divided the karyotype in the two types of buffaloes. The intensity of the hybridization signals with buffalo satellite II DNA was almost the same over all the chromosomes, including the Y chromosome, and no additional hybridization signal was found in noncentromeric sites.  相似文献   

15.
Centromeric DNA sequences in multicellular eukaryotes are often highly repetitive and are not unique to a specific centromere or to centromeres at all. Thus, it is a major challenge to study the fine structure of individual plant centromeres. We used a DNA fiber-fluorescence in situ hybridization approach to study individual maize (Zea mays) centromeres using oat (Avena sativa)-maize chromosome addition lines. The maize centromere-specific satellite repeat CentC in the addition lines allowed us to delineate the size and organization of centromeric DNA of individual maize chromosomes. We demonstrate that the cores of maize centromeres contain mainly CentC arrays and clusters of a centromere-specific retrotransposon, CRM. CentC and CRM sequences are highly intermingled. The amount of CentC/CRM sequence varies from approximately 300 to >2800 kb among different centromeres. The association of CentC and CRM with centromeric histone H3 (CENH3) was visualized by a sequential detection procedure on stretched centromeres. The analysis revealed that CENH3 is always associated with CentC and CRM but that not all CentC or CRM sequences are associated with CENH3. We further demonstrate that in the chromosomal addition lines in which two CenH3 genes were present, one from oat and one from maize, the oat CENH3 was consistently incorporated by the maize centromeres.  相似文献   

16.
Chromosome-specific organization of human alpha satellite DNA   总被引:23,自引:3,他引:20       下载免费PDF全文
Restriction endonuclease analysis of human genomic DNA has previously revealed several prominent repeated DNA families defined by regularly spaced enzyme recognition sites. One of these families, termed alpha satellite DNA, was originally identified as tandemly repeated 340- or 680-base pair (bp) EcoRI fragments that hybridize to the centromeric regions of human chromosomes. We have investigated the molecular organization of alpha satellite DNA on individual human chromosomes by filter hybridization and in situ hybridization analysis of human DNA and DNA from rodent/human somatic cell hybrids, each containing only a single human chromosome. We used as probes a cloned 340-bp EcoRI alpha satellite fragment and a cloned alpha satellite-containing 2.0-kilobase pair (kbp) BamHI fragment from the pericentromeric region of the human X chromosome. In each somatic cell hybrid DNA, the two probes hybridized to a distinct subset of DNA fragments detected in total human genomic DNA. Thus, alpha satellite DNA on each of the human chromosomes examined--the X and Y chromosomes and autosomes 3, 4, and 21--is organized in a specific and limited number of molecular domains. The data indicate that subsets of alpha satellite DNA on individual chromosomes differ from one another, both with respect to restriction enzyme periodicities and with respect to their degree of sequence relatedness. The results suggest that some, and perhaps many, human chromosomes are characterized by a specific organization of alpha satellite DNA at their centromeres and that, under appropriate experimental conditions, cloned representatives of alpha satellite subfamilies may serve as a new class of chromosome-specific DNA markers.  相似文献   

17.
Transgenic mice carrying bovine satellite DNA IV were obtained. The size of the transgene integrated into the mouse genome was approximately 390 kb (about 100 transgene copies) as determined by a semiquantitative PCR. Restriction analysis with isoschizomeric restrictases HpaII and MspI, showed that the alien DNA was methylated. In the genome of a transgenic founder male, two integration sites for satellite DNA IV were revealed by in situ hybridization and in situ PCR. These sites are situated on two different chromosomes: in pericentromeric heterochromatin and within a chromosomal arm. In transgenic mice, de novo formation of heterochromatin regions (C-block and the CMA3 disk within the centromeric heterochromatin of another chromosome) was revealed by C-banding and staining with chromomycin A3. This formation is not characteristic of mice, because their chromosomes normally contain no interstitial C-blocks or sequences intensely stained by chromomycin A3.  相似文献   

18.
To examine the molecular organization of DNA sequences located in the centromeric region of human chromosome 16 we have isolated and characterized a chromosome 16-specific member of the alpha satellite DNA family. The probe obtained is specific for the centromere of chromosome 16 by somatic cell hybrid analysis and by fluorescence in situ hybridization and allows detection of specific hybridizing domains in interphase nuclei. Nucleotide sequence analysis indicates that this class of chromosome 16 alpha satellite (D16Z2) is organized as a series of diverged 340-bp dimers arranged in a tandem array of 1.7-kb higher-order repeat units. As measured by pulsed-field gel electrophoresis, the total D16Z2 array spans approximately 1,400-2,000 kb of centromeric DNA. These sequences are highly polymorphic, both by conventional agarose-gel electrophoresis and by pulsed-field gel electrophoresis. Investigation of this family of alpha satellite should facilitate the further genomic, cytogenetic, and genetic analysis of chromosome 16.  相似文献   

19.
Organization and genomic distribution of “82H” alpha satellite DNA   总被引:8,自引:3,他引:5  
Summary We have investigated the organization and genomic distribution of sequences homologous to p82H, a cloned human alpha satellite sequence purported, based on previous in situ hybridization experiments, to exist at the centromere of each human chromosome. We report here that, using Southern blotting analysis under conditions of high stringency, p82H hybridizes solely to a low-copy or single-copy alphoid domain located at or near the centromeric region of human chromosome 14. In contrast, conditions of reduced hybridization stringency permit extensive cross-hybridization with nonidentical, chromosome-specific alpha satellite subsets found elsewhere in the human genome. Thus, the previously described ubiquity of 82H human centromeric sequences reflects the existence of diverse alpha satellite subsets located at the centromeric region of each human chromosome.  相似文献   

20.
Two cosmids (HRS-1 and HRS-2) containing mouse minor satellite DNA sequences have been isolated from a mouse genomic library. In situ hybridization under moderate stringency conditions to metaphase chromosomes from RCS-5, a tumor cell line derived from the SJL strain, mapped both HRS-1 and HRS-2 to the centromeric region of chromosome 4. Sequence data indicate that these cloned minor satellite DNA sequences have a basic higher order repeat of 180 bp, composed of three diverged 60-bp monomers. Digestion of mouse genomic DNA with several restriction enzymes produces a ladder of minor satellite fragments based on a 120-bp repeat. The restriction enzyme NlaIII (CATG) digests all the minor satellite DNA into three prominent bands of 120, 240, and 360 bp and a weak band of 180 bp. Thus, the majority of minor satellite sequences in the genome are arranged in repeats based on a 120-bp dimer, while the family of minor satellite sequences described here represents a rare variant of these sequences. Our results raise the possibility that there may be other variant families of minor satellites analogous to those of alphoid DNA present in humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号