首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human erythrocytes contain glucosylated and nonglucosylated Cu-Zn-superoxide dismutases which can be separated by boronate affinity chromatography. The percentage of the glucosylated form is significantly increased in the erythrocytes of patients with diabetes as compared to normal erythrocytes. The nonglucosylated form of Cu-Zn-superoxide dismutase, which was washed through the boronate column, was glucosylated in vitro upon exposure to radioactive or non-radioactive D-glucose. Incorporation of D-glucose into the protein was observed, and with the increase in glucosylation, the enzymatic activity decreased, indicating that the glucosylation of the enzyme led to a low active form. This is the first demonstration that superoxide dismutase is glucosylated in erythrocytes and that the glucosylation leads to the inactivation of the enzyme.  相似文献   

2.
The glycated form of a basic recombinant humanized monoclonal antibody (rhuMAb) was separated and quantitated by boronate affinity chromatography using optimized shielding reagents. Characterization on the isolated glycated material by peptide mapping analysis, using liquid chromatography-mass spectrometry (LC-MS) and tandem mass spectrometry (MS/MS) sequencing techniques, identified eight reactive lysine primary amine sites. The glycation reaction extent was similar among the various reactive sites, ranging from approximately 1 to 12%, and a single histidine residue separated the most and least reactive sites. Boronate chromatography run in a linear gradient mode separated monoglycated rhuMAb from higher order glycated species and indicated that the majority ( approximately 90%) of glycated rhuMAb is monoglycated. Low-level glycation on a heavy chain lysine located within a complementarity-determining region (CDR) did not significantly affect binding activity in potency measurements. The glycated forms also behaved as slightly more acidic than the nonglycated antibody in charge-based separation techniques, observable by capillary isoelectric focusing (cIEF) and ion exchange chromatography (IEC). The boronate column has significantly increased retention of aggregated rhuMAb material under separation conditions optimized for the monomer form. Recombinant protein glycation initially occurred during production in mammalian cell culture, where feed sugar and protein concentrations contribute to the total overall glycation on this antibody product.  相似文献   

3.
Ribonuclease A has been used as a model protein for studying the specificity of glycation of amino groups in protein under physiological conditions (phosphate buffer, pH 7.4, 37 degrees C). Incubation of RNase with glucose led to an enhanced rate of inactivation of the enzyme relative to the rate of modification of lysine residues, suggesting preferential modification of active site lysine residues. Sites of glycation of RNase were identified by amino acid analysis of tryptic peptides isolated by reverse-phase high pressure liquid chromatography and phenylboronate affinity chromatography. Schiff base adducts were trapped with Na-BH3CN and the alpha-amino group of Lys-1 was identified as the primary site (80-90%) of initial Schiff base formation on RNase. In contrast, Lys-41 and Lys-7 in the active site accounted for about 38 and 29%, respectively, of ketoamine adducts formed via the Amadori rearrangement. Other sites reactive in ketoamine formation included N alpha-Lys-1 (15%), N epsilon-Lys-1 (9%), and Lys-37 (9%) which are adjacent to acidic amino acids. The remaining six lysine residues in RNase, which are located on the surface of the protein, were relatively inactive in forming either the Schiff base or Amadori adduct. Both the equilibrium Schiff base concentration and the rate of the Amadori rearrangement at each site were found to be important in determining the specificity of glycation of RNase.  相似文献   

4.
Inactivation and loss of antigenicity of esterase by sugars and a steroid.   总被引:5,自引:0,他引:5  
Glycation, the non-enzymic reaction of sugars with proteins, has an important role in the complications of diabetes. It has been studied mostly in structural proteins but more recently has been shown to inactivate enzymes. Previous evidence from our laboratory indicated that glycation-induced inactivation and loss of antigenicity of catalase and superoxide dismutase are simultaneous. Esterase, which decreases activity in the lens in senile cataract and diabetes, was measured by a spectrophotometric assay using p-nitrophenyl acetate as the substrate. Here we investigated the inactivation of carboxylesterase (EC 3.1.1.1) by sugars of different glycating power and prednisolone-21-hemisuccinate while simultaneously monitoring the loss of antigenicity. Antigenicity was assessed by immunoprecipitation and by dot-blotting the glycated and non-glycated fractions of enzymes separated by affinity chromatography. Ribose and fructose inactivated more rapidly than glucose and glucose 6-phosphate. The esterase was progressively inactivated by prednisolone-21-hemisuccinate at a lower concentration. Activity and antigenicity were lost simultaneously. The glycated enzyme had entirely lost its antigenicity. These results further support the idea that inactivation of enzyme and loss of antigenicity are simultaneous.  相似文献   

5.
Electrospray ionization mass spectrometry (ESIMS) was used for relative quantification of glycated Cu-Zn superoxide dismutase (SOD-1) in human erythrocytes. SOD-1 samples were prepared from erythrocytes by removing hemoglobin using hemoglobind gel followed by ethanol and chloroform extraction. The reproducibility in measurement of the relative percentage of glycated protein was good, and the standard deviation of each measurement was 4.0%. From the mass spectral analysis of a mixture of commercial SOD-1 and in vitro partially glycated SOD-1 in several ratios, it was found that free and glycated SOD-1 have the same ionization efficiencies. The percentage of glycation on SOD-1 was measured in 30 individuals, including patients with diabetes mellitus. The glycation levels ranged from 4.5% to below the detection limit. The SOD-1 sample extracted from erythrocytes was fractionated by Glyco-Gel B chromatography, and the separated fractions were analyzed by MS. The mass spectra of absorbed fraction showed significant amounts of non-specific binding of non-glycated proteins to Glyco-Gel B.  相似文献   

6.
应用糖基化蛋白亲和层析技术对兔肌及人红细胞的3-磷酸甘油醛脱氢酶的分离分析表明,兔肌非糖基化GAPDH的比活为180—200单位,而糖基化gGAPDH的为40—50单位,并占该酶蛋白总量的40%。人类红细胞糖基化gGAPDH的活力占其总活力的55%左右。以上结果表明:哺乳动物体内存在糖基化3-磷酸甘油醛脱氢酶。由于(1)糖基化明显影响GAPDH的活力;(2)糖基化酶活性部位的巯基(Cys-149)空间位置发生了改变;(3)糖基化影响活性部位的空间构象及(4)OPT对糖基化及非糖基化酶的修饰无论在动力学上还是在KI淬灭时都有明显差异,因此,糖基化的位点可能与赖氨酸残基有关,并且接近或位于酶的活性部位。  相似文献   

7.
应用糖基化蛋白亲和层析技术对兔肌及人红细胞的3-磷酸甘油醛脱氢酶的分离分析表明,兔肌非糖基化GAPDH的比活为180—200单位,而糖基化gGAPDH的为40—50单位,并占该酶蛋白总量的40%。人类红细胞糖基化gGAPDH的活力占其总活力的55%左右。以上结果表明:哺乳动物体内存在糖基化3-磷酸甘油醛脱氢酶。由于(1)糖基化明显影响GAPDH的活力;(2)糖基化酶活性部位的巯基(Cys-149)空间位置发生了改变;(3)糖基化影响活性部位的空间构象及(4)OPT对糖基化及非糖基化酶的修饰无论在动力学上还是在KI淬灭时都有明显差异,因此,糖基化的位点可能与赖氨酸残基有关,并且接近或位于酶的活性部位。  相似文献   

8.
Non-enzymatic glycation is a common post-translational modification of tissue and plasma proteins which can impair their functions in living organisms. In this study, the authors have demonstrated for the first time an inhibitory effect of in vitro glycation on the catalytic activity of alanine aminotransferase (ALT, EC 2.6.1.2), a pyridoxal phosphate enzyme with several lysine residues in the molecule. The porcine heart enzyme was incubated with 50 mmol/l D-fructose, D-glucose, D,L-glyceraldehyde, or D-ribose in 0.1 mol/l phosphate buffer (pH 7.4) at 25°C for up to 20 days. The strongest glycation effect was shown by D,L-glyceraldehyde, which caused complete enzyme inhibition within 6 days. After 20 days of incubation, the ALT activity in samples with D-fructose and D-ribose was less than 7% of the initial enzyme activity. A statistically significant effect of D-glucose on the enzymatic activity of ALT was not found. Incubation of ALT with D-fructose, D,L-glyceraldehyde and D-ribose minimized its catalytic activity both in the glycated and non-glycated fractions of the samples. Markedly higher activity was found in the glycated fraction with glucose. The inhibitory effect of glycation of ALT with D-fructose and D-ribose was found to be more intensive in the presence of L-alanine and weaker in the presence of 2-oxoglutarate. The findings suggest that glycation of the e-amino group of Lys313 as a crucial part of the catalytic site of ALT may contribute to ALT inactivation in the presence of glycating sugars. Nevertheless, glycation of lysine residues outside the active center of ALT seems to be primary.  相似文献   

9.
Several approaches were explored for obtaining high sequence coverage in protein modification studies performed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Human serum albumin (HSA, 66.5kDa) was used as a model protein for this work. Experimental factors considered in this study included the type of matrix used for MALDI-TOF MS, the protein digestion method, and the use of fractionation for peptide digests prior to MALDI-TOF MS analysis. A mixture of alpha-cyano-4-hydroxycinnamic acid and 2,5-dihydroxybenzoic acid was employed as the final matrix for HSA. When used with a tryptic digest, this gave unique information on only half of the peptides in the primary structure of HSA. However, the combined use of three enzyme digests based on trypsin, endoproteinase Lys-C, and endoproteinase Glu-C increased this sequence coverage to 72.8%. The use of a ZipTip column to fractionate peptides in these digests prior to analysis increased the sequence coverage to 97.4%. These conditions made it possible to examine unique peptides from nearly all of the structure of HSA and to identify specific modifications to this protein (e.g., glycation sites). For instance, Lys199 was confirmed as a glycation site on normal HSA, whereas Lys536 and Lys389 were identified as additional modification sites on minimally glycated HSA.  相似文献   

10.
Aromatic amino acid aminotransferase is active toward both aromatic and dicarboxylic amino acids, and the mechanism for this dual substrate recognition has been an issue in the enzymology of this enzyme. Here we show that, in the reactions with aromatic and dicarboxylic ligands, the pK(a) of the Schiff base formed between the coenzyme pyridoxal 5'-phosphate and Lys258 or the substrate increases successively from 6.6 in the unliganded enzyme to approximately 8.8 in the Michaelis complex and to >10.5 in the external Schiff base complex. Mutations of Arg292 and Arg386 to Leu, which mimic neutralization of the positive charges of the two arginine residues by the ligand carboxylate groups, increased the Schiff base pK(a) by 0.1 and 0.7 unit, respectively. In contrast to these moderate effects of the Arg mutations, the cleavage of the Lys258 side chain of the Schiff base, which was brought about by preparing a mutant enzyme in which Lys258 was changed to Ala and the Schiff base was reconstituted with methylamine, produced the Schiff base pK(a) value of 10.2, that being 3.6 units higher than that of the wild-type enzyme. The observation indicates that the Schiff base pK(a) in the enzyme is lowered by the torsion around the C4-C4' axis of the Schiff base and suggests that the pK(a) is mainly controlled by changing the torsion angle during the course of catalysis. This mechanism, first observed for the reaction of aspartate aminotransferase with aspartate [Hayashi, H., Mizuguchi, H., and Kagamiyama, H. (1998) Biochemistry 37, 15076-15085], does not require the electrostatic contribution from the omega-carboxylate group of the substrate, and can explain why in aromatic amino acid aminotransferase the aromatic substrates can increase the Schiff base pK(a) during catalysis to the same extent as the dicarboxylic substrates. This is the first example in which the torsion pK(a) coupling of the pyridoxal 5'-phosphate Schiff base has been demonstrated in pyridoxal enzymes other than aspartate aminotransferase, and suggests the generality of the mechanism in the catalysis of aminotransferases related to aspartate aminotransferase.  相似文献   

11.
Glucose spontaneously reacts with hemoglobin amino groups to produce unstable Schiff base complexes that can dissociate or rearrange to form stable Amadori products. We used dynamic capillary isoelectric focusing and boronate affinity chromatography to assess the formation and dissociation of unstable hemoglobin complexes in vitro. Formation was studied by incubating erythrocytes at 37°C for up to 24h in phosphate-buffered saline (PBS) supplemented with 0 to 55.6 mmol/L glucose. Dissociation was studied by incubating glucose-loaded erythrocytes in PBS without glucose. Dynamic capillary isoelectric focusing separated hemoglobin A1c into two subfractions identified as A1c1 and A1c2. The A1c1 subfraction contained both stable and unstable hemoglobin complexes. The A1c2 subfraction contained only unstable hemoglobin complexes. Both subfractions quantitatively increased in the presence of glucose and decreased in its absence. Rates of increase and decrease were faster and time to equilibrium was shorter for A1c2 (~4 h) compared with A1c1 (~20 h). Unstable hemoglobin complexes did not bind to boronate affinity columns but instead eluted intact in A1c1 and A1c2 subfractions from nonglycated affinity fractions. Cyanoborohydride reduction confirmed the presence of Schiff base complexes. Evidence of multiple unstable hemoglobin complexes with different rates of glycation suggests that new models are needed to describe nonenzymatic hemoglobin glycation.  相似文献   

12.
Post-translational modifications in lens crystallins due to glycation and oxidation have been suggested to play a significant role in the development of cataracts associated with aging and diabetes. We have previously shown that alpha-keto acids, like pyruvate, can protect the lens against oxidation. We hypothesize that they can also prevent the glycation of proteins competitively by forming a Schiff base between their free keto groups and the free -NH(2) groups of protein as well as subsequently inhibit the oxidative conversion of the initial glycation product to advanced glycation end products (AGE). The purpose of this study was to investigate these possibilities using purified crystallins. The crystallins isolated from bovine lenses were incubated with fructose in the absence and presence of pyruvate. The post-incubation mixtures were analyzed for fructose binding to the crystallins, AGE formation, and the generation of high molecular weight (HMW) proteins. In parallel experiments, the keto acid was replaced by catalase, superoxide dismutase (SOD), or diethylene triaminepentaacetic acid (DTPA). This was done to ascertain oxidative mode of pyruvate effects. Interestingly, the glycation and consequent formation of AGE from alpha-crystallin was more pronounced than from beta-, and gamma-crystallins. The changes in the crystallins brought about by incubation with fructose were prevented by pyruvate. Catalase, SOD, and DTPA were also effective. The results suggest that pyruvate prevents against fructose-mediated changes by inhibiting the initial glycation reaction as well as the conversion of the initial glycated product to AGE. Hence it is effective in early as well as late phases of the reactions associated with the formation of HMW crystallin aggregates.  相似文献   

13.
Nonenzymatically glycated proteins are preferentially transported across the glomerular filtration barrier, and the glomerular mesangium in diabetes is bathed with serum containing increased concentrations of glycated albumin. We investigated effects of glycated albumin on mesangial cells, which are involved in diabetic nephropathy. [3H]-thymidine incorporation was significantly inhibited when murine mesangial cells were grown in culture media containing human serum that had been nonenzymatically glycated by incubation for 4 days with 28 mM glucose. This inhibition was reversed when monoclonal antibodies that selectively react with Amadori products of glycated albumin were added to the culture media. Purified glycated albumin containing Amadori adducts of the glycation reaction induced significant inhibition of thymidine incorporation and stimulation of Type IV collagen secretion compared with cells cultured in the presence of purified nonglycated albumin. These changes were prevented when monoclonal antibodies specifically reactive with fructosyl-lysine epitopes in glycated albumin were added to the cultures. The antibodies had no effect on growth or collagen production in the presence of nonglycated albumin. The results provide the first evidence directly implicating Amadori adducts in glycated albumin in the pathogenesis of diabetic nephropathy, which is characterized by decreased cellularity in association with expansion of the mesangial matrix.  相似文献   

14.
Effect of phosphate on the kinetics and specificity of glycation of protein   总被引:1,自引:0,他引:1  
The glycation (nonenzymatic glycosylation) of several proteins was studied in various buffers in order to assess the effects of buffering ions on the kinetics and specificity of glycation of protein. Incubation of RNase with glucose in phosphate buffer resulted in inactivation of the enzyme because of preferential modification of lysine residues in or near the active site. In contrast, in the cationic buffers, 3-(N-morpholino)propane-sulfonic acid and 3-(N-tris(hydroxymethyl)methyl-amino)-2-hydroxypropanesulfonic acid, the kinetics of glycation of RNase were decreased 2- to 3-fold, there was a decrease in glycation of active site versus peripheral lysines, and the enzyme was resistant to inactivation by glucose. The extent of Schiff base formation on RNAse was comparable in the three buffers, suggesting that phosphate, bound in the active site of RNase, catalyzed the Amadori rearrangement at active site lysines, leading to the enhanced rate of inactivation of the enzyme. Phosphate catalysis of glycation was concentration-dependent and could be mimicked by arsenate. Phosphate also stimulated the rate of glycation of other proteins, such as lysozyme, cytochrome c, albumin, and hemoglobin. As with RNase, phosphate affected the specificity of glycation of hemoglobin, resulting in increased glycation of amino-terminal valine versus intrachain lysine residues. 2,3-Diphosphoglycerate exerted similar effects on the glycation of hemoglobin, suggesting that inorganic and organic phosphates may play an important role in determining the kinetics and specificity of glycation of hemoglobin in the red cell. Overall, these studies establish that buffering ions or ligands can exert significant effects on the kinetics and specificity of glycation of proteins.  相似文献   

15.
This study evaluates the nature of glycated human insulin formed following exposure to hyperglycemic conditions in vitro. Glycated insulin was purified by RP-HPLC and its molecular mass (5971.3 Da) determined by plasma desorption mass spectrometry (MS). The difference in mass (163.7 Da) from nonglycated insulin (5807.6 Da) corresponds to a single reduced glucose (glucitol) residue. Following reduction of insulin disulfide bridges, MS confirmed that the B-chain was glycated. Enzymatic digestions with trypsin, endoproteinase Glu-C, and thermolysin, followed by RP-HPLC and identification of fragments by MS, localized glycation to the B-chain (1–5) region. Electrospray tandem MS identified the site of glycation as the B-chain NH2-terminal Phe1 residue. This was confirmed by automated Edman degradation with glycated human insulin.  相似文献   

16.
Superoxide production from nonenzymatically glycated protein   总被引:10,自引:0,他引:10  
T Sakurai  S Tsuchiya 《FEBS letters》1988,236(2):406-410
Nonenzymatically glycated human serum albumin and glycated poly-lysine(Lys) in vitro brought about the reduction of nitroblue tetrazolium and ferricytochrome c at pH 9.06 and pH 7.8, respectively. This reduction was inhibited partially by superoxide dismutase (SOD). Glycated poly-Lys caused the oxidation of NADH in the presence of LDH at pH 7.0 which was completely inhibited by SOD. Glycated material was found to function both as a reductant and an oxidant. The reactivity of glycated material is discussed and a possible mechanism by which superoxide is produced is proposed. Results may give a clue to diabetic complications.  相似文献   

17.
糖基化3-磷酸甘油醛脱氢酶的含糖量及其构象变化   总被引:2,自引:1,他引:1  
通过对GAPDH及gGAPDH含糖量、CD、荧光及DTNB的修饰表明:用间氨基苯硼酸琼脂糖(m-APBA-SepharoseCL6B)亲和层析法分离的兔肌gGAPDH每分子含有1.89个糖基。gGAPDH及GAPDH的远紫外CD谱差别较小,但近紫外差别较明显。两者内源荧光在不同浓度的GuHCl溶液中的变化亦有一定差异。DTNB对酶活性部位巯基的修饰表明,gGAPDH的DTNB修饰的快相一级动力学常数大于GAPDH动力学常数一个数量级。以上结果提示:糖基化导致酶分子及活性部位的空间结构改变,糖基化位点可能发生在酶活性部位附近。  相似文献   

18.
通过对GAPDH及gGAPDH含糖量、CD、荧光及DTNB的修饰表明:用间氨基苯硼酸琼脂糖(m-APBA-SepharoseCL6B)亲和层析法分离的兔肌gGAPDH每分子含有1.89个糖基。gGAPDH及GAPDH的远紫外CD谱差别较小,但近紫外差别较明显。两者内源荧光在不同浓度的GuHCl溶液中的变化亦有一定差异。DTNB对酶活性部位巯基的修饰表明,gGAPDH的DTNB修饰的快相一级动力学常数大于GAPDH动力学常数一个数量级。以上结果提示:糖基化导致酶分子及活性部位的空间结构改变,糖基化位点可能发生在酶活性部位附近。  相似文献   

19.
The secretory enzyme extracellular-superoxide dismutase (EC-SOD) has affinity for heparin and some other sulfated glycosaminoglycans and is in vivo bound to heparan sulfate proteoglycan. Nonenzymic glycation of EC-SOD, both in vivo and in vitro, is associated with a reduction in heparin affinity, whereas the enzymic activity is not affected. The glycation sites in EC-SOD are further studied in the present article. It is shown that modification of a few of the five lysyl residues of the subunits of the enzyme with trinitrobenzene sulfonic acid nearly abolishes the in vitro glycation susceptibility. From a chymotryptic digest of in vitro glycated EC-SOD, two peptides with affinity for boronate could be isolated. Amino acid sequence analysis showed that both encompassed the carboxyterminal end. epsilon-Glucitol lysine was identified in both peptides at positions 211 and 212. The primary glycation sites in EC-SOD are thus lysine-211 and lysine-212 in the putative heparin-binding domain in the carboxyterminal end.  相似文献   

20.
Incubation of adenylosuccinate synthetase from Escherichia coli with low concentrations of pyridoxal 5'-phosphate (PLP) resulted in a rapid loss of activity (92%), concomitant with the formation of a Schiff base. The inactivation of the enzyme by PLP is apparently first order with respect to PLP. The pseudo-first order rate constant, Kapp, showed a hyperbolic dependence on the concentration of PLP, indicating that a kinetically significant PLP.enzyme intermediate is formed during the inactivation process. Stoichiometry and peptide isolation studies showed that 2 lysine residues were modified during reaction of the enzyme with PLP. The three substrates of adenylosuccinate synthetase (GTP, IMP, and aspartate) showed different effects in their ability to protect the enzyme against PLP inactivation. Complete protection of the enzyme against inactivation can be observed only in the presence of high concentrations of GTP. One lysine residue was protected under these conditions. In contrast to GTP, addition of the other two substrates either alone or together to reaction mixtures did not render protection. Peptide mapping by digesting the enzyme with trypsin revealed that the lysine shielded by GTP is Lys140. Replacing the Lys140 with Ile140 by site-directed mutagenesis resulted in total loss of the activity. These results suggest that Lys140 may play an important role in enzymatic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号