首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
De Strooper B 《Cell》2005,122(3):318-320
The gamma-secretase intramembrane protease cleaves many type I membrane proteins including amyloid precursor protein and Notch, generating peptide fragments that are important signaling components. In this issue of Cell, Shah et al. (2005) reveal the function of nicastrin, the largest member of the gamma-secretase complex. They show that the nicastrin extracellular domain is essential for recognition of substrate by the gamma-secretase.  相似文献   

2.
Nicastrin (NCT) is a type I integral membrane protein that is one of the four essential components of the gamma-secretase complex, a protein assembly that catalyzes the intramembranous cleavage of the amyloid precursor protein and Notch. Other gamma-secretase components include presenilin-1 (PS1), APH-1, and PEN-2, all of which span the membrane multiple times. The mechanism by which NCT associates with the gamma-secretase complex and regulates its activity is unclear. To avoid the misfolding phenotype often associated with introducing deletions or mutations into heavily glycosylated and disulfide-bonded proteins such as NCT, we produced chimeras between human (hNCT) and Caenorhabditis elegans NCT (ceNCT). Although ceNCT did not associate with human gamma-secretase components, all of the ceNCT/hNCT chimeras interacted with gamma-secretase components from human, C. elegans, or both, indicating that they folded correctly. A region at the C-terminal end of hNCT, encompassing the last 50 residues of its ectodomain, the transmembrane domain, and the cytoplasmic domain was important for mediating interactions with human PS1, APH-1, and PEN-2. This finding is consistent with the fact that the bulk of the gamma-secretase complex proteins resides within the membrane, with relatively small extramembranous domains. Finally, hNCT associated with hAPH-1 in the absence of PS, consistent with NCT and APH-1 forming a subcomplex prior to association with PS1 and PEN-2 and indicating that the interactions between NCT with PS1 may be indirect or stabilized by the presence of APH-1.  相似文献   

3.
Using a biochemical and cell biological approach, we have identified a cell interaction site at the carboxyl terminus of tropoelastin. Cell interactions with the COOH-terminal sequence are not through the elastin-binding protein (EBP67) because neither VGVAPG-like peptides nor galactoside sugars altered adhesion. Our results also show that cell adhesion to tropoelastin is not promoted by integrins. Through the use of mutant Chinese hamster ovary cell lines defective in glycosaminoglycan biosynthesis, as well as competition studies and enzymatic removal of specific cell-surface glycosaminoglycans, the tropoelastin-binding moieties on the cell surface were identified as heparan and chondroitin sulfate-containing glycosaminoglycans, with heparan sulfate being greatly preferred. Heparin affinity chromatography combined with cell adhesion assays identified the last 17 amino acids as the sequence element at the carboxyl terminus of tropoelastin responsible for the adhesive activity.  相似文献   

4.
The gamma-secretase complex is responsible for the proteolysis of integral membrane proteins. Nicastrin has been proposed to operate as the substrate receptor of the complex with the glutamate 332 (Glu(333) in human) serving as the anionic binding site for the alpha-amino-terminal group of substrates. The putative binding site is located within the aminopeptidase-like domain of Nicastrin. The Glu(332) is proposed to function as the counterpart of the exopeptidase Glu located in the active site of these peptidases. Although Glu(332) could bind the alpha-amino-terminal group of substrates, we hypothesized, in analogy with M28-aminopeptidases, that other residues in the putative binding site of Nicastrin should participate in the interaction as well. Surprisingly, mutagenesis of these residues affected the in vivo processing of APP and Notch substrates only weakly. In addition, the E332Q mutation, which completely abolishes the anionic alpha-amino-terminal binding function, remained fully active. When we introduced the previously characterized E332A mutation, we found strongly decreased gamma-secretase complex levels, but the remaining complex appeared as active as the wild-type complex. We confirmed in two independent in vitro assays that the specific enzymatic activity of the E332A mutant was comparable with that of the wild-type complex. Thus, Glu(332) crucially affects complex maturation rather than substrate recognition. Moreover other Nicastrin mutants, designed to either impede or alter substantially the putative binding pocket, affected only marginally gamma-secretase activity. Consequently, these studies indicate that the main role of the Glu(332) is in the maturation and assembly of gamma-secretase rather than in the recognition of the substrates.  相似文献   

5.
Protein kinase D (PKD)/protein kinase Cmu is a serine/threonine protein kinase that has been localized in the cytosol and in several intracellular compartments including Golgi, mitochondria and plasma membrane. Using real time imaging of fluorescent protein (GFP)-tagged PKD, we have found that the accumulation of PKD in the Golgi compartment, following a temperature shift from 37 to 20 degrees C, was mediated by the cysteine-rich domain (CRD) of PKD. The CRD of PKD also mediates its interaction with the plasma membrane, further supporting the conclusion that the CRD of PKD may act as a subcellular localization signal.  相似文献   

6.
gamma-Secretase is a multimeric membrane protein complex comprised of presenilin (PS), nicastrin (Nct), Aph-1, and Pen-2. It is a member of an atypical class of aspartic proteases that hydrolyzes peptide bonds within the membrane. During the biosynthetic process of the gamma-secretase complex, Nct and Aph-1 form a heterodimeric intermediate complex and bind to the C-terminal region of PS, serving as a stabilizing scaffold for the complex. Pen-2 is then recruited into this trimeric complex and triggers endoproteolysis of PS, conferring gamma-secretase activity. Although the Pen-2 accumulation depends on PS, the binding partner of Pen-2 within the gamma-secretase complex remains unknown. We reconstituted PS1 in Psen1/Psen2 deficient cells by expressing a series of PS1 mutants in which one of the N-terminal six transmembrane domains (TMDs) was swapped with those of CD4 (a type I transmembrane protein) or CLAC-P (a type II transmembrane protein). We report that the proximal two-thirds of TMD4 of PS1, including the conserved Trp-Asn-Phe sequence, are required for its interaction with Pen-2. Using a chimeric CD4 molecule harboring PS1 TMD4, we further demonstrate that the PS1 TMD4 bears a direct binding motif to Pen-2. Pen-2 may contribute to the activation of the gamma-secretase complex by directly binding to the TMD4 of PS1.  相似文献   

7.
gamma-Secretase, which is responsible for the intramembranous cleavage of Alzheimer beta-amyloid precursor protein and the signaling receptor Notch, is a multiprotein complex consisting of at least four components: presenilin (PS); nicastrin (Nct); APH-1 (anterior pharynx-defective-1); and presenilin enhancer-2 (PEN-2). Presenilin 1 (PS1) is known to be essential for the stability, interaction, and trafficking of the other PS1/gamma-secretase components. However, the precise functions of the other components remain elusive. Here, we investigated the functions of Nct within the PS1/gamma-secretase complex. We demonstrated that the loss of Nct expression in the embryonic fibroblast cells (Nct KO cells) results in dramatically decreased levels of APH-1, PEN-2, and PS1 fragments accompanied by a significant accumulation of full-length PS1. In the absence of Nct, PEN-2 and full-length PS1 are subjected to proteasome-mediated degradation, whereas the degradation of APH-1 is mediated by both proteasomal and lysosomal pathways. Unlike the case of wild type cells in which the gamma-secretase complex mainly locates in the trans-Golgi network, the majority of residual PEN-2, APH-1, and the uncleaved full-length PS1 in Nct KO cells reside in the endoplasmic reticulum, which remain associated with each other in the absence of Nct. Interestingly, significant amounts of full-length PS1 and PEN-2, but not APH-1, are detected on the plasma membrane in Nct KO cells, suggesting the Nct-independent cell surface delivery of the PEN-2.PS1. Finally, the diminished PEN-2 protein level in Nct-deficient cells can be partially restored by overexpression of exogenous PS1, APH-1, or PEN-2 individually or collectively, indicating a dispensable role for Nct in controlling PEN-2 level. Taken together, our study demonstrates a critical role of Nct in the stability and proper intracellular trafficking of other components of the PS1/ gamma-secretase complex but not in maintaining the association of PEN-2, APH-1, and full-length PS1.  相似文献   

8.
The ability of protein kinase C and casein kinase 2 substrate in neurons (PACSIN)/syndapin proteins to self-polymerize is crucial for the simultaneous interactions with more than one Src homology 3 domain-binding partner or with lipid membranes. The assembly of this network has profound effects on the neural Wiskott-Aldrich syndrome protein-mediated attachment of the actin polymerization machinery to vesicle membranes as well as on the movement of the corresponding vesicles. Also, the sensing of vesicle membranes and/or the induction of membrane curvature are more easily facilitated in the presence of larger PACSIN complexes. The N-terminal Fes-CIP homology and Bin-Amphiphysin-Rvs (F-BAR) domains of several PACSIN-related proteins have been shown to mediate self-interactions, whereas studies using deletion mutants derived from closely related proteins led to the view that oligomerization depends on the formation of a trimeric complex via a coiled-coil region present in these molecules. To address whether the model of trimeric complex formation is applicable to PACSIN 1, the protein was recombinantly expressed and tested in four different assays for homologous interactions. The results showed that PACSIN 1 forms tetramers of about 240 kDa, with the self-interaction having a K(D) of 6.4 x 10(-8) M. Ultrastructural analysis of these oligomers after negative staining showed that laterally arranged PACSIN molecules bind to each other via a large globular domain and form a barrel-like structure. Together, these results demonstrate that the N-terminal F-BAR domain of PACSIN 1 forms the contact site for a tetrameric structure, which is able to simultaneously interact with multiple Src homology 3 binding partners.  相似文献   

9.
gamma-Secretase is a lipid-embedded, intramembrane-cleaving aspartyl protease that cleaves its substrates twice within their transmembrane domains (TMD): once near the cytosolic leaflet (at S3/epsilon) and again in the middle of the TMD (at S4/gamma). To address whether this unusual process occurs in two independent or interdependent steps, we investigated how mutations at the S3/epsilon site in Notch1-based substrates impact proteolysis. We demonstrate that such mutations greatly inhibit not only gamma-secretase-mediated cleavage at S3 but also at S4, independent of their impact on NICD stability. These results, together with our previous observations, suggest that hydrolysis at the center of the Notch transmembrane domain (S4/gamma) is dependent on the S3/epsilon cleavage. Notch (and perhaps all gamma-secretase substrates) may be cleaved by sequential proteolysis starting at S3.  相似文献   

10.
Single-point mutations in the transmembrane (TM) region of receptor tyrosine kinases (RTKs) can lead to abnormal ligand-independent activation. We use a combination of computational modeling, NMR spectroscopy and cell experiments to analyze in detail the mechanism of how TM domains contribute to the activation of wild-type (WT) PDGFRA and its oncogenic V536E mutant. Using a computational framework, we scan all positions in PDGFRA TM helix for identification of potential functional mutations for the WT and the mutant and reveal the relationship between the receptor activity and TM dimerization via different interfaces. This strategy also allows us design a novel activating mutation in the WT (I537D) and a compensatory mutation in the V536E background eliminating its constitutive activity (S541G). We show both computationally and experimentally that single-point mutations in the TM region reshape the TM dimer ensemble and delineate the structural and dynamic determinants of spontaneous activation of PDGFRA via its TM domain. Our atomistic picture of the coupling between TM dimerization and PDGFRA activation corroborates the data obtained for other RTKs and provides a foundation for developing novel modulators of the pathological activity of PDGFRA.  相似文献   

11.
Cyclin E-Cdk2 is essential for S phase entry. To identify genes interacting with cyclin E, we carried out a genetic screen using a hypomorphic mutation of Drosophila cyclin E (DmcycE(JP)), which gives rise to adults with a rough eye phenotype. Amongst the dominant suppressors of DmcycE(JP), we identified brahma (brm) and moira (mor), which encode conserved core components of the Drosophila Brm complex that is highly related to the SWI-SNF ATP-dependent chromatin remodeling complex. Mutations in genes encoding other Brm complex components, including snr1 (BAP45), osa and deficiencies that remove BAP60 and BAP111 can also suppress the DmcycE(JP) eye phenotype. We show that Brm complex mutants suppress the DmcycE(JP) phenotype by increasing S phases without affecting DmcycE protein levels and that DmcycE physically interacts with Brm and Snr1 in vivo. These data suggest that the Brm complex inhibits S phase entry by acting downstream of DmcycE protein accumulation. The Brm complex also physically interacts weakly with Drosophila retinoblastoma (Rbf1), but no genetic interactions were detected, suggesting that the Brm complex and Rbf1 act largely independently to mediate G(1) arrest.  相似文献   

12.
The intramembranous cleavage of Alzheimer beta-amyloid precursor protein and the signaling receptor Notch is mediated by the presenilin (PS, PS1/PS2)-gamma-secretase complex, the components of which also include nicastrin, APH-1, and PEN-2. In addition to its essential role in gamma-secretase activity, we and others have reported that PS1 plays a role in intracellular trafficking of select membrane proteins including nicastrin. Here we examined the fate of PEN-2 in the absence of PS expression or gamma-secretase activity. We found that PEN-2 is retained in the endoplasmic reticulum and has a much shorter half-life in PS-deficient cells than in wild type cells, suggesting that PSs are required for maintaining the stability and proper subcellular trafficking of PEN-2. However, the function of PS in PEN-2 trafficking is distinct from its contribution to gamma-secretase activity because inhibition of gamma-secretase activity by gamma-secretase inhibitors did not affect the PEN-2 level or its egress from the endoplasmic reticulum. Instead, membrane-permeable gamma-secretase inhibitors, but not a membrane-impermeable derivative, markedly increased the cell surface levels of PS1 and PEN-2 without affecting that of nicastrin. In support of its role in PEN-2 trafficking, PS1 was also required for the gamma-secretase inhibitor-induced plasma membrane accumulation of PEN-2. We further showed that gamma-secretase inhibitors specifically accelerated the Golgi to the cell surface transport of PS1 and PEN-2. Taken together, we demonstrate an essential role for PSs in intracellular trafficking of the gamma-secretase components, and that selective gamma-secretase inhibitors differentially affect the trafficking of the gamma-secretase components, which may contribute to an inactivation of gamma-secretase.  相似文献   

13.
Kornilova AY  Kim J  Laudon H  Wolfe MS 《Biochemistry》2006,45(24):7598-7604
Gamma-secretase is a founding member of membrane-embedded aspartyl proteases that cleave substrates within transmembrane domains, and this enzyme is an important target for the development of therapeutics for Alzheimer's disease. The structure of gamma-secretase and its precise catalytic mechanism still remain largely unknown. Gamma-secretase is a complex of four integral membrane proteins, with presenilin (PS) as the catalytic component. To gain structural and functional information about the nine-transmembrane domain (TMD) presenilin, we employed a cysteine mutagenesis/disulfide cross-linking approach. Here we report that native Cys92 is close to both Cys410 and Cys419, strongly implying that TMD1 and TMD8 are adjacent to each other. This structural arrangement also suggests that TMD8 is distorted from an ideal helix. Importantly, binding of an active site directed inhibitor, but not a docking site directed inhibitor, reduces the ability of the native cysteine pairs of PS1 to cross-link upon oxidation. These findings suggest that the conserved cysteines of TMD1 and TMD8 contribute to or allosterically interact with the active site of gamma-secretase.  相似文献   

14.
P Scheiffele  M G Roth    K Simons 《The EMBO journal》1997,16(18):5501-5508
Sphingolipid-cholesterol rafts are microdomains in biological membranes with liquid-ordered phase properties which are implicated in membrane traffic and signalling events. We have used influenza virus haemagglutinin (HA) as a model protein to analyse the interaction of transmembrane proteins with these microdomains. Here we demonstrate that raft association is an intrinsic property encoded in the protein. Mutant HA molecules with foreign transmembrane domain (TMD) sequences lose their ability to associate with the lipid microdomains, and mutations in the HA TMD reveal a requirement for hydrophobic residues in contact with the exoplasmic leaflet of the membrane. We also provide experimental evidence that cholesterol is critically required for association of proteins with lipid rafts. Our data suggest that the binding to specific membrane domains can be encoded in transmembrane proteins and that this information will be used for polarized sorting and signal transduction processes.  相似文献   

15.
The activity of the gamma-secretase complex is critical for the processing of a number of transmembrane proteins, including Notch. Functional gamma-secretase activity can be reconstituted from four proteins--presenilin, nicastrin, Pen-2 and Aph-1--but the role of the individual proteins remains unclear. In this report we describe the cellular localization and protein interactions of Aph-1, with particular regard to Notch receptor processing. We found that Aph-1 is present at the cell surface, where it interacts with Pen-2, the mature forms of presenilin and nicastrin, and full-length Notch. Aph-1 also interacts with a truncated form of Notch, which is a direct substrate for gamma-secretase, but not with the Notch intracellular domain. Immunoprecipitation data for Notch and Aph-1 showed that the Notch-containing gamma-secretase complexes most likely form a small subset of the total number of gamma-secretase complexes. In conclusion, these data demonstrate that Aph-1 is present at the cell surface, presumably in active gamma-secretase complexes, and interacts with the Notch receptor, both before and after ligand activation.  相似文献   

16.
Nicastrin is genetically linked to Notch/lin-12 signaling in C. elegans and is part of a large multiprotein complex along with Presenilin. Here we describe the isolation and characterization of Drosophila Nicastrin (Nic) mutants. Nic mutants and tissue clones display characteristic Notch-like phenotypes. Genetic and inhibitor studies indicate a function for Nicastrin in the gamma-secretase step of Notch processing, similar to Presenilin. Further, Nicastrin is genetically required for signaling from membrane-anchored activated Notch. In the absence of Nicastrin, Presenilin is destabilized and mature C-terminal subunits are absent. Nicastrin might recruit gamma-secretase substrates into the proteolytic complex as a prerequisite for Presenilin maturation and active complex assembly.  相似文献   

17.
18.
RNA interference (RNAi) plays a crucial role as an antiviral defense in several organisms including plants and invertebrates. An understanding of RNAi machineries especially protein components of the RNA-induced silencing complex (RISC) is essential for prior to applying RNAi as a tool for viral protective immunity in shrimp. Tudor staphylococcal nuclease (TSN) is an evolutionarily conserved protein and is one of the RISC components. In previous study, suppression of Penaeus monodon TSN (PmTSN) by double-stranded RNA (dsRNA) resulted in decreasing dsRNA-mediated gene silencing activity. To elucidate the functional significance of PmTSN in shrimp RNAi pathway, interactions between PmTSN and three Argonaute proteins (PmAgo) were characterized by yeast two-hybrid and in vitro pull-down assays. The results demonstrated that PmTSN interacted with PmAgo1, but not with PmAgo2 or PmAgo3. The interaction between PmAgo and PmTSN was mediated through the N-terminal domain of PmAgo1 and the SN1-2 domains of PmTSN. Analysis of the nuclease activity of the recombinant PmTSN indicated that PmTSN possessed calcium-dependent nuclease activity specific to single-stranded RNA (ssRNA), but not dsRNA and DNA. Knockdown of PmAgo1 and PmTSN diminished the ability of dsRNA-Rab7 to knockdown PmRab7 expression, indicating the involvement of PmAgo1 and PmTSN in shrimp RNAi pathway. Taken together, the results imply that PmTSN is one of the components of PmAgo1-RISC, thus providing new insights in the RNAi-based mechanism in shrimp.  相似文献   

19.
The N-terminal domain of thrombospondin-1 (TSPN-1) mediates the protein's interaction with (1) glycosaminoglycans, calreticulin, and integrins during cellular adhesion, (2) low-density lipoprotein receptor-related protein during uptake and clearance, and (3) fibrinogen during platelet aggregation. The crystal structure of TSPN-1 to 1.8 A resolution is a beta sandwich with 13 antiparallel beta strands and 1 irregular strand-like segment. Unique structural features of the N- and C-terminal regions, and the disulfide bond location, distinguish TSPN-1 from the laminin G domain and other concanavalin A-like lectins/glucanases superfamily members. The crystal structure of the complex of TSPN-1 with heparin indicates that residues R29, R42, and R77 in an extensive positively charged patch at the bottom of the domain specifically associate with the sulfate groups of heparin. The TSPN-1 structure and identified adjacent linker region provide a structural framework for the analysis of the TSPN domain of various molecules, including TSPs, NELLs, many collagens, TSPEAR, and kielin.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号