首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

We have studied the binding of the hybrid netropsin-flavin (Net-Fla) molecule onto four sequences containing four A.T base pairs. Molecular mechanics minimizations in vacuo show numerous minimal conformations separated by one base pair. 400 ps molecular dynamics simulations in vacuo have been performed using the lowest minima as the starting conformations. During these simulations, the flavin moiety of the drug makes two hydrogen bonds with an amino group of a neighboring guanine. A 200 ps molecular dynamics simulation in explicit water solution suggests that the binding of Net-Fla upon the DNA substrate is enhanced by water bridges. A water molecule bridging the amidinium of Net-Fla to the N3 atom of an adenine seems to be stuck in the dmg-DNA complex during the whole simulation. The fluctuations of the DNA helical parameters and of the torsion angles of the sugar-phosphate backbone are very similar in the simulations in vacuo and in water. The time auto-correlation functions for the DNA helical parameters decrease rapidly in the picosecond range in vacuo. The same functions computed from the water solution molecular dynamics simulations seem to have two modes: the rapid mode is similar to the behavior in vacuo, and is followed by a slower mode in the 10 ps range.  相似文献   

2.
The parameterization of carbonic anhydrase binding site in OPLS-AA force field was performed using quantum chemistry calculations. Both OH2 and OH? forms of the binding site were considered, showing important differences in terms of atomic partial charges. Three different parameterization protocols were used, and the results obtained highlighted the importance of including an extended binding site in the charge calculation. The force field parameters were subsequently validated using standard molecular dynamics simulations. The results presented in this work should greatly facilitate the use of molecular dynamics simulations for studying the carbonic anhydrase, and more generally, the metallo-enzymes.  相似文献   

3.
Abstract

Equilibrium NPT molecular dynamics computer simulations have been used to determine the chemical potential, partial enthalpy and partial volume of model Ar-Kr mixtures using newly devised non-intrusive particle insertion and particle swap techniques [P. Sindzingre et al. Chemical Physics, 129 (1989) 213]. In this report we examine, for the first time, in some detail the relative convergence statistics of the particle swap and particle insertion methods for these properties for binary Lennard-Jones (LJ) mixtures. Both species are represented by single-site Lennard-Jones pair potentials with Lorentz-Berthelot rules for the cross-species interactions. We show that, over the whole phase diagram and especially in the vicinity of the fluid-solid coexistence line, the particle swap method gives significantly better statistics than the particle insertion method for the difference in chemical potential of the two species, partial enthalpy and partial volume of each species. Also, we find that, using the particle swap method, the difference in the chemical potential converges more rapidly than the differences in the partial enthalpy and volume.  相似文献   

4.
Thioredoxin is a protein that has been used as model system by various computational methods to predict the pKa of aspartate residue Asp26 which is 3.5 units higher than a solvent exposed one (eg, Asp20). Here, we use extensive atomistic molecular dynamics simulations of two different protonation states of Asp26 in combination with conformational analysis based on RMSD clustering and principle component analysis to identify representative conformations of the protein in solution. For each conformation, the Gibbs free energy of proton transfer between Asp26 and Asp20, which is fully solvated in a loop region of the protein, is calculated with the Amber99sb force field in alchemical transformations. The varying polarization of the two residues in different molecular environments and protonation states is described by Hirshfeld-I (HI) atomic charges obtained from the averaged polarized electron density. Our results show that the Gibbs free energy of proton transfer is dependent on the protein conformation, the proper sampling of the neighboring Lys57 residue orientations and on water molecules entering the hydrophobic cavity upon deprotonating Asp26. The inclusion of the polarization of both aspartate residues in the free energy cycle by HI atomic charges corrects the results from the non-polarizable force field and reproduces the experimental ΔpKa value of Asp26.  相似文献   

5.
To better understand bilayer property dependency on lipid electrostatics and headgroup size, we use atomistic molecular dynamics simulations to study negatively charged and neutral lipid membranes. We compare the negatively charged phosphatidic acid (PA), which at physiological pH and salt concentration has a negative spontaneous curvature, with the negatively charged phosphatidylglycerol (PG) and neutrally charged phosphatidylcholine (PC), both of which have zero spontaneous curvature. The PA lipids are simulated using two different sets of partial charges for the headgroup and the varied charge distribution between the two PA systems results in significantly different locations for the Na+ ions relative to the water/membrane interface. For one PA system, the Na+ ions are localized around the phosphate group. In the second PA system, the Na+ ions are located near the ester carbonyl atoms, which coincides with the preferred location site for the PG Na+ ions. We find that the Na+ ion location has a larger effect on bilayer fluidity properties than lipid headgroup size, where the Alipid and acyl chain order parameter values are more similar between the PA and PG bilayers that have Na+ ions located near the ester groups than between the two PA bilayers.  相似文献   

6.
We developed new parameters for molecular dynamics (MD) simulations, namely partial atomic charges, equilibrium bond-lengths, angles, dihedrals, atom types, and force constants of chlorophyll a (Chl) and plastoquinone (PQ), and both reduced and neutral form of primary acceptor (PHO) molecule. These parameters are essential for MD simulations that can interpret various structure functional relationships during primary processes of charge separation and stabilization in photosystem 2 reaction centres.  相似文献   

7.
8.
ABSTRACT

This review describes recent advances by the authors and others on the topic of incorporating experimental data into molecular simulations through maximum entropy methods. Methods which incorporate experimental data improve accuracy in molecular simulation by minimally modifying the thermodynamic ensemble. This is especially important where force fields are approximate, such as when employing coarse-grain models, or where high accuracy is required, such as when attempting to mimic a multiscale self-assembly process. The authors review here the experiment directed simulation (EDS) and experiment directed metadynamics (EDM) methods that allow matching averages and distributions in simulations, respectively. Important system-specific considerations are discussed such as using enhanced sampling simultaneously, the role of pressure, treating uncertainty, and implementations of these methods. Recent examples of EDS and EDM are reviewed including applications to ab initio molecular dynamics of water, incorporating environmental fluctuations inside of a macromolecular protein complex, improving RNA force fields, and the combination of enhanced sampling with minimal biasing to model peptides  相似文献   

9.
Abstract

Nanosecond scale molecular dynamics simulations in water demonstrate that the DNA oligomer, GCGTATATAAAACGC, which contains a target site for the TATA-box binding protein (TBP), has an intrinsic preference to adopt an A-like conformation in the region of the TATA-box and undergoes bending related to that seen within in the TBP complex. This result is obtained from two independent simulations using different starting structures. In line with earlier suggestions of Guzikevich-Guerstein and Shakked, these simulations imply that an A-DNA conformation may be an important intermediate step in forming the strongly distorted DNA observed within the crystallographically determined complex with TBP. These results also support modeling studies by Lebrun et al. which suggest that the TBP binding mechanism can be broken down into a backbone transition to an A-like form coupled with a mechanical distortion which locally stretches and unwinds the DNA.  相似文献   

10.
Abstract

Molecular dynamics (MD) simulations at 37°C have been performed on three phospholipid bilayer systems composed of the lipids DLPE, DOPE, and DOPC. The model used included 24 explicit lipid molecules and explicit waters of solvation in the polar head group regions, together with constant-pressure periodic boundary conditions in three dimensions. Using this model, a MD simulation samples part of an infinite planar lipid bilayer. The lipid dynamics and packing behavior were characterized. Furthermore, using the results of the simulations, a number of diverse properties including bilayer structural parameters, hydrocarbon chain order parameters, dihedral conformations, electron density profile, hydration per lipid, and water distribution along the bilayer normal were calculated. Many of these properties are available for the three lipid systems chosen, making them well suited for evaluating the model and protocols used in these simulations by direct comparisons with experimental data. The calculated MD behavior, chain disorder, and lipid packing parameter, i.e. the ratio of the effective areas of hydrocarbon tails and head group per lipid (at/ah), correctly predict the aggregation preferences of the three lipids observed experimentally at 37°C, namely: a gel bilayer for DLPE, a hexagonal tube for DOPE, and a liquid crystalline bilayer for DOPC. In addition, the model and conditions used in the MD simulations led to good agreement of the calculated properties of the bilayers with available experimental results, demonstrating the reliability of the simulations. The effects of the cis unsaturation in the hydrocarbon chains of DOPE and DOPC, compared to the fully saturated one in DLPE, as well as the effects of the different polar head groups of PC and PE with the same unsaturated chains on the lipid packing and bilayer structure have been investigated. The results of these studies indicate the ability of MD methods to provide molecular-level insights into the structure and dynamics of lipid assemblies.  相似文献   

11.
For the first time a consistent catalytic mechanism of phospholipase C from Bacillus cereus is reported based on molecular mechanics calculations. We have identified the position of the nucleophilic water molecule, which is directly involved in the hydrolysis of the natural substrate, phosphatidylcholine, in phospholipase C. This catalytically essential water molecule, after being activated by an acidic residue (Asp55), performs the nucleophilic attack on the phosphorus atom in the substrate, leading to a trigonal bipyramidal pentacoordinated intermediate (and structurally similar transition state). The subsequent collapse of the intermediate, regeneration of the enzyme, and release of the products has to involve a not yet identified second water molecule. The catalytic mechanism reported here is based on a series of molecular mechanics calculations. First, the x-ray structure of phospholipase C from B. cereus including a docked substrate molecule was subjected to a stepwise molecular mechanics energy minimization. Second, the location of the nucleophilic water molecule in the active site of the fully relaxed enzyme–substrate complex was determined by evaluation of nonbonded interaction energies between the complex and a water molecule. The nucleophilic water molecule is positioned at a distance (3.8 Å) from the phosphorus atom in the substrate, which is in good agreement with experimentally observed distances. Finally, the stability of the complex between phospholipase C, the substrate, and the nucleophilic water molecule was verified during a 100 ps molecular dynamics simulation. During the simulation the substrate undergoes a conformational change, but retains its localization in the active site. The contacts between the enzyme, the substrate, and the nucleophilic water molecule display some fluctuations, but remain within reasonable limits, thereby confirming the stability of the enzyme–substrate–water complex. The protocol developed for energy minimization of phospholipase C containing three zinc ions located closely together at the bottom of the active site cleft is reported in detail. In order to handle the strong electrostatic interactions in the active site realistically during energy minimization, delocalization of the charges from the three zinc ions was considered. Therefore, quantum mechanics calculations on the zinc ions and the zinc-coordinating residues were carried out prior to the molecular mechanics calculations, and two different sets of partial atomic charges (MNDO-Mulliken and AM1-ESP) were applied. After careful assignment of partial atomic charges, a complete energy minimization of the protein was carried out by a stepwise procedure without explicit solvent molecules. Energy minimization with either set of charges yielded structures, which were very similar both to the x-ray structure and to each other, although using AM1-ESP partial atomic charges and a dielectric constant of 4, yielded the best protein structure. © 1997 John Wiley and Sons, Inc. Biopoly 42: 319–336, 1997  相似文献   

12.
A series of 35 triazolopyrimidine analogues reported as Plasmodium falciparum dihydroorotate dehydrogenase (PfDHODH) inhibitors were optimized using quantum mechanics methods, and their binding conformations were studied by docking and 3D quantitative structure–activity relationship studies. Genetic algorithm-based criteria was adopted for selection of training and test sets while maintaining structural diversity of training and test sets, which is also very crucial for model development and validation. Both the comparative molecular field analyses ( q\textLOO2 = 0.841 q_{\text{LOO}}^2 = 0.{841} , r\textncv2 = 0.99 r_{\text{ncv}}^2 = 0.{99} ) and comparative molecular similarity indices analyses ( q\textLOO2 = 0.757 q_{\text{LOO}}^2 = 0.{757} , r\textncv2 = 0.943 r_{\text{ncv}}^2 = 0.{943} ) show excellent correlation and high predictive power. Furthermore, molecular dynamics simulations were performed to explore the binding mode of the two of the most active compounds of the series, 10 and 14. Harmonization in the two simulation results validate the analysis and therefore applicability of docking parameters based on crystallographic conformation of compound 14 bound to receptor molecule. This work provides useful information about the inhibition mechanism of this class of molecules and will assist in the design of more potent inhibitors of PfDHODH.  相似文献   

13.
Atom-centered partial charges are calculated for the Fe-heme in cytochrome P450cam for use in molecular dynamics simulations of polar substrates bound in the active site of the enzyme. Charges are fit to the electrostatic potential produced by ab initio UHF wavefunctions for an Fe-porphine model. Basis set dependence of these charges is observed using the LANL1DZ, LANL2DZ and augmented 6–31G levels of theory. Upon geometry optimization of the enzyme, these charge sets cause varying degrees of distortion of the porphyrin from its crystallographically observed conformation. Scaling the charges calculated from the augmented 6–31G basis by 75% reduces the heme distortion while preserving reasonable interactions with a polar substrate. A comparison of the calculated charges with other published values is presented.  相似文献   

14.

Background  

The structure and flexibility of Candida antarctica lipase B in water and five different organic solvent models was investigated using multiple molecular dynamics simulations to describe the effect of solvents on structure and dynamics. Interactions of the solvents with the protein and the distribution of water molecules at the protein surface were examined.  相似文献   

15.
目的 反映某省三级甲等综合性医院住院患者静脉输液现状,为《全国医疗服务价格项目规范(2012年版)》静脉输液项目价格调整提供参考。方法 采用调查表的方式对7家三级甲等综合性医院部分科室268位住院患者静脉输液组数及收费水平进行调查。结果 (1)268位住院患者共计住院3456天,静脉输液共计11246次(含续点),人均静点次数为41.96次,日均静点次数为3.25次;共使用普通输液器4906个,三通788个,人肝素帽32个。(2)268位住院患者静脉输液项目合计日均收费18.45元/日,其中项目本身日均收费12.7元/日,占合计日均收费的68.85%,三种耗材日均收费合计5.75元/日,占合计日均收费的31.15%。讨论 静脉输液项目价格调整应进一步体现护理人员的技术劳务因素;静脉输液项目价格调整应考虑低值易耗品价格因素;兼顾原则性和灵活性,适当考虑对某些特殊专科予以特别考量。  相似文献   

16.
Abstract

Protein structures are highly dynamic macromolecules. This dynamics is often analysed through experimental and/or computational methods only for an isolated or a limited number of proteins. Here, we explore large-scale protein dynamics simulation to observe dynamics of local protein conformations using different perspectives. We analysed molecular dynamics to investigate protein flexibility locally, using classical approaches such as RMSf, solvent accessibility, but also innovative approaches such as local entropy. First, we focussed on classical secondary structures and analysed specifically how β-strand, β–turns, and bends evolve during molecular simulations. We underlined interesting specific bias between β–turns and bends, which are considered as the same category, while their dynamics show differences. Second, we used a structural alphabet that is able to approximate every part of the protein structures conformations, namely protein blocks (PBs) to analyse (i) how each initial local protein conformations evolve during dynamics and (ii) if some exchange can exist among these PBs. Interestingly, the results are largely complex than simple regular/rigid and coil/flexible exchange. Abbreviations Neq number of equivalent

PB Protein Blocks

PDB Protein DataBank

RMSf root mean square fluctuations

Communicated by Ramaswamy H. Sarma  相似文献   

17.
BackgroundMolecular dynamics (MD) simulation is well-recognized as a powerful tool to investigate protein structure, function, and thermodynamics. MD simulation is also used to investigate high pressure effects on proteins. For conducting better MD simulation under high pressure, the main issues to be addressed are: (i) protein force fields and water models were originally developed to reproduce experimental properties obtained at ambient pressure; and (ii) the timescale to observe the pressure effect is often much longer than that of conventional MD simulations.Scope of reviewFirst, we describe recent developments in MD simulation methodologies for studying the high-pressure structure and dynamics of protein molecules. These developments include force fields for proteins and water molecules, and enhanced simulation techniques. Then, we summarize recent studies of MD simulations of proteins in water under high pressure.Major conclusionsRecent MD simulations of proteins in solution under pressure have reproduced various phenomena identified by experiments using high pressure, such as hydration, water penetration, conformational change, helix stabilization, and molecular stiffening.General significanceMD simulations demonstrate differences in the properties of proteins and water molecules between ambient and high-pressure conditions. Comparing the results obtained by MD calculations with those obtained experimentally could reveal the mechanism by which biological molecular machines work well in collaboration with water molecules.  相似文献   

18.
A set of 13 aliphatic alcohols was modelled by molecular dynamics simulations at temperatures from 288 to 338 K using the optimised potential for liquid simulations (OPLS) united-atom force field, the OPLS all-atom force field and the OPLS all-atom force field with modified partial charges of the hydroxyl group. The set includes primary and secondary alcohols, and mono-, di- and trialcohols, and covers a broad range of polarities from log P = ? 0.74 (methanol) to log P = 2.9 (octanol). The density, the radial distribution function, the self-diffusion coefficient and the dielectric constant were evaluated. A long equilibration time of at least 50 ns and a large size of the molecular system of more than 75,000 atoms were used. Except for glycerol, the OPLS all-atom force field reliably reproduced the experimentally determined density with deviations of less than 4% over the whole temperature range. In contrast, the modelled self-diffusion coefficient deviated from its experimental value by up to 55%. To modify the force field, the partial charges of the hydroxyl group were varied by up to 3%. Using the modified OPLS force field, the deviation of the self-diffusion coefficients from their experimental values decreased to less than 19%, while the densities changed by less than 1%.  相似文献   

19.
Partial charges of atoms in a molecule and electrostatic potential (ESP) density for that molecule are known to bear a strong correlation. In order to generate a set of point‐field force field parameters for molecular dynamics, Kollman and coworkers have extracted atomic partial charges for each of all 20 amino acids using restrained partial charge‐fitting procedures from theoretical ESP density obtained from condensed‐state quantum mechanics. The magnitude of atomic partial charges for neutral peptide backbone they have obtained is similar to that of partial atomic charges for ionized carboxylate side chain atoms. In this study, the effect of these known atomic partial charges on ESP is examined using computer simulations and compared with the experimental ESP density recently obtained for proteins using electron microscopy. It is found that the observed ESP density maps are most consistent with the simulations that include atomic partial charges of protein backbone. Therefore, atomic partial charges are integral part of atomic properties in protein molecules and should be included in model refinement.  相似文献   

20.
目的 探讨住院医疗费用的结构构成,分析不同付费方式下影响费用结构变动的趋势与特征,为控制住院医疗费用不合理增长提供循证依据。方法 采用结构变动度、结构变动值和结构变动贡献率等指标进行统计分析。结果 住院医疗费用结构变动度达7.84%,以2012—2013年变动振幅较大;药品费、治疗费、化验费是引起结构变动的主要项目,三者累计贡献率为78.38%;其中化验费和治疗费呈持续正向变动,药品费呈持续负向变动。结论 控制住院医疗费用应结合不同付费方式分类制宜,药品费和检查化验费比重过高,而体现医护人员医疗服务价值的诊疗手术费等过低,费用结构有待优化,医疗服务价格与支付制度改革势在必行。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号