首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Biogas from anaerobic digestion of biological wastes is a renewable energy resource that mainly contains CH4, CO2, trace amounts of H2S and a fraction of H2O vapour. In order to transfer biogas into biomethane to meet the standards for use as vehicle fuel or for injection in the natural gas grid, removing H2S from biogas in advance is necessary. In addition, biogas is usually saturated with water vapour. It is significant to study the effect of the presence of H2O on the biogas separation performance. Adsorption of H2S/CO2/CH4 and H2O/CO2/CH4 ternary mixtures using single-walled carbon nanotubes (SWCNT) were investigated via the Grand Canonical Monte Carlo (GCMC) method. We studied the effects of carbon nanotube diameter, –COOH modification, temperature and pressure on H2S adsorption. The results indicate that the presence of hydrophilic –COOH groups does affect the separation of H2S/CO2/CH4 mixtures. Temperature swing adsorption is more suitable than pressure swing adsorption for the separation of H2S/CO2/CH4 mixtures. The effect of water vapour on the separation of CO2/CH4 was also investigated. The result shows that the presence of H2O has little effect on the selectivity of CO2/CH4 in pristine CNT, but the selectivity of CO2/CH4 with the presence of H2O is markedly enhanced after modification in –COOH modified SWCNT with specific modification degree. It is expected that this work could provide some useful information for biogas upgrading.  相似文献   

2.
Studies to examine the microbial fermentation of coal gasification products (CO2, H2 and CO) to methane have been done with a mixed culture of anaerobic bacteria selected from an anaerobic sewage digestor. The specific rate of methane production at 37°C reached 25 mmol/g cell hr. The stoichiometry for methane production was 4 mmol H2/mol CO2. Cell recycle was used to increase the cell concentration from 2.5 to 8.3 g/liter; the volumetric rate of methane production ran from 1.3 to 4 liter/liter hr. The biogasification was also examined at elevated pressure (450 psi) and temperature to facilitate interfacing with a coal gasifier. At 60°C, the specific rate of methane production reached 50 mmol/g cell hr. Carbon monoxide utilization by the mixed culture of anaerobes and by a Rhodopseudomonas species was examined. Both cultures are able to carry out the shift conversion of CO and water to CO2 and hydrogen.  相似文献   

3.
Pure cultures of H2/CO2- and formate-utilizing methanogens or mixed consortia of sewage sludge generated some formate from H2/CO2 at H2 partial pressure in the gas phase above 200 kPa. At decreasing H2 partial pressure the formate was taken up again and converted to methane. If methanogenesis was inhibited by bromoethanesulphonic acid (BESA) or a high redox potential (–180 to –200 mV), formate-utilizing methanogens produced high amounts of formate from H2/CO2. No formate was excreted by the species, which could only utilize H2/CO2 for methanogenesis. In contrast, H2 formation from formate was observed in cultures of Methanobacterium thermoformicicum and M. formicicum. Measurable amounts were, however, only formed if its immediate utilization for methane production was inhibited by BESA. In the light of the data on formate formation from H2/CO2 and its re-utilization by all formate-utilizing methanogens, the concept of interspecies formate transfer of Thiele and Zeikus should be reconsidered. In pure cultures of methanogens or complex ecosystems with excess H2, formate formation seemed to serve more as a means of disposal of surplus reducing power than for H2 transfer. Correspondence to: J. Winter  相似文献   

4.
Molecular dynamics simulation was performed to analyse the phenomena of replacement of methane hydrate with carbon dioxide (CO2) at 270 K and 5.0 MPa for 5300 ps. The methane hydrate phase was constructed with 16 unit cells of hydrate. Every cage in the hydrate was occupied by one methane molecule. The methane hydrate phase was sandwiched between two CO2 phases. During the simulation the hydrate partially melted and liquid water phase appeared, and CO2 dissolved in the liquid water phase. The replacements were observed three times at the hydrate–liquid water interface during the simulation. In the first case, the replacement occurred at a S-cage without changing the structure. In the second case, an M-cage of methane hydrate partially collapsed, and methane and CO2 molecules exchanged. After the exchange, the cage occupied by CO2 remained in the M-cage structure. In the third case, a S-cage of methane hydrate partially collapsed, and methane and CO2 molecules exchanged. After the exchange, the cage occupied by CO2 changed to an M-cage-like structure.  相似文献   

5.
Using molecular simulations, we studied a diverse collection of zeolite–imidazolate frameworks (ZIFs) to evaluate their performances in adsorption- and membrane-based gas separations. Molecular simulations were performed for both single-component gases (CH4, CO2, H2 and N2) and binary gas mixtures (CO2/CH4, CO2/N2, CO2/H2 and CH4/H2) to predict the intrinsic and mixture selectivities of ZIFs. These two selectivities were compared to discuss the importance of multi-component mixture effects on making predictions about the separation performance of a material. Gas separation performances of ZIFs were compared with other nanoporous materials and our results showed that several ZIFs can outperform well-known zeolites and metal–organic frameworks in CO2 separations. Several other properties of ZIFs such as gas permeability, working capacity and sorbent selection parameter were computed to identify the most promising materials in adsorption- and membrane-based separation of CO2/CH4, CO2/N2, CO2/H2 and CH4/H2.  相似文献   

6.
Methane production by microbial communities from Lake Baikal bottom sediments with different chemical composition of pore water was studied. Methane production was more active in the media supplemented with H2: CO2 and H2 + CH3COONa, rather than on media with acetate as the sole source of carbon and energy. Addition of methanol stimulated methane production only in the case of microbial communities from upper silts. Ability of the communities to produce methane correlated reliably with the concentrations of the NO3–, SO42?, Cl, and CH3COO ions in the pore water of the relevant sediments. Cultivation of communities from the mud volcano sediments resulted in development of methanogenic archaea of the family Methanocellaсеае in the media supplemented with H2: CO2 and H2 + CH3COONa, while methanogenic archaea in the communities cultivated without additional substrates belonged to the genera Methanoregula, Methanobacterium, and Methanosaeta.  相似文献   

7.
《Anaerobe》1999,5(3-4):141-144
To investigate whether the gas produced by faecal contents of lactose maldigesters is traceable to symptoms of intolerance we analysed by gas chromatography faecal extracts of frozen stool samples for their gas composition. The samples were taken from 21 patients with biopsy-proven hypolactasia, 10 with severe and 11 with mild symptoms (cumulative score), and were incubated in three different carbohydrate broths. After incubation, H2, CO2, air and methane contents were analysed in triplicate. Differences between patient groups with mild and severe symptom scores were found, but they did not reach statistical significance. Substantial intragroup variations in gas production among patients with severe (range of H2in galactose: 0.9–8.3%, and range of CO2: 5.9–15.9%) as well as with mild symptoms (H2: 0–8.3%, and CO21.4–14.5%) were recorded. Two patients with severe and one with mild symptoms produced detectable amounts of methane. The individual symptoms, i.e. flatulence or abdominal pain, did not directly correlate with gas production, but abundant gas production had a tendency to associate with a greater difference in waistline measurements before and after lactose provocation. Preliminary comparisons between faecal H2and CO2production and bacterial groups isolated from the samples showed that high concentrations of Escherichia coli tended to be more often associated with high gas production. Numbers of lactobacilli and H2concentrations showed a trend towards negative correlation.  相似文献   

8.
Grand canonical Monte Carlo and equilibrium molecular dynamics simulations were used to assess the performance of an rht-type metal–organic framework (MOF), Cu-TDPAT, in adsorption-based and membrane-based separation of CH4/H2, CO2/CH4 and CO2/H2 mixtures. Adsorption isotherms and self-diffusivities of pure gases and binary gas mixtures in Cu-TDPAT were computed using detailed molecular simulations. Several properties of Cu-TDPAT such as adsorption selectivity, working capacity, diffusion selectivity, gas permeability and permeation selectivity were computed and compared with well-known zeolites and MOFs. Results showed that Cu-TDPAT is a very promising adsorbent and membrane material especially for separation of CO2 and it can outperform traditional zeolites and MOFs such as DDR, MFI, CuBTC, IRMOF-1 in adsorption-based CO2/CH4 and CO2/H2 separations.  相似文献   

9.
The flora of an anaerobic whey-processing chemostat was separated by anaerobic sedimentation techniques into a free-living bacterial fraction and a bacterial floc fraction. The floc fraction constituted a major part (i.e., 57% total protein) of the total microbial population in the digestor, and it accounted for 87% of the total CO2-dependent methanogenic activity and 76% of the total ethanol-consuming acetogenic activity. Lactose was degraded by both cellular fractions, but in the free flora fraction it was associated with higher intermediary levels of H2, ethanol, butyrate, and propionate production. Electron microscopic analysis of flocs showed bacterial diversity and juxtapositioning of tentative Desulfovibrio and Methanobacterium species without significant microcolony formation. Ethanol, an intermediary product of lactose-hydrolyzing bacteria, was converted to acetate and methane within the flocs by interspecies electron transfer. Ethanol-dependent methane formation was compartmentalized and closely coupled kinetically within the flocs but without significant formation of H2 gas. Physical disruption of flocs into fragments of 10- to 20-μm diameter initially increased the H2 partial pressure but did not change the carbon transformation kinetic patterns of ethanol metabolism or demonstrate a significant role for H2 in CO2 reduction to methane. The data demonstrate that floc formation in a whey-processing anaerobic digestor functions in juxtapositioning cells for interspecies electron transfer during syntrophic ethanol conversion into acetate and methane but by a mechanism which was independent of the available dissolved H2 gas pool in the ecosystem.  相似文献   

10.
11.
Four common pure fluids were chosen to elucidate the reliability of reactive force fields in estimating bulk properties of selected molecular systems: CH4, H2O, CO2 and H2. The pure fluids are not expected to undergo chemical reactions at the conditions chosen for these simulations. The ‘combustion’ ReaxFF was chosen as reactive force field. In the case of water, we also considered the ‘aqueous’ ReaxFF model. The results were compared to data obtained implementing popular classic force fields. In the gas phase, it was found that simulations conducted using the ‘combustion’ ReaxFF formalism yield structural properties in reasonable good agreement with classic simulations for CO2 and H2, but not for CH4 and H2O. In the liquid phase, ‘combustion’ ReaxFF simulations reproduce reasonably well the structure obtained from classic simulations for CH4, degrade for CO2 and H2, and are rather poor for H2O. In the gas phase, the simulation results are compared to experimental second virial coefficient data. The ‘combustion’ ReaxFF simulations yield second virial coefficients that are not sufficiently negative for CH4 and CO2, and slightly too negative for H2. The ‘combustion’ ReaxFF parameterisation induces too strong an effective attraction between water molecules, while the ‘aqueous’ ReaxFF yields a second virial coefficient that is in reasonable agreement with experiments. The ‘combustion’ ReaxFF parameterisation yields acceptable self-diffusion coefficients for gas-phase properties of CH4, CO2 and H2. In the liquid phase, the results are good for CO2, while the self-diffusion coefficient predicted for liquid CH4 is slower, and that predicted for liquid H2 is about nine times faster than those expected based on classic simulations. The ‘aqueous’ ReaxFF parameterisation yields good results for both the structure and the diffusion of both liquid and vapour water.  相似文献   

12.
Although methanogenic pathways generally produce equimolar amounts of carbon dioxide and methane, CO2 concentrations are often reported to be higher than CH4 concentrations in both field and laboratory incubation studies of peat decomposition. In field settings, higher pore water concentrations of CO2 may result from the loss of methane by: (1) ebullition due to the low solubility of methane in pore water and (2) vascular-plant transport. Higher CO2 concentrations may also be caused by: (1) production of additional CO2 by high-molecular weight (HMW) organic matter (OM) fermentation and/or (2) respiration from non-methanogenic pathways. In this study of a peatland where advection and transverse dispersion were the dominant pore water solute transport mechanisms, an isotope-mass balance approach was used to determine the proportions of CO2 formed from non-fractionating OM respiration and HMW fermentation relative to CO2 production from methanogenesis. This approach also allowed us to estimate the loss of CH4 from the belowground system. The pathways of CO2 production varied with depth and surface vegetation type. In a Carex-dominated fen, methane production initially produced 40 % of the total CO2 and then increased to 90–100 % with increasing depth. In a Sphagnum-dominated bog, methanogenesis resulted in 60 % of total CO2 production which increased to 100 % at depth. Both bogs and fens showed 85–100 % of methane loss from pore waters. Our results indicate that the isotopic composition of dissolved CO2 is a powerful indicator to allow partitioning of the processes affecting peat remineralization and methane production.  相似文献   

13.
We present a novel molecular dynamics-based simulation technique for investigating gas transport through membranes. In our simulations, the main control parameters are the partial pressure for the components on the input side of the membrane and the total pressure on the output side. The essential point of our scheme is that this pressure control should be realised by adjusting the particle numbers in the input and output side control cells indirectly. Although this perturbation is applied sufficiently far from the membrane, the bulk-phase properties are well controlled in a simulation cell of common size. Numerical results are given for silicalite-1 membrane with permeating CH4, CO2, H2 and N2 gases as well as with binary mixtures of CO2 with the other three components. To describe interactions between particles, we used the simple shifted and cut Lennard–Jones potential with parameters available in the literature. It is expected that the proposed technique can be applied to several other types of membranes and transported fluids in order to support the development of a deeper understanding of separation processes.  相似文献   

14.
Free energy calculations and experimental measurements have been used to show that H2S/CO2 mixtures outgassing from a prebiotic Earth's crust would have produced a reducing gas mixture containing CO, H2, H2O, and S x as principal components. Due to rapid recombination of H2, CO, and S x to H2S and CO2 on cooling from a high temperature to ambient conditions, reducing components would have been retained only if efficient quenching of the reduced gas mixture had been possible. Consequently, subsea vents or vents with efficient infusion of water would have been ideal sites for retention of reduced species and for prebiotic organic synthesis. It is suggested that C/H/O/S ratios are important factors in controlling the degree of prebiotic organic synthesis and, hence, the emergence of life, since if oxygen is abundant, CO2 and SO2 would have been dominant species. Received: 5 March 1997 / Accepted: 15 December 1997  相似文献   

15.
Abstract

Grand canonical Monte Carlo simulations have been performed for binary adsorption of Lennard-Jones molecules with point multipole moments in zeolite cavities of type X. Fluid-solid electrostatic interactions were taken into account. Phase diagrams and total coverage were calculated for three binaries and compared with experimental measurements. MC simulations gave good agreement with experiment for two mixtures (C2H4-CO2 and CO2-CH4) but there were discrepancies between simulation and experiment for the system i-C4H10-C2H4. The dependence of excess Gibbs free energy on the composition and pressure was studied. Negative deviations from ideality are due to energetic heterogeneity and size effects. Unlike liquid-vapor equilibrium, deviations from the Lorentz-Berthelot mixing rules for the adsorbates have little effect upon the phase behavior. Density distributions show that the components compete for the high energy sites inside the cavity; depending on its relative strength of adsorption, one component may be excluded from such positions (CH4 in CO2-CH4), or the two species may share sites inside the cavity (C2H4-CO2).  相似文献   

16.
Trophic links between fermentation and methanogenesis of soil derived from a methane‐emitting, moderately acidic temperate fen (pH 4.5) were investigated. Initial CO2:CH4 production ratios in anoxic microcosms indicated that methanogenesis was concomitant to other terminal anaerobic processes. Methane production in anoxic microcosms at in situ pH was stimulated by supplemental H2–CO2, formate or methanol; supplemental acetate did not stimulate methanogenesis. Supplemental H2–CO2, formate or methanol also stimulated the formation of acetate, indicating that the fen harbours moderately acid‐tolerant acetogens. Supplemental monosaccharides (glucose, N‐acetylglucosamine and xylose) stimulated the production of CO2, H2, acetate and other fermentation products when methanogenesis was inhibited with 2‐bromoethane sulfonate 20 mM. Glucose stimulated methanogenesis in the absence of BES. Upper soil depths yielded higher anaerobic activities and also higher numbers of cells. Detected archaeal 16S rRNA genes were indicative of H2–CO2‐ and formate‐consuming methanogens (Methanomicrobiaceae), obligate acetoclastic methanogens (Methanosaetaceae) and crenarchaeotes (groups I.1a, I.1c and I.3). Molecular analyses of partial sequences of 16S rRNA genes revealed the presence of Acidobacteria, Nitrospirales, Clamydiales, Clostridiales, Alpha‐, Gamma‐, Deltaproteobacteria and Cyanobacteria. These collective results suggest that this moderately acidic fen harbours phylogenetically diverse, moderately acid tolerant fermenters (both facultative aerobes and obligate anaerobes) that are trophically linked to methanogenesis.  相似文献   

17.
《Journal of bryology》2013,35(3):391-400
Abstract

Sphagnum fuscum samples collected from an ombrotrophic bog were grown in a greenhouse at six water levels (0, 5, 10, 15, 25 and 30 cm) below the capitulum level and in four concentrations of CO2 (350, 700, 1000 and 2000 ppm). The cores of S. fuscum were treated for 87 days and length increment was measured by the plastic strip method and by innate time markers. Water content of the shoot, dry mass of the capitulum, dry mass per unit length of stem and production of dry mass were measured at the end of the experiment.

The water content, capitulum dry mass, dry mass per unit length of stem, length increment and dry mass production differed markedly for S. fuscum grown in different water levels. With lower water levels, the water content of the shoot decreased and the dry mass of both the capitulum and unit length of stem increased. The total length increment was highest when the water level was at or near the capitulum level (0–10 cm). No clear trend in dry mass production on an areal basis could be found due to uncoupled responses in length increment and stem dry mass at the experimental water levels.

Neither capitulum dry mass nor dry mass per unit length of stem showed distinct trends in S. fuscum grown at different ambient CO2 concentrations. Some increase in length increment and in dry mass production was detected at CO2 concentrations above 350 ppm, but this effect appeared only at high water levels. It is suggested that the low response in length increment and production to CO2 concentration resulted in part from insufficient moisture for photosynthesis at the lower water levels. Also, the possibility of increased nonstructural production is discussed.  相似文献   

18.
Temperature sensitivity of anaerobic carbon mineralization in wetlands remains poorly represented in most climate models and is especially unconstrained for warmer subtropical and tropical systems which account for a large proportion of global methane emissions. Several studies of experimental warming have documented thermal acclimation of soil respiration involving adjustments in microbial physiology or carbon use efficiency (CUE), with an initial decline in CUE with warming followed by a partial recovery in CUE at a later stage. The variable CUE implies that the rate of warming may impact microbial acclimation and the rate of carbon‐dioxide (CO2) and methane (CH4) production. Here, we assessed the effects of warming rate on the decomposition of subtropical peats, by applying either a large single‐step (10°C within a day) or a slow ramping (0.1°C/day for 100 days) temperature increase. The extent of thermal acclimation was tested by monitoring CO2 and CH4 production, CUE, and microbial biomass. Total gaseous C loss, CUE, and MBC were greater in the slow (ramp) warming treatment. However, greater values of CH4–C:CO2–C ratios lead to a greater global warming potential in the fast (step) warming treatment. The effect of gradual warming on decomposition was more pronounced in recalcitrant and nutrient‐limited soils. Stable carbon isotopes of CH4 and CO2 further indicated the possibility of different carbon processing pathways under the contrasting warming rates. Different responses in fast vs. slow warming treatment combined with different endpoints may indicate alternate pathways with long‐term consequences. Incorporations of experimental results into organic matter decomposition models suggest that parameter uncertainties in CUE and CH4–C:CO2–C ratios have a larger impact on long‐term soil organic carbon and global warming potential than uncertainty in model structure, and shows that particular rates of warming are central to understand the response of wetland soils to global climate change.  相似文献   

19.
Abstract

The Monte Carlo method was used in its grand ensemble variant (GCMC) in combination with CO2 and N2 experimental isotherm data at low (77 and 195.5 K) and ambient temperatures (298 and 308 K), in order to characterize microporous carbons and obtain the corresponding pore size distribution (PSD). In particular, the CO2 and N2 densities and the isosteric heats of adsorption inside single, slit shaped, graphitic pores of given width were found on the basis of GCMC for pre-defined temperatures and different relative pressures. In a further step, we determined the optimal PSD for which the best match is obtained between computed and measured isotherms. Comparisons were made between the PSDs found for the same carbon sample at low and ambient temperatures for different gases, and conclusions concerning the applicability of the method and the reliability of the resulting micropore size distributions were drawn.  相似文献   

20.
Biogas produced from organic wastes contains energetically usable methane and unavoidable amount of carbon dioxide. The exploitation of whole biogas energy is locally limited and utilization of the natural gas transport system requires CO2 removal or its conversion to methane. The biological conversion of CO2 and hydrogen to methane is well known reaction without the demand of high pressure and temperature and is carried out by hydrogenotrophic methanogens. Reducing equivalents to the biotransformation of carbon dioxide from biogas or other resources to biomethane can be supplied by external hydrogen. Discontinuous electricity production from wind and solar energy combined with fluctuating utilization cause serious storage problems that can be solved by power-to-gas strategy representing the production of storable hydrogen via the electrolysis of water. The possibility of subsequent repowering of the energy of hydrogen to the easily utilizable and transportable form is a biological conversion with CO2 to biomethane. Biomethanization of CO2 can take place directly in anaerobic digesters fed with organic substrates or in separate bioreactors. The major bottleneck in the process is gas-liquid mass transfer of H2 and the method of the effective input of hydrogen into the system. There are many studies with different bioreactors arrangements and a way of enrichment of hydrogenotrophic methanogens, but the system still has to be optimized for a higher efficiency. The aim of the paper is to gather and critically assess the state of a research and experience from laboratory, pilot and operational applications of carbon dioxide bioconversion and highlight further perspective fields of research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号