首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

The current standard care therapy for hepatitis C virus (HCV) infection consists of two regimes, namely interferon-based and interferon-free treatments. The treatment through the combination of ribavirin and pegylated interferon is expensive, only mildly effective, and is associated with severe side effects. In 2011, two direct-acting antiviral (DAA) drugs, boceprevir and telaprevir, were licensed that have shown enhanced sustained virologic response (SVR) in phase III clinical trial, however, these interferon-free treatments are more sensitive to HCV genotype 1 infection. The variable nature of HCV, and the limited number of inhibitors developed thus aim in expanding the repertoire of available drug targets, resulting in targeting the virus assembly therapeutically.

Aim

We conducted this study to predict the 3D structure of the p7 protein from the HCV genotypes 3 and 4. Approximately 63 amino acid residues encoded in HCV render this channel sensitive to inhibitors, making p7 a promising target for novel therapies. HCV p7 protein forms a small membrane known as viroporin, and is essential for effective self-assembly of large channels that conduct cation assembly and discharge infectious virion particles.

Method

In this study, we screened drugs and flavonoids known to disrupt translation and production of HCV proteins, targeted against the active site of p7 residues of HCV genotype 3 (GT3) (isolatek3a) and HCV genotype 4a (GT4) (isolateED43). Furthermore, we conducted a quantitative structure–activity relationship and docking interaction study.

Results

The drug NB-DNJ formed the highest number of hydrogen bond interactions with both modeled p7 proteins with high interaction energy, followed by BIT225. A flavonoid screen demonstrated that Epigallocatechin gallate (EGCG), nobiletin, and quercetin, have more binding modes in GT3 than in GT4. Thus, the predicted p7 protein molecule of HCV from GT3 and GT4 provides a general avenue to target structure-based antiviral compounds.

Conclusions

We hypothesize that the inhibitors of viral p7 identified in this screen may be a new class of potent agents, but further confirmation in vitro and in vivo is essential. This structure-guided drug design for both GT3 and GT4 can lead to the identification of drug-like natural compounds, confirming p7 as a new target in the rapidly increasing era of HCV.  相似文献   

2.
The hepatitis C virus (HCV) p7 protein is required for infectious virus production via its role in assembly and ion channel activity. Although NMR structures of p7 have been reported, the location of secondary structural elements and orientation of the p7 transmembrane domains differ among models. Furthermore, the p7 structure-function relationship remains unclear. Here, extensive mutagenesis, coupled with infectious virus production phenotyping and molecular modeling, demonstrates that the N-terminal helical region plays a previously underappreciated yet critical functional role, especially with respect to E2/p7 cleavage efficiency. Interrogation of specific N-terminal helix residues identified as having p7-specific defects and predicted to point toward the channel pore, in a context of independent E2/p7 cleavage, further supports p7 as a structurally plastic, minimalist ion channel. Together, our findings indicate that the p7 N-terminal helical region is critical for E2/p7 processing, protein-protein interactions, ion channel activity, and infectious HCV production.  相似文献   

3.
CD4-gp120 interaction is the first step for HIV-1 entry into host cells. A highly conserved pocket in gp120 protein is an attractive target for developing gp120 inhibitors or novel HIV detection tools. Here we incorporate seven phenylalanine derivatives having different sizes and steric conformations into position 43 of domain 1 of CD4 (mD1.2) to explore the architecture of the ‘Phe43 cavity’ of HIV-1 gp120. The results show that the conserved hydrophobic pocket in gp120 tolerates a hydrophobic side chain of residue 43 of CD protein, which is 12.2 Å in length and 8.0 Å in width. This result provides useful information for developing novel gp120 inhibitors or new HIV detection tools.  相似文献   

4.
The quinone binding site (Q-site) of Mitochondrial Complex II (succinate-ubiquinone oxidoreductase) is the target for a number of inhibitors useful for elucidating the mechanism of the enzyme. Some of these have been developed as fungicides or pesticides, and species-specific Q-site inhibitors may be useful against human pathogens. We report structures of chicken Complex II with six different Q-site inhibitors bound, at resolutions 2.0–2.4 Å. These structures show the common interactions between the inhibitors and their binding site. In every case a carbonyl or hydroxyl oxygen of the inhibitor is H-bonded to Tyr58 in subunit SdhD and Trp173 in subunit SdhB. Two of the inhibitors H-bond Ser39 in subunit SdhC directly, while two others do so via a water molecule. There is a distinct cavity that accepts the 2-substituent of the carboxylate ring in flutolanil and related inhibitors. A hydrophobic “tail pocket” opens to receive a side-chain of intermediate-length inhibitors. Shorter inhibitors fit entirely within the main binding cleft, while the long hydrophobic side chains of ferulenol and atpenin A5 protrude out of the cleft into the bulk lipid region, as presumably does that of ubiquinone. Comparison of mitochondrial and Escherichia coli Complex II shows a rotation of the membrane-anchor subunits by 7° relative to the iron?sulfur protein. This rotation alters the geometry of the Q-site and the H-bonding pattern of SdhB:His216 and SdhD:Asp57. This conformational difference, rather than any active-site mutation, may be responsible for the different inhibitor sensitivity of the bacterial enzyme.  相似文献   

5.
The mitogen-activated protein (MAP) kinase protein family has a critical role in cellular signaling events, with MAP kinase p38α acting in inflammatory processes and being an important drug discovery target. MAP kinase drug design efforts have focused on small-molecule inhibitors of the ATP catalytic site, which exhibit dose-limiting adverse effects. Therefore, characterizing other potential sites that bind substrates, inhibitors, or allosteric effectors is of great interest. Here, we present the crystal structure of human p38α MAP kinase, which has a lead compound bound both in the active site and in the lipid-binding site of the C-terminal cap. This C-terminal cap is formed from an extension to the kinase fold, unique to the MAP kinase and cyclin-dependent kinase families and glycogen synthase kinase 3. Binding of this lead, 4-[3-(4-fluorophenyl)-1H-pyrazol-4-yl]pyridine, to wild-type p38α induces movement of the C-terminal cap region, creating a hydrophobic pocket centered around residue Trp197. Computational analysis of this C-terminal domain pocket indicates notable flexibility for potentially binding different-shaped compounds, including lipids, oxidized arachidonic acid species such as leukotrienes, and small-molecule effectors. Furthermore, our structural results defining the open p38α C-lobe pocket provide a detailed framework for the design of novel small molecules with affinities comparable to active-site binders: to bind and potentially modulate the shape and activity of p38α in predetermined ways. Moreover, these results and analyses of p38α suggest strategies for designing specific binding compounds applicable to other MAP kinases, as well as the cyclin-dependent kinase family and glycogen synthase kinase 3β that also utilize the C-terminal insert in their interactions.  相似文献   

6.
Viral infection is an early stage of its life cycle and represents a promising target for antiviral drug development. Here we designed and characterized three peptide inhibitors of hepatitis C virus (HCV) infection based on the structural features of the membrane-associated p7 polypeptide of HCV. The three peptides exhibited low toxicity and high stability while potently inhibiting initial HCV infection and suppressed established HCV infection at non-cytotoxic concentrations in vitro. The most efficient peptide (designated H2-3), which is derived from the H2 helical region of HCV p7 ion channel, inhibited HCV infection by inactivating both intracellular and extracellular viral particles. The H2-3 peptide inactivated free HCV with an EC50 (50% effective concentration) of 82.11 nm, which is >1000-fold lower than the CC50 (50% cytotoxic concentration) of Huh7.5.1 cells. H2-3 peptide also bound to cell membrane and protected host cells from viral infection. The peptide H2-3 did not alter the normal electrophysiological profile of the p7 ion channel or block viral release from Huh7.5.1 cells. Our work highlights a new anti-viral peptide design strategy based on ion channel, giving the possibility that ion channels are potential resources to generate antiviral peptides.  相似文献   

7.
Abstract

Although pore formation by protective antigen (PA) is critical to cell intoxication by anthrax toxin (AT), the structure of the pore form of PA (the PA63 pore) has not been determined. Hence, in this study, the PA63 pore was modeled using the X-ray structures of monomeric PA and heptameric α-hemolysin (α-HL) as templates. The PA63 pore model consists of two weakly associated domains, namely the cap and stem domains. The ring-like cap domain has a length of 80 Å and an outside diameter of 120 Å, while the cylinder-like stem domain has a length of 100 Å and outside diameter of ~28 Å. This provides the PA63 pore model with a length of 180 Å. Based on experimental results, the channel in the PA63 pore model was built to have a minimum diameter of ~12 Å, depending on side chain conformations. Because of its large size and structural complexity, the all-atom model of the PA63 pore is the end-stage construction of four separate modeling projects described herein. The final model is consistent with published experimental results, including mutational analysis and channel conductance experiments. In addition, the model was energetically and hydropathically refined to optimize molecular packing within the protomers and at the protomer-protomer interfaces. By providing atomic detail to biochemical and biophysical data, the PA63 pore model may afford new insights into the binding mode of PA on the membrane surface, the prepore-pore transition, and the mechanism of cell entry by anthrax toxin.  相似文献   

8.
The hepatitis C virus (HCV) p7 protein is critical for virus production and an attractive antiviral target. p7 is an ion channel when reconstituted in artificial lipid bilayers, but channel function has not been demonstrated in vivo and it is unknown whether p7 channel activity plays a critical role in virus production. To evaluate the contribution of p7 to organelle pH regulation and virus production, we incorporated a fluorescent pH sensor within native, intracellular vesicles in the presence or absence of p7 expression. p7 increased proton (H+) conductance in vesicles and was able to rapidly equilibrate H+ gradients. This conductance was blocked by the viroporin inhibitors amantadine, rimantadine and hexamethylene amiloride. Fluorescence microscopy using pH indicators in live cells showed that both HCV infection and expression of p7 from replicon RNAs reduced the number of highly acidic (pH<5) vesicles and increased lysosomal pH from 4.5 to 6.0. These effects were not present in uninfected cells, sub-genomic replicon cells not expressing p7, or cells electroporated with viral RNA containing a channel-inactive p7 point mutation. The acidification inhibitor, bafilomycin A1, partially restored virus production to cells electroporated with viral RNA containing the channel inactive mutation, yet did not in cells containing p7-deleted RNA. Expression of influenza M2 protein also complemented the p7 mutant, confirming a requirement for H+ channel activity in virus production. Accordingly, exposure to acid pH rendered intracellular HCV particles non-infectious, whereas the infectivity of extracellular virions was acid stable and unaffected by incubation at low pH, further demonstrating a key requirement for p7-induced loss of acidification. We conclude that p7 functions as a H+ permeation pathway, acting to prevent acidification in otherwise acidic intracellular compartments. This loss of acidification is required for productive HCV infection, possibly through protecting nascent virus particles during an as yet uncharacterized maturation process.  相似文献   

9.
Abstract

The hepatitis C virus (HCV) encodes the p7 protein that oligomerizes to form an ion channel. The 63 amino acid long p7 monomer is an integral membrane protein predominantly found in the endoplasmic reticulum (ER). Although it is currently unknown whether p7 is incorporated into secreted virions, its presence is crucial for the release of infectious virus. The molecular and biophysical mechanism employed by the p7 ion channel is largely unknown, but in vivo it is likely to be embedded in membranes undergoing changes in lipid composition. In this study we analyze the influence of the lipid environment on p7 ion channel structure and function using electrophysiology and synchrotron radiation circular dichroism (SRCD) spectroscopy. We incorporated chemically synthesized p7 polypeptides into artificial planar membranes of various lipid compositions. A lipid bilayer composition comprising phosphatidylcholine (PC) and phosphatidylethanolamine (PE) (4:1 PC:PE) led to burst-like patterns in the channel recordings with channel openings lasting up to 0.5 s. The reverse ratio of PC:PE (1:4) gave rise to individual channels continuously opening for up to 8 s. SRCD spectroscopy of p7 embedded into liposomes of corresponding lipid compositions suggests there is a structural effect of the lipid composition on the p7 protein.  相似文献   

10.
The search of small molecules as protein–protein interaction inhibitors represents a new attractive strategy to develop anti-HIV-1 agents. We previously reported a computational study that led to the discovery of new inhibitors of the interaction between enzyme HIV-1 integrase (IN) and the nuclear protein lens epithelium growth factor LEDGF/p75.1Herein, we describe new findings about the binding site of LEDGF/p75 on IN employing a different computational approach. In this way further structural requirements, helpful to disrupt LEDGF/p75-IN binding, have been identified. The main result of this work was the exploration of a relevant hydrophobic region. So we planned the introduction of suitable and simple chemical modifications on our previously reported ‘hit’ and the new synthesized compounds were subjected to biological tests.The results obtained demonstrate that the hydrophobic pocket could play a key role in improving inhibitory efficacy thus opening new suggestions to design active ligands.  相似文献   

11.
《Journal of molecular biology》2019,431(8):1619-1632
Membrane-embedded pyrophosphatase (M-PPase) hydrolyzes pyrophosphate to drive ion (H+ and/or Na+) translocation. We determined crystal structures and functions of Vigna radiata M-PPase (VrH+-PPase), the VrH+-PPase–2Pi complex and mutants at hydrophobic gate (residue L555) and exit channel (residues T228 and E225). Ion pore diameters along the translocation pathway of three VrH+-PPases complexes (Pi-, 2Pi- and imidodiphosphate-bound states) present a unique wave-like profile, with different pore diameters at the hydrophobic gate and exit channel, indicating that the ligands induced pore size alterations. The 2Pi-bound state with the largest pore diameter might mimic the hydrophobic gate open. In mutant structures, ordered waters detected at the hydrophobic gate among VrH+-PPase imply the possibility of solvation, and numerous waters at the exit channel might signify an open channel. A salt-bridge, E225–R562 is at the way out of the exit channel of VrH+-PPase; E225A mutant makes the interaction eliminated and reveals a decreased pumping ability. E225–R562 might act as a latch to regulate proton release. A water wire from the ion gate (R-D-K-E) through the hydrophobic gate and into the exit channel may reflect the path of proton transfer.  相似文献   

12.
The p90 ribosomal S6 family of kinases (RSK) are potential drug targets, due to their involvement in cancer and other pathologies. There are currently only two known selective inhibitors of RSK, but the basis for selectivity is not known. One of these inhibitors is a naturally occurring kaempferol-α-l-diacetylrhamnoside, SL0101. Here, we report the crystal structure of the complex of the N-terminal kinase domain of the RSK2 isoform with SL0101 at 1.5 ? resolution. The refined atomic model reveals unprecedented structural reorganization of the protein moiety, as compared to the nucleotide-bound form. The entire N-lobe, the hinge region, and the αD-helix undergo dramatic conformational changes resulting in a rearrangement of the nucleotide binding site with concomitant formation of a highly hydrophobic pocket spatially suited to accommodate SL0101. These unexpected results will be invaluable in further optimization of the SL0101 scaffold as a promising lead for a novel class of kinase inhibitors.  相似文献   

13.
The HCV p7 protein is not involved in viral RNA replication but is essential for production of infectious virus. Based on its putative ion channel activity, p7 belongs to a family of viral proteins known as viroporins that oligomerize after insertion into a lipid membrane. To screen for compounds capable of interfering with p7 channel function, a low-throughput liposome-based fluorescent dye permeability assay was modified and converted to a robust high-throughput screening assay. Escherichia coli expressing recombinant p7 were grown in high-density fed-batch fermentation followed by a detergent-free purification using a combination of affinity and reversed-phase chromatography. The phospholipid composition of the liposomes was optimized for both p7 recognition and long-term stability. A counterscreen was developed using the melittin channel-forming peptide to eliminate nonspecific screening hits. The p7 liposome-based assay displayed robust statistics (Z' > 0.75), and sensitivity to inhibition was confirmed using known inhibitors.  相似文献   

14.
Modeling studies were performed on HCV NS5B polymerase in an effort to design new inhibitors. The binding models of five different scaffold inhibitors were investigated and compared by using molecular dynamics simulations, free energy calculation and decomposition. Our results show Tyr448 plays the most critical role in the binding of most inhibitors. In addition, favorable contributions of residues Pro197, Arg200, Cys366, Met414 and Tyr448 in a deep hydrophobic pocket prove to be important for the selectivity of inhibitors. Furthermore, an optimized docking protocol was presented based on cross-docking the five inhibitors in the palm binding site of this enzyme using the Autodock program. This protocol was used later to virtually screen NCI and Maybridge diversity set libraries. The binding site was profiled via the statistics and analysis of the hydrogen bond networks formed between the receptor and the top-ranked diversity set compounds. Based on our detailed binding site analysis two useful rules were proposed to guide the selection of promising hits.  相似文献   

15.
Motivated by experiments in which an applied electric field translocates polynucleotides through an α-hemolysin protein channel causing ionic current transient blockade, a hybrid simulation model is proposed to predict the conductance properties of the open channel. Time scales corresponding to ion permeation processes are reached using the Poisson–Nernst–Planck (PNP) electro-diffusion model in which both solvent and local ion concentrations are represented as a continuum. The diffusion coefficients of the ions (K+ and Cl?) input in the PNP model are, however, calculated from all-atom molecular dynamics (MD). In the MD simulations, a reduced representation of the channel is used. The channel is solvated in a 1?M KCl solution, and an external electric field is applied. The pore specific diffusion coefficients for both ionic species are reduced 5–7 times in comparison to bulk values. Significant statistical variations (17–45%) of the pore-ions diffusivities are observed. Within the statistics, the ionic diffusivities remain invariable for a range of external applied voltages between 30 and 240?mV. In the 2D-PNP calculations, the pore stem is approximated by a smooth cylinder of radius ~9?Å with two constriction blocks where the radius is reduced to ~6?Å. The electrostatic potential includes the contribution from the atomistic charges. The MD-PNP model shows that the atomic charges are responsible for the rectifying behaviour and for the slight anion selectivity of the α-hemolysin pore. Independent of the hierarchy between the anion and cation diffusivities, the anionic contribution to the total ionic current will dominate. The predictions of the MD-PNP model are in good agreement with experimental data and give confidence in the present approach of bridging time scales by combining a microscopic and macroscopic model.  相似文献   

16.

Background

The recently solved solution structure of HCV (hepatitis C virus) p7 ion channel provides a solid structure basis for drug design against HCV infection. In the p7 channel the ligand amantadine (or rimantadine) was determined in a hydrophobic pocket. However the pharmocophore (−NH2) of the ligand was not assigned a specific binding site.

Results

The possible binding sites for amino group of adamantane derivatives is studied based on the NMR structure of p7 channel using QM calculation and molecular modeling. In the hydrophobic cavity and nearby three possible binding sites are proposed: His17, Phe20, and Trp21. The ligand binding energies at the three binding sites are studied using high level QM method CCSD(T)/6–311+G(d,p) and AutoDock calculations, and the interaction details are analyzed. The potential application of the binding sites for rational inhibitor design are discussed.

Conclusions

Some useful viewpoints are concluded as follows. (1) The amino group (−NH2) of adamantane derivatives is protonated (−NH3 +), and the positively charged cation may form cation-π interactions with aromatic amino acids. (2) The aromatic amino acids (His17, Phe20, and Trp21) are the possible binding sites for the protonated amino group (−NH3 +) of adamantane derivatives, and the cation-π bond energies are 3 to 5 times stronger than the energies of common hydrogen bonds. (3) The higher inhibition potent of rimantadine than amantadine probably because of its higher pKa value (pKa = 10.40) and the higher positive charge in the amino group. The potential application of p7 channel structure for inhibitor design is discussed.  相似文献   

17.
Each subunit of voltage-gated cation channels comprises a voltage-sensing domain and a pore region. In a paper recently published in Cell Research, Li et al. showed that the gating charge pathway of the voltage sensor of the KCNQ2 K+ channel can accommodate small opener molecules and offer a new target to treat hyperexcitability disorders.Voltage-gated cation channels (VGCCs) are key players of many vital functions and their genetic defects in humans can lead to severe diseases, called “channelopathies”1. Each channel α subunit possesses two main transmembrane modules, a voltage-sensing domain (VSD) and a pore region. VSDs are membrane protein modules comprising four membrane-spanning segments (S1-S4) endowed with charged amino acids, also called gating charges2. Although the precise nature and extent of the conformational rearrangement of the VSD is still debated, it is commonly recognized that four highly conserved arginine residues along S4 (R1, R2, R3, and R4) mainly contribute to the voltage-driven gating charge transfer during channel activation3. The gating charges reside in aqueous crevices, and they translocate across a focused electric field spanned by a short distance where hydrophobic residues form a hydrophobic plug occluding a “gating pore”. Along this narrow hydrophobic region, the positive charges in S4 are stabilized by electrostatic interactions with negative countercharges in segments S2 and S3, water in the crevices and negatively charged phospholipids3. In voltage-gated K+ channels, a highly conserved phenylalanine residue located at the bottom of the S2 segment faces the intracellular side of the hydrophobic plug4. This aromatic residue forms the extracellular lid of an occluded site that separates the extracellular and intracellular water-filled crevices of the VSD and forms the charge-transfer center that catalyzes movement of the gating charges5.Molecules that target ion channel proteins have been very instrumental in adding drugs to the medicinal therapeutic arsenal as well as in providing tools to dissect the mechanisms of ion channel gating. However, so far, the pharmacological toolbox has focused only on the pore and gate regions of ion channels, both from a fundamental biophysical perspective and from a therapeutic outlook. In contrast, the VSD was virtually not targeted with small ligand molecules neither for therapeutic purposes nor for deciphering ion channel gating, though it is the target of various toxins. A recent study in Cell Research by Li et al.6 showed that the gating charge pathway or “gating pore” of the therapeutically relevant voltage-dependent K+ channel KCNQ2 could accommodate small opener molecules, thereby offering a new target to treat hyperexcitability disorders.Using a comprehensive approach employing homology modeling, molecular docking, molecular dynamics (MD) simulation, mutagenesis and electrophysiology, Li et al.6 identified an activator-binding pocket in the occluded gating pore of KCNQ2. First, a small opener molecule ztz240 recently discovered by the same group was used as a probe to determine by scanning mutagenesis the binding model of ligands in the KCNQ2 gating charge pathway (Figure 1). Among the mutational hits, several VSD mutants in S2 and S4 dramatically decreased the opener activity of ztz240, including the mutant of the conserved phenylalanine (F137A) in S2 forming the hydrophobic plug of the KCNQ2 gating pore. Exploiting the mutational constraints and using a flexible docking program, Li and co-workers built a docking model for the opener ztz240 onto a structural homology model of KCNQ2 that was based on the open state structure of Kv1.2 channel. They could precisely determine the orientation of the ligand into the binding pocket by wisely synthesizing two chemical derivatives of ztz240 and testing them on KCNQ2 channel activity. Next, they further optimized the docking model by MD simulation of the ligand-channel complex embedded into phospholipids. The docking model defined a broad pocket, spreading from the extracellular entrance of the VSD groove to the bottom of the gating pore with the ligand engaged in a wide array of hydrophobic, H-bonding and electrostatic interactions. Adopting a very elegant strategy, Li et al. set out to screen a structure-based virtual library of about 200 000 chemicals that were selected to fit the newly identified ligand-binding pocket by a docking approach. The purpose was to discover new KCNQ2 channel openers and eventually provide lead optimization (Figure 1). Out of 25 hits selected by bioassays, nine compounds showed significant KCNQ2 opener activity with EC50 in the micromolar range. Remarkably, as an ultimate validation, these newly discovered KCNQ2 channel openers demonstrated an excellent anti-epileptic activity in two different murine models of epilepsy.Open in a separate windowFigure 1Cartoon summarizing the strategy used to discover new channel opener molecules. Following synthesis of an initial lead compound, a scanning channel mutagenesis and subsequent electrophysiological testing of the lead are performed on the mutants. This step allows identification of crucial residues for lead activity. Next, flexible docking and MD simulations are carried out to define the ligand-binding pocket. Then, a screen of a structure-based virtual library is performed where chemicals are selected to fit the newly identified ligand-binding pocket by a docking approach. Following this stage, the hits are validated in vitro by electrophysiology, which allows discovery of new compounds and lead optimization. The novel active compounds are tested for validation in vivo using animal models. This strategy could be applied to the discovery of any modulator in any kind of ion channel.The study of Li et al. identifies a new therapeutic target, a ligand-binding site in the gating pore of KCNQ2 channels at the heart of the gating machinery where the electric field is highly focused. The opener-binding pocket with a volume of about 170 Å3 extends deeply inside the VSD and is different from the site of another compound NH29, previously reported to locate in a more superficial region of the VSD7. The clever approach of Li and co-workers provides a 36% hit rate of virtual screening, which is much higher than hit rates of cell-based high throughput screening for discovering channel activators. By targeting the gating pore as a novel channel site for new opener molecules, this work provides a tool to dissect the basic biophysical mechanisms underlying gating of VGCCs. From a translational viewpoint, it offers novel therapeutic strategies for the treatment of hyperexcitability disorders, such as epilepsy or neuropathic pain.A number of exciting issues will certainly stimulate future investigations. Knowing the adaptability and modular nature of the VSD, could the gating pore of other voltage-gated Na+, Ca2+ and K+ channels accommodate small ligands and be the target of novel molecules? If so, would it be possible to trap the VSD in the resting or activated conformation and thereby design new inhibitors or openers? To what extent the gating pore shares common attributes among different VGCCs and how the selectivity of the compounds could be preserved? From a fundamental perspective, it will be important to examine the impact of these new molecules on gating currents and the effects of the surrounding lipid on their pharmacological sensitivities.  相似文献   

18.

Background

Over the years, a great deal of effort has been focused on the design and synthesis of potent, linear peptide inhibitors targeting the polo-like kinase 1 (Plk1), which is critically involved in multiple mitotic processes and has been established as an adverse prognostic marker for tumor patients. Plk1 localizes to its intracellular anchoring sites via its polo-box domain, and inhibiting the Plk1 polo-box domain has been considered as an approach to circumvent the specificity problems associated with inhibiting the conserved adenosine triphosphate-binding pocket. The polo-box domain consists of two different binding regions, such as the unique, broader pyrrolidine-binding pocket and the conserved, narrow, Tyr-rich hydrophobic channel, among the three Plk polo-box domains (Plks 1–3), respectively. Therefore, the studies that provide insights into the binding nature of the unique, broader pyrrolidine-binding pocket might lead to the development of selective Plk1-inhibitory compounds.

Methodology/Principal Findings

In an attempt to retain the monospecificity by targeting the unique, broader pyrrolidine-binding pocket, here, for the first time, a systematic approach was undertaken to examine the structure-activity relationship of N-terminal-truncated PLHSpTM derivatives, to apply a site-directed ligand approach using bulky aromatic and non-aromatic systems, and to characterize the binding nature of these analogues using X-ray crystallographic studies. We have identified a new mode of binding interactions, having improved binding affinity and retaining the Plk1 polo-box domain specificity, at the pyrrolidine-binding pocket. Furthermore, our data revealed that the pyrrolidine-binding pocket was very specific to recognize a short and bulky hydrophobic ligand like adamantane, whereas the Tyr-rich hydrophobic channel was specific with lengthy and small hydrophobic groups.

Conclusion/Significance

The progress made using our site-directed ligands validated this approach to specifically direct the ligand into the unique pyrrolidine-binding region, and it extends the applicability of the strategy for discovering selective protein-protein interaction inhibitors.  相似文献   

19.
The Sec61α subunit is the core subunit of the protein conducting channel which is required for protein translocation in eukaryotes and prokaryotes. In this study, we cloned a Sec61α subunit from Penicillium ochrochloron (PoSec61α). Sequence and 3D structural model analysis showed that PoSec61α conserved the typical characteristics of eukaryotic and prokaryotic Sec61α subunit homologues. The pore ring known as the constriction point of the channel is formed by seven hydrophobic amino acids. Two methionine residues from transmembrane α-helice 7 (TM7) contribute to the pore ring formation and projected notably to the pore area and narrowed the pore compared with the superposed residues at the corresponding positions in the crystal structures or the 3D models of the Sec61α subunit homologues in archaea or other eukaryotes, respectively. Results reported herein indicate that the pore ring residues differ among Sec61α subunit homologues and two hydrophobic residues in the TM7 contribute to the pore ring formation.  相似文献   

20.
Discovering a potential drug for HCV treatment is a challenging task in the field of drug research. This study initiates with computational screening and modeling of promising ligand molecules. The foremost modeling method involves the identification of novel compound and its molecular interaction based on pharmacophore features. A total of 197 HCV compounds for NS3/4A protein target were screened for our study. The pharmacophore models were generated using PHASE module implemented in Schrodinger suite. The pharmacophore features include one hydrogen bond acceptor, one hydrogen bond donor, and three hydrophobic sites. As a result, based on mentioned hypothesis the model ADHHH.159 corresponds to the CID 59533233. Furthermore, docking was performed using maestro for all the 197 compounds. Among these, the CID 59533313 and 59533233 possess the best binding energy of ?11.75 and ?10.40 kcal/mol, respectively. The interactions studies indicated that the CID complexed with the NS3/4A protein possess better binding affinity with the other compounds. Further the compounds were subjected to calculate the ADME properties. Therefore, it can be concluded that these two compounds could be a potential alternative drug for the development of HCV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号