首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Meagher KL  Carlson HA 《Proteins》2005,58(1):119-125
HIV-1 protease (HIVp) is an important target for the development of therapies to treat AIDS and is one of the classic examples of structure-based drug design. The flap region of HIVp is known to be highly flexible and undergoes a large conformational change upon binding a ligand. Accurately modeling the inherent flexibility of the HIVp system is critical for developing new methods for structure-based drug design. We report several 3-ns molecular dynamics simulations investigating the role of solvation in HIVp flap rearrangement. Using an unliganded crystal structure of HIVp, other groups have observed flap reorganization on the nanosecond timescale. We have also observed rapid, initial flap movement, but we propose that it may be caused by system setup. The initial solvation of the system creates vacuum regions around the protein that may encourage large conformational deformities. By reducing the vacuum space created by the solvation routine, the observed flap collapse is attenuated. Also, a more thorough equilibration procedure preserves a more stable protein conformation over the course of the simulation.  相似文献   

2.
Lexa KW  Carlson HA 《Proteins》2011,79(7):2282-2290
A recent crystal structure of HIV-1 protease (HIVp) was the first to experimentally observe a ligand targeting an open-flap conformation. Researchers studying a symmetric pyrrolidine inhibitor found that two ligands cocrystallized with the protease, forcing an unusual configuration and unique crystallographic contacts. One molecule is centered in the traditional binding site (α pose) and the other binds between the flaps (β pose). The ligands stack against each other in a region termed the "eye" site. Ligands bound to the eye site should prevent flap closure, but it is unclear if the pyrrolidine inhibitors or the crystal packing are causing the open state. Molecular dynamics simulations were used to examine the solution-state behavior of three possible binding modes: the ternary complex of HIVp+αβ and the binary complexes, HIVp+α and HIVp+β. We show that HIVp+α is the most stable of the three states. During conformational sampling, α takes an asymmetric binding pose, with one naphthyl ring occupying the eye site and the other reoriented down to occupy positions seen with traditional inhibitors. This finding supports previous studies that reveal a requirement for asymmetric binding at the eye site. In fact, if the α pose is modified to splay both naphthyl rings across the binding site like traditional inhibitors, one ring consistently flips to occupy the eye site. Our simulations reveal that interactions to the eye site encourage a conformationally restrained state, and understanding those contacts may aid the design of ligands to specifically target alternate conformations of the protease.  相似文献   

3.
Aspartic proteases are a class of hydrolytic enzymes that have been implicated in a number of diseases such as HIV, malaria, cancer and Alzheimer’s. The flap region of aspartic proteases is a characteristic unique structural feature of these enzymes; and found to have a profound impact on protein overall structure, function and dynamics. Flap dynamics also plays a crucial role in drug binding and drug resistance. Therefore, understanding the structure and dynamic behavior of this flap regions is crucial in the design of potent and selective inhibitors against aspartic proteases. Defining metrics that can describe the flap motion/dynamics has been a challenging topic in literature. This review is the first attempt to compile comprehensive information on sequence, structure, motion and metrics used to assess the dynamics of the flap region of different aspartic proteases in “one pot”. We believe that this review would be of critical importance to the researchers from different scientific domains.  相似文献   

4.
Short linear motifs (SLiMs) have been recognized to perform diverse functions in a variety of regulatory proteins through the involvement in protein–protein interactions, signal transduction, cell cycle regulation, protein secretion, etc. However, detailed molecular mechanisms underlying their functions including roles of definite amino acid residues remain obscure. In our previous studies, we demonstrated that conformational dynamics of amino acid residues in oligopeptides derived from regulatory proteins such as alpha-fetoprotein (AFP), carcino-embryonic antigen (CEA), and pregnancy specific β1-glycoproteins (PSGs) contributes greatly to their biological activities. In the present work, we revealed the 22-member linear modules composed of direct and reverse AFP14–20-like heptapeptide motifs linked by CxxGY/FxGx consensus motif within epidermal growth factor (EGF), growth factors of EGF family and numerous regulatory proteins containing EGF-like modules. We showed, first, the existence of similarity in amino acid signatures of both direct and reverse motifs in terms of their physicochemical properties. Second, molecular dynamics (MD) simulation study demonstrated that key receptor-binding residues in human EGF in the aligned positions of the direct and reverse motifs may have similar distribution of conformational probability densities and dynamic behavior despite their distinct physicochemical properties. Third, we found that the length of a polypeptide chain (from 7 to 53 residues) has no effect, while disulfide bridging and backbone direction significantly influence the conformational distribution and dynamics of the residues. Our data may contribute to the atomic level structure–function analysis and protein structure decoding; additionally, they may provide a basis for novel protein/peptide engineering and peptide-mimetic drug design.  相似文献   

5.
Over expression of T-lymphokine–activated killer cell–originated protein kinase (TOPK) has been associated with leukemia, myeloma tumors and various other cancers. The function and regulatory mechanism of TOPK in tumor cells remains unclear. Structural studies that could reveal the regulatory mechanism have been a challenge because of the unavailabity of TOPK’s crystal structure. Hence, in this study, the 3D structure of TOPK protein has been constructed by using multiple templates. The quality and reliability of the generated model was checked and the molecular dynamics method was utilized to refine the model. APBS method was employed to know the electrostatic potential surface of the modeled protein and it was found that the optimum pH for protein stability is 3.4 which will further help in mechanistic hypothesis of TOPK protein. Active site of TOPK was identified from available literature and HTVS was employed to identify the lead molecules. The expected binding modes of protein-ligand complexes were reproduced in the MD simulation which indicates that the complex is relatively stable. The pharmacokinetic properties of the lead molecules are also under acceptable range. TOPK act as a substrate for CDK1 and the protein-protein docking and dynamics studies were carried out to analyze the effect of Thr9Ala mutation of TOPK in the two protein complex formation. It shows that the wild type complex is more stable when compared with the mutant type. Such structural information at atomic level not only exhibits the action modes of TOPK inhibitors but also furnishes a novel starting point for structure based drug design of TOPK inhibitors.  相似文献   

6.
Mainly due to computational limitations, past protein molecular dynamics simulations have rarely been extended to 300 psec; we are not aware of any published results beyond 350 psec. The present work compares a 3000 psec simulation of the protein ubiquitin with the available x-ray crystallographic and solution NMR structures. Aside from experimental structure availability, ubiquitin was studied because of its relatively small size (76 amino acids) and lack of disulfide bridges. An implicit solvent model was used except for explicit treatment of waters of crystallization. We found that the simulated average structure retains most of the character of the starting x-ray crystal structure. In two highly surface accessible regions, the simulation was not in agreement with the x-ray structure. In addition, there are six backbone-backbone hydrogen bonds that are in conflict between the solution NMR and x-ray crystallographic structures; two are bonds that the NMR does not locate, and four are ones that the two methods disagree upon the donor. Concerning these six backbone-backbone hydrogen bonds, the present simulation agrees with the solution NMR structure in five out-of-the six cases, in that if a hydrogen bond is present in the x-ray structure and not in the NMR structure, the bond breaks within 700 psec. Of the two hydrogen bonds that are found in the NMR structure and not in the x-ray structure, one forms at 1400 psec and the other forms rarely. The present results suggest that relatively long molecular dynamics simulations, that use protein x-ray crystal coordinates for the starting structure and a computationally efficient solvent representation, may be used to gain an understanding of conformational and dynamic differences between the solid-crystal and dilute-solution states.  相似文献   

7.
The flexibility of HIV protease (HIVp) plays a critical role in enabling enzymatic activity and is required for substrate access to the active site. While the importance of flexibility in the flaps that cover the active site is well known, flexibility in other parts of the enzyme is also critical for function. One key region is a loop containing Thr 80, which forms the walls of the active site. Although not situated within the active site, amino acid Thr80 is absolutely conserved. The mutation T80N preserves the structure of the enzyme but catalytic activity is completely lost. To investigate the potential influence of the T80N mutation on HIVp flexibility, wide‐angle X‐ray scattering (WAXS) data was measured for a series of HIVp variants. Starting with a calculated WAXS pattern from a rigid atomic model, the modulations in the intensity distribution caused by structural fluctuations in the protein were predicted by simple analytic methods and compared with the experimental data. An analysis of T80N WAXS data shows that this variant is significantly more rigid than the WT across all length scales. The effects of this single point mutation extend throughout the protein, to alter the mobility of amino acids in the enzymatic core. These results support the contentions that significant protein flexibility extends throughout HIVp and is critical to catalytic function. Proteins 2015; 83:1929–1939. © 2014 Wiley Periodicals, Inc.  相似文献   

8.
Even if the structure of a receptor has been determined experimentally, it may not be a conformation to which a ligand would bind when induced fit effects are significant. Molecular docking using such a receptor structure may thus fail to recognize a ligand to which the receptor can bind with reasonable affinity. Here, we examine one way to alleviate this problem by using an ensemble of receptor conformations generated from a molecular dynamics simulation for molecular docking. Two molecular dynamics simulations were conducted to generate snapshots for protein kinase A: one with the ligand bound, the other without. The ligand, balanol, was then docked to conformations of the receptors presented by these trajectories. The Lamarckian genetic algorithm in Autodock [Goodsell et al. J Mol Recognit 1996;9(1):1-5; Morris et al. J Comput Chem 1998;19(14):1639-1662] was used in the docking. Three ligand models were used: rigid, flexible, and flexible with torsional potentials. When the snapshots were taken from the molecular dynamics simulation of the protein-ligand complex, the correct docking structure could be recovered easily by the docking algorithm in all cases. This was an easier case for challenging the docking algorithm because, by using the structure of the protein in a protein-ligand complex, one essentially assumed that the protein already had a pocket to which the ligand can fit well. However, when the snapshots were taken from the ligand-free protein simulation, which is more useful for a practical application when the structure of the protein-ligand complex is not known, several clusters of structures were found. Of the 10 docking runs for each snapshot, at least one structure was close to the correctly docked structure when the flexible-ligand models were used. We found that a useful way to identify the correctly docked structure was to locate the structure that appeared most frequently as the lowest energy structure in the docking experiments to different snapshots.  相似文献   

9.
Barbany M  Morata J  Meyer T  Lois S  Orozco M  de la Cruz X 《Proteins》2012,80(9):2235-2249
Recent studies have shown how alternative splicing (AS), the process by which eukaryotic genes express more than one product, affects protein sequence and structure. However, little information is available on the impact of AS on protein dynamics, a property fundamental for protein function. In this work, we have addressed this issue using molecular dynamics simulations of the isoforms of two model proteins: glutathione S-transferase and ectodysplasin-A. We have found that AS does not have a noticeable impact on global or local structure fluctuations. We have also found that, quite interestingly, AS has a significant effect on the coupling between key structural elements such as surface cavities. Our results provide the first atom-level view of the impact of AS on protein dynamics, as far as we know. They can contribute to refine our present view of the relationship between AS and protein disorder and, more importantly, they reveal how AS may modify structural dynamic couplings in proteins.  相似文献   

10.
Biosimilars offer an avenue for potential cost savings and enhanced patient access to various emerging therapies in a budget neutral way. Biosimilars of the granulocyte colony stimulating factor (GCSF) are an excellent example in this regard with as many as 18 versions of the drug being currently approved across globe for treatment of neutropenia. Here, we identified oxidation of the various methionine residues in GCSF as a key heterogeneity that adversely impact its efficacy. In agreement with earlier studies, it was found that oxidation of Met 122 and Met 127 significantly contributes toward reduction of GCSF efficacy, measured using binding affinity to the GCSF receptor. The combination of molecular dynamics simulation along with structural characterization studies established that oxidation of Met 127 and Met 122 brings about a small local conformational change around the B‐C loop in GCSF structure due to slight displacement of Asp113 and Thr117 residues. The simulation studies were validated using fluorescence quenching experiments using acrylamide as quencher and site‐directed mutagenesis by replacing Met 122 and Met 127 residues with alanine. The results of this study lead to an enhanced mechanistic understanding of the oxidation in GCSF and should be useful in protein engineering efforts to design stable, safe, and efficacious GCSF product. In addition, the structure‐function information can provide targets for protein engineering during early drug development and setting specifications of allowable limits of product variants in biosimilar products.  相似文献   

11.
Bovine odorant-binding protein (bOBP), a member of the lipocalin family, presents the so-called 3D "domain-swapped" protein structure. In fact, in solution, it appears as a dimer in which each monomer is composed by the classical lipocalin fold, with a central beta-barrel followed by a stretch of residues and the alpha-helix domain protruding out of the barrel and crossing the dimer interface. Recently, a deswapped mutant form of bOBP was obtained, in which a Gly residue was inserted after position 121 and the two residues in position 64 and 156 were replaced by Cys residues for restoring the disulfide bridge common to the lipocalin family. In this work, we used Fourier transform infrared spectroscopy and molecular dynamics simulations to investigate the effect of temperature on the structural stability and conformational dynamics of the mutant bOBP. The spectroscopic and molecular simulation data pointed out that the hydrophobic regions of the protein matrix appear to be an important factor for the protein stability and integrity. In addition, it was also found that the mutant bOBP is significantly stabilized by the binding of the ligand, which may have an impact on the biological function of bOBP. The obtained results will allow for a better use of this protein as probe for the design of advanced protein-based biosensors for the detection of compounds used in the fabrication of explosive powders.  相似文献   

12.
Yang C  Lu D  Liu Z 《Biochemistry》2011,50(13):2585-2593
While the effectiveness of PEGylation in enhancing the stability and potency of protein pharmaceuticals has been validated for years, the underlying mechanism remains poorly understood, particularly at the molecular level. A molecular dynamics simulation was developed using an annealing procedure that allowed an all-atom level examination of the interaction between PEG polymers of different chain lengths and a conjugated protein represented by insulin. It was shown that PEG became entangled around the protein surface through hydrophobic interaction and concurrently formed hydrogen bonds with the surrounding water molecules. In addition to enhancing its structural stability, as indicated by the root-mean-square difference (rmsd) and secondary structure analyses, conjugation increased the size of the protein drug while decreasing the solvent accessible surface area of the protein. All these thus led to prolonged circulation life despite kidney filtration, proteolysis, and immunogenic side effects, as experimentally demonstrated elsewhere. Moreover, the simulation results indicated that an optimal chain length exists that would maximize drug potency underpinned by the parameters mentioned above. The simulation provided molecular insight into the interaction between PEG and the conjugated protein at the all-atom level and offered a tool that would allow for the design of PEGylated protein pharmaceuticals for given applications.  相似文献   

13.
Protein dynamics make important but poorly understood contributions to molecular recognition phenomena. To address this, we measure changes in fast protein dynamics that accompany the interaction of the arabinose-binding protein (ABP) with its ligand, d-galactose, using NMR relaxation and molecular dynamics simulation. These two approaches present an entirely consistent view of the dynamic changes that occur in the protein backbone upon ligand binding. Increases in the amplitude of motions are observed throughout the protein, with the exception of a few residues in the binding site, which show restriction of dynamics. These counter-intuitive results imply that a localised binding event causes a global increase in the extent of protein dynamics on the pico- to nanosecond timescale. This global dynamic change constitutes a substantial favourable entropic contribution to the free energy of ligand binding. These results suggest that the structure and dynamics of ABP may be adapted to exploit dynamic changes to reduce the entropic costs of binding.  相似文献   

14.
The structural diversity observed across protein kinases, resulting in subtly different active site cavities, is highly desirable in the pursuit of selective inhibitors, yet it can also be a hindrance from a structure-based design perspective. An important challenge in structure-based design is to better understand the dynamic nature of protein kinases and the underlying reasons for specific conformational preferences in the presence of different inhibitors. To investigate this issue, we performed molecular dynamics simulation on both the active and inactive wild type epidermal growth factor receptor (EGFR) protein with both type-I and type-II inhibitors. Our goal is to better understand the origin of the two distinct EGFR protein conformations, their dynamic differences, and their relative preference for Type-I inhibitors such as gefitinib and Type-II inhibitors such as lapatinib. We discuss the implications of protein dynamics from a structure-based design perspective.  相似文献   

15.
Lee MC  Deng J  Briggs JM  Duan Y 《Biophysical journal》2005,88(5):3133-3146
HIV-1 integrase is one of the three essential enzymes required for viral replication and has great potential as a novel target for anti-HIV drugs. Although tremendous efforts have been devoted to understanding this protein, the conformation of the catalytic core domain around the active site, particularly the catalytic loop overhanging the active site, is still not well characterized by experimental methods due to its high degree of flexibility. Recent studies have suggested that this conformational dynamics is directly correlated with enzymatic activity, but the details of this dynamics is not known. In this study, we conducted a series of extended-time molecular dynamics simulations and locally enhanced sampling simulations of the wild-type and three loop hinge mutants to investigate the conformational dynamics of the core domain. A combined total of >480 ns of simulation data was collected which allowed us to study the conformational changes that were not possible to observe in the previously reported short-time molecular dynamics simulations. Among the main findings are a major conformational change (>20 A) in the catalytic loop, which revealed a gatinglike dynamics, and a transient intraloop structure, which provided a rationale for the mutational effects of several residues on the loop including Q(148), P(145), and Y(143). Further, clustering analyses have identified seven major conformational states of the wild-type catalytic loop. Their implications for catalytic function and ligand interaction are discussed. The findings reported here provide a detailed view of the active site conformational dynamics and should be useful for structure-based inhibitor design for integrase.  相似文献   

16.
17.
A 150 picosecond molecular dynamics computer simulation of the C-terminal fragment of the L7/L12 ribosomal protein from Escherichia coli is reported. The molecular dynamics results are compared with the available high-resolution X-ray data in terms of atomic positions, distances and positional fluctuations. Good agreement is found between the molecular dynamics results and the X-ray data. The form and parameters of the interaction potential energy function and the procedures for deriving it are discussed. Some current misunderstandings concerning the ways of evaluating the efficiency of molecular dynamics algorithms and of application of bond-length constraints in protein simulations are cleared up. The 150 picosecond trajectory has been scanned in a search for correlated motions within and between secondary structure elements. The beta-strands have diffusional stretching modes, and uncorrelated transversal displacements. The dynamic analysis of alpha-helices shows a variety of features. The atomic fluctuations differ between the helix ends; this effect reflects long time-scale motions. Two alpha-helices, alpha A and alpha C, show diffusive longitudinal stretching modes. The third helix, alpha B, has a correlated asymmetric longitudinal stretching; the N-terminal part dominates this behaviour. Furthermore, alpha B presents a librational motion with respect to the other parts of the molecule with a frequency of approximately 5 cm-1. This motion is coupled to helix stretching. Interestingly, the regions of highly conserved residues contain the most mobile parts of the molecule.  相似文献   

18.
A novel mechanism of inhibiting HIV-1 protease (HIVp) is presented. Using computational solvent mapping to identify complementary interactions and the Multiple Protein Structure method to incorporate protein flexibility, we generated a receptor-based pharmacophore model of the flexible flap region of the semiopen, apo state of HIVp. Complementary interactions were consistently observed at the base of the flap, only within a cleft with a specific structural role. In the closed, bound state of HIVp, each flap tip docks against the opposite monomer, occupying this cleft. This flap-recognition site is filled by the protein and cannot be identified using traditional approaches based on bound, closed structures. Virtual screening and dynamics simulations show how small molecules can be identified to complement this cleft. Subsequent experimental testing confirms inhibitory activity of this new class of inhibitor. This may be the first new inhibitor class for HIVp since dimerization inhibitors were introduced 17 years ago.  相似文献   

19.
The temperature dependence of the internal dynamics of an isolated protein, bovine pancreatic trypsin inhibitor, is examined using normal mode analysis and molecular dynamics (MD) simulation. It is found that the protein exhibits marked anharmonic dynamics at temperatures of approximately 100-120 K, as evidenced by departure of the MD-derived average mean square displacement from that of the harmonic model. This activation of anharmonic dynamics is at lower temperatures than previously detected in proteins and is found in the absence of solvent molecules. The simulation data are also used to investigate neutron scattering properties. The effects are determined of instrumental energy resolution and of approximations commonly used to extract mean square displacement data from elastic scattering experiments. Both the presence of a distribution of mean square displacements in the protein and the use of the Gaussian approximation to the dynamic structure factor lead to quantified underestimation of the mean square displacement obtained.  相似文献   

20.
Aeromonas hydrophila has been implicated in extra-intestinal infection and diarrhoea in humans. Targetting unique effectors of bacterial pathogens is considered a powerful strategy for drug design against bacterial variations to drug resistance. The two-component bacterial system involving sensor histidine kinase (SHK) and its response regulators is considered a lucrative target for drug design. This is the first report describing a three-dimensional (3D) structure for SHK of A. hydrophila. The model was constructed by homology modelling using the X-ray structure of PleD—a response regulator—in conjunction with cdiGMP (PDB code 1W25) and HemAT sensor domain (PDB code 1OR4)—a globin coupled sensor. A combination of homology modelling methodology and molecular dynamics (MD) simulations was applied to obtain a reasonable structure to understand the dynamic behaviour of SHK. Homology modelling was performed using MODELLER9v2 software. The structure was relaxed to eliminate bad atomic contacts. The final model obtained by molecular mechanics and dynamics methods was assessed using PROCHECK and VERIFY 3D graph, which confirmed that the final refined model is reliable. Until complete biochemical and structural data of SHK are determined by experimental means, this model can serve as a valuable reference for characterising the protein and could be explored for drug targetting by design of suitable inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号