首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cohesive strength is an important parameter for understanding and modeling the mechanics of biomass detachment from bacterial biofilms. It is challenging to measure the mechanical properties of biofilms, however, because biofilms may desiccate when removed from liquid medium and they are inherently fragile. Poppele and Hozalski (Poppele and Hozalski, 2003, J Microb Methods 55:607–615) presented a microcantilever method for measuring the tensile strength of detached biofilm fragments while submersed in liquid medium. Here we present a modification of the microcantilever method to quantify the strength of intact bacterial biofilms. Initial testing was performed on Pseudomonas aeruginosa biofilms and on Staphylococcus epidermidis biofilms grown in rotating disk reactors. The cohesive strength values were highly variable (i.e., coefficients of variation ranging from 71% to 143%) and ranged from 59 to 18,900 Pa for the P. aeruginosa biofilms and from 61 to 5,840 Pa for the S. epidermidis biofilms. The biofilms also appeared to be isotropic as strength did not vary with angle of testing relative to the direction of applied shear. Strength testing using both the intact and fragment methods was performed on five samples of P. aeruginosa biofilms, and the strength populations were not from the same distribution in three cases. Equivalent diameters for the fragments detached from biofilms during strength testing ranged from 5 to 500 µm, which is within the range of size of biofilm fragments observed in the effluents of lab‐scale and full‐scale bioreactors. The microcantilever is a simple yet powerful tool for measuring the cohesive strength of intact biofilms at a relevant scale. Biotechnol. Bioeng. 2010;105: 924–934. © 2009 Wiley Periodicals, Inc.  相似文献   

2.
Transmission is a main route for bacterial contamination, involving bacterial detachment from a donor and adhesion to receiver surfaces. This work aimed to compare transmission of an extracellular polymeric substance (EPS) producing and a non-EPS producing Staphylococcus epidermidis strain from biofilms on stainless steel. After transmission, donor surfaces remained fully covered with biofilm, indicating transmission through cohesive failure in the biofilm. Counter to the numbers of biofilm bacteria, the donor and receiver biofilm thicknesses did not add up to the pre-transmission donor biofilm thickness, suggesting more compact biofilms after transmission, especially for non-EPS producing staphylococci. Accordingly, staphylococcal density per unit biofilm volume had increased from 0.20 to 0.52 μm–3 for transmission of the non-EPS producing strain under high contact pressure. The EPS producing strain had similar densities before and after transmission (0.17 μm–3). This suggests three phases in biofilm transmission: (1) compression, (2) separation and (3) relaxation of biofilm structure to its pre-transmission density in EPS-rich biofilms.  相似文献   

3.
Knowledge of mechanical properties and failure mechanisms of biofilms is needed to determine how biofilms react on mechanical stress. Methods currently available cannot be used to determine mechanical properties of biofilms on a small scale with high accuracy. A novel microindentation apparatus in combination with a confocal microscope was used to determine the viscoelastic properties of Streptococcus mutans biofilms. The apparatus comprises a small glass indenter and a highly sensitive force transducer. It was shown that the present biofilm, grown under still conditions, behaves as a viscoelastic solid with a storage modulus of 1-8 kPa and a loss modulus of 5-10 kPa at a strain of 10%. Biofilm failure was investigated visually through a confocal microscope by dragging the indenter through the biofilm. It was shown that the tensile strength of the biofilm is predominantly determined by the tensile strength of the extracellular polysaccharide matrix. The combination of microindentation and confocal microscopy is a promising technique to determine and characterize the mechanical properties of soft materials in various fields of microbiology.  相似文献   

4.
Abstract

Candida albicans is a leading cause of catheter-associated urinary tract infections and elimination of these biofilm-based infections without antifungal agents would constitute a significant medical advance. A novel urinary catheter prototype that utilizes on-demand surface deformation is effective at eliminating bacterial biofilms and here the broader applicability of this prototype to remove fungal biofilms has been demonstrated. C. albicans biofilms were debonded from prototypes by selectively inflating four additional intralumens surrounding the main lumen of the catheters to provide the necessary surface strain to remove the adhered biofilm. Deformable catheters eliminated significantly more biofilm than the controls (>90% eliminated vs 10% control; p < 0.001). Mechanical testing revealed that fungal biofilms have an elastic modulus of 45 ± 6.7 kPa with a fracture energy of 0.4–2 J m?2. This study underscores the potential of mechanical disruption as a materials design strategy to combat fungal device-associated infections.  相似文献   

5.
Electrospun tubular conduit (4 mm inner diameter) based on blends of polydioxanone (PDS II®) and proteins such as gelatin and elastin having a spatially designed trilayer structure was prepared for arterial scaffolds. SEM analysis of scaffolds showed random nanofibrous morphology and well‐interconnected pore network. Due to protein blending, the fiber diameter was reduced from 800–950 nm range to 300–500 nm range. Fourier‐transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC) results confirmed the blended composition and crystallinity of fibers. Pure PDS scaffold under hydrated state exhibited a tensile strength of 5.61 ± 0.42 MPa and a modulus of 17.11 ± 1.13 MPa with a failure strain of 216.7 ± 13%. The blending of PDS with elastin and gelatin has decreased the tensile properties. A trilayer tubular scaffold was fabricated by sequential electrospinning of blends of elastin/gelatin, PDS/elastin/gelatin, and PDS/gelatin (EG/PEG/PG) to mimic the complex matrix structure of native arteries. Under hydrated state, the trilayer conduit exhibited tensile properties (tensile strength of 1.77 ± 0.2 MPa and elastic modulus of 5.74 ± 3 MPa with a failure strain of 75.08 ± 10%) comparable to those of native arteries. In vitro degradation studies for up to 30 days showed about 40% mass loss and increase in crystallinity due to the removal of proteins and “cleavage‐induced crystallization” of PDS. Biotechnol. Bioeng. 2009; 104: 1025–1033. © 2009 Wiley Periodicals, Inc.  相似文献   

6.
Cartilage tissue‐engineering strategies aim to produce a functional extracellular matrix similar to that of the native tissue. However, none of the myriad approaches taken have successfully generated a construct possessing the structure, composition, and mechanical properties of healthy articular cartilage. One possible approach to modulating the matrix composition and mechanical properties of engineered tissues is through the use of bioreactor‐driven mechanical stimulation. In this study, we hypothesized that exposing scaffold‐free cartilaginous tissue constructs to 7 days of continuous shear stress at 0.001 or 0.1 Pa would increase collagen deposition and tensile mechanical properties compared to that of static controls. Histologically, type II collagen staining was evident in all construct groups, while a surface layer of type I collagen increased in thickness with increasing shear stress magnitude. The areal fraction of type I collagen was higher in the 0.1‐Pa group (25.2 ± 2.2%) than either the 0.001‐Pa (13.6 ± 3.8%) or the static (7.9 ± 1.5%) group. Type II collagen content, as assessed by ELISA, was also higher in the 0.1‐Pa group (7.5 ± 2.1%) compared to the 0.001‐Pa (3.0 ± 2.25%) or static groups (3.7 ± 3.2%). Temporal gene expression analysis showed a flow‐induced increase in type I and type II collagen expression within 24 h of exposure. Interestingly, while the 0.1‐Pa group showed higher collagen content, this group retained less sulfated glycosaminoglycans in the matrix over time in bioreactor culture. Increases in both tensile Young's modulus and ultimate strength were observed with increasing shear stress, yielding constructs possessing a modulus of nearly 5 MPa and strength of 1.3 MPa. This study demonstrates that shear stress is a potent modulator of both the amount and type of synthesized extracellular matrix constituents in engineered cartilaginous tissue with corresponding effects on mechanical function. Biotechnol. Bioeng. 2009; 104: 809–820 © 2009 Wiley Periodicals, Inc.  相似文献   

7.
Bacterial biofilms are a growing concern in a broad range of areas. In this study, a mixture of RNA bacteriophages isolated from municipal wastewater was used to control and remove biofilms. At the concentrations of 400 and 4 × 107 PFU/mL, the phages inhibited Pseudomonas aeruginosa biofilm formation by 45 ± 15% and 73 ± 8%, respectively. At the concentrations of 6,000 and 6 × 107 PFU/mL, the phages removed 45 ± 9% and 75 ± 5% of pre‐existing P. aeruginosa biofilms, respectively. Chlorine reduced biofilm growth by 86 ± 3% at the concentration of 210 mg/L, but it did not remove pre‐existing biofilms. However, a combination of phages (3 × 107 PFU/mL) and chlorine at this concentration reduced biofilm growth by 94 ± 2% and removed 88 ± 6% of existing biofilms. In a continuous flow system with continued biofilm growth, a combination of phages (a one‐time treatment at the concentration of 1.9 × 108 PFU/mL for 1 h first) with chlorine removed 97 ± 1% of biofilms after Day 5 while phage and chlorine treatment alone removed 89 ± 1% and 40 ± 5%, respectively. For existing biofilms, a combined use of a lower phage concentration (3.8 × 105 PFU/mL) and chlorination with a shorter time duration (12 h) followed by continuous water flushing removed 96 ± 1% of biofilms in less than 2 days. Laser scanning confocal microscopy supplemented with electron microscopy indicated that the combination treatment resulted in biofilms with lowest cell density and viability. These results suggest that the combination treatment of phages and chlorine is a promising method to control and remove bacterial biofilms from various surfaces. Biotechnol. Bioeng. 2013; 110: 286–295. © 2012 Wiley Periodicals, Inc.  相似文献   

8.
Bacterial biofilms are the most prevalent mode of bacterial growth in nature. Adhesive and viscoelastic properties of bacteria play important roles at different stages of biofilm development. Following irreversible attachment of bacterial cells onto a surface, a biofilm can grow in which its matrix viscoelasticity helps to maintain structural integrity, determine stress resistance, and control ease of dispersion. In this study, a novel application of force spectroscopy was developed to characterize the surface adhesion and viscoelasticity of bacterial cells in biofilms. By performing microbead force spectroscopy with a closed-loop atomic force microscope, we accurately quantified these properties over a defined contact area. Using the model gram-negative bacterium Pseudomonas aeruginosa, we observed that the adhesive and viscoelastic properties of an isogenic lipopolysaccharide mutant wapR biofilm were significantly different from those measured for the wild-type strain PAO1 biofilm. Moreover, biofilm maturation in either strain also led to prominent changes in adhesion and viscoelasticity. To minimize variability in force measurements resulting from experimental parameter changes, we developed standardized conditions for microbead force spectroscopy to enable meaningful comparison of data obtained in different experiments. Force plots measured under standard conditions showed that the adhesive pressures of PAO1 and wapR early biofilms were 34 ± 15 Pa and 332 ± 47 Pa, respectively, whereas those of PAO1 and wapR mature biofilms were 19 ± 7 Pa and 80 ± 22 Pa, respectively. Fitting of creep data to a Voigt Standard Linear Solid viscoelasticity model revealed that the instantaneous and delayed elastic moduli in P. aeruginosa were drastically reduced by lipopolysaccharide deficiency and biofilm maturation, whereas viscosity was decreased only for biofilm maturation. In conclusion, we have introduced a direct biophysical method for simultaneously quantifying adhesion and viscoelasticity in bacterial biofilms under native conditions. This method could prove valuable for elucidating the contribution of genetic backgrounds, growth conditions, and environmental stresses to microbial community physiology.  相似文献   

9.
Biofilms in marine and fluvial environments can comprise strong bacterial and diatom mats covering large areas of the bed and act to bind sediments. In this case the bed material becomes highly resistant to shear stresses applied by the overlying fluid motion and detachment, when it does occur, is manifest in patches of biofilm of the order cm(2) being entrained into the flow. This article is the first to report tensile test data specific to the centimeter scale using moist biofilm/sediment composite materials; the strain (ε)-stress (σ) relationships permit quantification of the elasticity (Young's modulus, E) and cohesive strength of each specimen. Specifically, we compare the mechanical strength of cyanobacterial biofilm-only samples to that of biofilm cultured over sediment samples (glass beads or natural sands of d ~ 1 mm) for up to 8 weeks. The range of tensile strength (1,288-3,283 Pa) for composite materials was up to three times higher than previous tensile tests conducted at smaller scale on mixed culture biofilm [Ohashi et al. (1999) Water Sci Technol 39:261-268], yet of similar range to cohesive strength values recorded on return activated sludge flocs [RAS; Poppele and Hozalski (2003) J Microbiol Methods 55:607-615]. Composite materials were 3-6 times weaker than biofilm-only samples, indicating that adhesion to sediment grains is weaker than cohesion within the biofilm. Furthermore, in order to relate the tensile test results to the more common in-situ failure of bio-mats due to shear flow, controlled erosion experiments were conducted in a hydraulic flume with live fluid flow. Here, the fluid shear stress causing erosion was 3 orders of magnitude lower than tensile stress; this highlights both the problem of interpreting material properties measured ex-situ and the need for a better mechanistic model of bio-mat detachment.  相似文献   

10.
Laboratory assessment of the adhesion of diatoms to non-toxic fouling-release coatings has tended to focus on single cells rather than the more complex state of a biofilm. A novel culture system based on open channel flow with adjustable bed shear stress values (0–2.4?Pa) has been used to produce biofilms of Navicula incerta. Biofilm development on glass and polydimethylsiloxane elastomer (PDMSe) showed a biphasic relationship with bed shear stress, which was characterised by regions of biofilm stability and instability reflecting cohesion between cells relative to the adhesion to the substratum. On glass, a critical shear stress of 1.3–1.4?Pa prevented biofilm development, whereas on PDMS, biofilms continued to grow at 2.4?Pa. Studies of diatom biofilms cultured on zwitterionic coatings using a bed shear stress of 0.54?Pa showed lower biomass production and adhesion strength on poly(sulfobetaine methacrylate) compared to poly(carboxybetaine methacrylate). The dynamic biofilm approach provides additional information to supplement short duration laboratory evaluations.  相似文献   

11.
Bacterial biofilms infect 2–4% of medical devices upon implantation, resulting in multiple surgeries and increased recovery time due to the very great increase in antibiotic resistance in the biofilm phenotype. This work investigates the feasibility of thermal mitigation of biofilms at physiologically accessible temperatures. Pseudomonas aeruginosa biofilms were cultured to high bacterial density (1.7?×?109 CFU cm?2) and subjected to thermal shocks ranging from 50°C to 80°C for durations of 1–30 min. The decrease in viable bacteria was closely correlated with an Arrhenius temperature dependence and Weibull-style time dependence, demonstrating up to six orders of magnitude reduction in bacterial load. The bacterial load for films with more conventional initial bacterial densities dropped below quantifiable levels, indicating thermal mitigation as a viable approach to biofilm control.  相似文献   

12.
In this study, the mechanical properties of biofilms formed at the surface of nano-filtration (NF) membranes from a drinking water plant were analysed. Confocal laser scanning microscopy observations revealed that the NF biofilms formed a dense and heterogeneous structure at the membrane surface, with a mean thickness of 32.5 ± 17.7 μm. The biofilms were scraped from the membrane surface and analysed in rotation and oscillation experiments with a RheoStress 150 rotating disk rheometer. During rotation analyses, a viscosity decrease with speed of shearing characteristic of rheofluidification was observed (η = 300 Pa s for ý = 0.3 s?1). In the oscillation analyses with a sweeping of frequency (1–100 Hz), elasticity (G′) ranged from 3000 to 3500 Pa and viscosity (G″) from 800 to 1200 Pa. Creep curves obtained with an application of a shear stress of 30 Pa were viscoelastic in nature. The G 0 and η values were, respectively, 1.4 ± 0.3 × 103 Pa and 3.3 ± 0.65 × 106 Pa s. The relationship between the characteristics of NF biofilms and the flow conditions encountered during NF is discussed.  相似文献   

13.
The mechanical properties of mixed culture biofilms were determined by creep analysis using an AR1000 rotating disk rheometer. The biofilms were grown directly on the rheometer disks which were rotated in a chemostat for 12 d. The resulting biofilms were heterogeneous and ranged from 35?μm to 50?μm in thickness. The creep curves were all viscoelastic in nature. The close agreement between stress and strain ratio of a sample tested at 0.1 and 0.5 Pa suggested that the biofilms were tested in the linear viscoelastic range and supported the use of linear viscoelastic theory in the development of a constitutive law. The experimental data was fit to a 4-element Burger spring and dashpot model. The shear modulus (G) ranged from 0.2 to 24 Pa and the viscous coefficient (η) from 10 to 3000 Pa. These values were in the same range as those previously estimated from fluid shear deformation of biofilms in flow cells. A viscoelastic biofilm model will help to predict shear related biofilm phenomena such as elevated pressure drop, detachment, and the flow of biofilms over solid surfaces.  相似文献   

14.
The mechanical properties of mixed culture biofilms were determined by creep analysis using an AR1000 rotating disk rheometer. The biofilms were grown directly on the rheometer disks which were rotated in a chemostat for 12 d. The resulting biofilms were heterogeneous and ranged from 35 microns to 50 microns in thickness. The creep curves were all viscoelastic in nature. The close agreement between stress and strain ratio of a sample tested at 0.1 and 0.5 Pa suggested that the biofilms were tested in the linear viscoelastic range and supported the use of linear viscoelastic theory in the development of a constitutive law. The experimental data was fit to a 4-element Burger spring and dashpot model. The shear modulus (G) ranged from 0.2 to 24 Pa and the viscous coefficient (eta) from 10 to 3000 Pa. These values were in the same range as those previously estimated from fluid shear deformation of biofilms in flow cells. A viscoelastic biofilm model will help to predict shear related biofilm phenomena such as elevated pressure drop, detachment, and the flow of biofilms over solid surfaces.  相似文献   

15.
The ability to directly modify native and established biofilms has enormous potential in understanding microbial ecology and application of biofilm in 'real-world' systems. However, efficient genetic transformation of established biofilms at any scale remains challenging. In this study, we applied an ultrasound-mediated DNA delivery (UDD) technique to introduce plasmid to established non-competent biofilms in situ. Two different plasmids containing genes coding for superfolder green fluorescent protein (sfGFP) and the flavin synthesis pathway were introduced into established bacterial biofilms in microfluidic flow (transformation efficiency of 3.9 ± 0.3 × 10-7 cells in biofilm) and microbial fuel cells (MFCs), respectively, both employing UDD. Gene expression and functional effects of genetically modified bacterial biofilms were observed, where some cells in UDD-treated Pseudomonas putida UWC1 biofilms expressed sfGFP in flow cells and UDD-treated Shewanella oneidensis MR-1 biofilms generated significantly (P < 0.05) greater (61%) bioelectricity production (21.9 ± 1.2 µA cm−2) in MFC than a wild-type control group (~ 13.6 ± 1.6 µA cm−2). The effects of UDD were amplified in subsequent growth under selection pressure due to antibiotic resistance and metabolism enhancement. UDD-induced gene transfer on biofilms grown in both microbial flow cells and MFC systems was successfully demonstrated, with working volumes of 0.16 cm3 and 300 cm3, respectively, demonstrating a significant scale-up in operating volume. This is the first study to report on a potentially scalable direct genetic engineering method for established non-competent biofilms, which can be exploited in enhancing their capability towards environmental, industrial and medical applications.  相似文献   

16.
Atherosclerotic plaque may rupture without warning causing heart attack or stroke. Knowledge of the ultimate strength of human atherosclerotic tissues is essential for understanding the rupture mechanism and predicting cardiovascular events. Despite its great importance, experimental data on ultimate strength of human atherosclerotic carotid artery remains very sparse. This study determined the uniaxial tensile strength of human carotid artery sections containing type II and III lesions (AHA classifications). Axial and circumferential oriented adventitia, media and intact specimens (total=73) were prepared from 6 arteries. The ultimate strength in uniaxial tension was taken as the peak stress recorded when the specimen showed the first evidence of failure and the extensibility was taken as the stretch ratio at failure. The mean adventitia strength values calculated using the first Piola–Kirchoff stress were 1996±867 and 1802±703 kPa in the axial and circumferential directions respectively, while the corresponding values for the media sections were 519±270 and 1230±533 kPa. The intact specimens showed ultimate strengths similar to media in circumferential direction but were twice as strong as the media in the axial direction. Results also indicated that adventitia, media and intact specimens exhibited similar extensibility at failure, in both the axial and circumferential directions (stretch ratio 1.50±0.22). These measurements of the material strength limits for human atherosclerotic carotid arteries could be useful in improving computational models that assess plaque vulnerability.  相似文献   

17.
Hye Young Yoon 《Biofouling》2017,33(10):917-926
In this study, a laboratory model to reproduce dental unit waterline (DUWL) biofilms was developed using a CDC biofilm reactor (CBR). Bacteria obtained from DUWLs were filtered and cultured in Reasoner’s 2A (R2A) for 10 days, and were subsequently stored at ?70°C. This stock was cultivated on R2A in batch mode. After culturing for five days, the bacteria were inoculated into the CBR. Biofilms were grown on polyurethane tubing for four days. Biofilm accumulation and thickness was 1.3 × 105 CFU cm?2 and 10–14 μm respectively, after four days. Bacteria in the biofilms included cocci and rods of short and medium lengths. In addition, 38 bacterial genera were detected in biofilms. In this study, the suitability and reproducibility of the CBR model for DUWL biofilm formation were demonstrated. The model provides a foundation for the development of bacterial control methods for DUWLs.  相似文献   

18.
Currently, models for studying Legionella pneumophila biofilm formation rely on multi-species biofilms with low reproducibility or on growth in rich medium, where planktonic growth is unavoidable. The present study describes a new medium adapted to the growth of L. pneumophila monospecies biofilms in vitro. A microplate model was used to test several media. After incubation for 6 days in a specific biofilm broth not supporting planktonic growth, biofilms consisted of 5.36 ± 0.40 log (cfu cm?2) or 5.34 ± 0.33 log (gu cm?2). The adhered population remained stable for up to 3 weeks after initial inoculation. In situ confocal microscope observations revealed a typical biofilm structure, comprising cell clusters ranging up to ~300 μm in height. This model is adapted to growing monospecies L. pneumophila biofilms that are structurally different from biofilms formed in a rich medium. High reproducibility and the absence of other microbial species make this model useful for studying genes involved in biofilm formation.  相似文献   

19.
The objectives of this study were to determine the longitudinal and transverse material properties of the human medial collateral ligament (MCL) and to evaluate the ability of three existing constitutive models to describe the material behavior of MCL. Uniaxial test specimens were punched from ten human cadaveric MCLs and tensile tested along and transverse to the collagen fiber direction. Using load and optical strain analysis information, the tangent modulus, tensile strength and ultimate strain were determined. The material coefficients for each constitutive model were determined using nonlinear regression. All specimens failed within the substance of the tissue. Specimens tested along the collagen fiber direction exhibited the typical nonlinear behavior reported for ligaments. This behavior was absent from the stress-strain curves of the transverse specimens. The average tensile strength, ultimate strain, and tangent modulus for the longitudinal specimens was 38.6 +/- 4.8 MPa, 17.1 +/- 1.5 percent, and 332.2 +/- 58.3 MPa, respectively. The average tensile strength, ultimate strain, and tangent modulus for the transverse specimens was 1.7 +/- 0.5 MPa, 11.7 +/- 0.9 percent, and 11.0 +/- 3.6 MPa, respectively. All three constitutive models described the longitudinal behavior of the ligament equally well. However, the ability of the models to describe the transverse behavior of the ligament varied.  相似文献   

20.
Current antibiofilm solutions based on planktonic bacterial physiology have limited efficacy in clinical and occasionally environmental settings. This has prompted a search for suitable alternatives to conventional therapies. This study compares the inhibitory properties of two biological surfactants (rhamnolipids and a plant-derived surfactant) against a selection of broad-spectrum antibiotics (ampicillin, chloramphenicol and kanamycin). Testing was carried out on a range of bacterial physiologies from planktonic and mixed bacterial biofilms. Rhamnolipids (Rhs) have been extensively characterised for their role in the development of biofilms and inhibition of planktonic bacteria. However, there are limited direct comparisons with antimicrobial substances on established biofilms comprising single or mixed bacterial strains. Baseline measurements of inhibitory activity using planktonic bacterial assays established that broad-spectrum antibiotics were 500 times more effective at inhibiting bacterial growth than either Rhs or plant surfactants. Conversely, Rhs and plant biosurfactants reduced biofilm biomass of established single bacterial biofilms by 74–88 and 74–98 %, respectively. Only kanamycin showed activity against biofilms of Bacillus subtilis and Staphylococcus aureus. Broad-spectrum antibiotics were also ineffective against a complex biofilm of marine bacteria; however, Rhs and plant biosurfactants reduced biofilm biomass by 69 and 42 %, respectively. These data suggest that Rhs and plant-derived surfactants may have an important role in the inhibition of complex biofilms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号