首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Abstract

Most water utilities use chlorine or chloramine to produce potable water. These disinfecting agents react with water to produce residual oxidants within a water distribution system (WDS) to control bacterial growth. While monochloramine is considered more stable than chlorine, little is known about the effect it has on WDS biofilms. Community structure of 10-week old WDS biofilms exposed to disinfectants was assessed after developing model biofilms from unamended distribution water. Four biofilm types were developed on polycarbonate slides within annular reactors while receiving chlorine, chloramine, or inactivated disinfectant residual. Eubacteria were identified through 16S rDNA sequence analysis. The model WDS biofilm exposed to chloramine mainly contained Mycobacterium and Dechloromonas sequences, while a variety of alpha- and additional beta-proteobacteria dominated the 16S rDNA clone libraries in the other three biofilms. Additionally, bacterial clones distantly related to Legionella were found in one of the biofilms receiving water with inactivated chlorine residual. The biofilm reactor receiving chloraminated water required increasing amounts of disinfectant after 2 weeks to maintain chlorine residual. In contrast, free chlorine residual remained steady in the reactor that received chlorinated water. The differences in bacterial populations of potable water biofilms suggest that disinfecting agents can influence biofilm development. These results also suggest that biofilm communities in distribution systems are capable of changing in response to disinfection practices.  相似文献   

2.
Legionella pneumophila is a waterborne pathogen that has been isolated sporadically from drinking water distribution systems (DWDS). Resistance to disinfectants is mainly attributed to the association of cells with amoebae, but biofilms are also thought to provide some degree of protection. In the present work, a two-stage chemostat was used to form heterotrophic biofilms from drinking water to study the influence of chlorine on the presence of naturally occurring L. pneumophila. The pathogen was tracked in planktonic and sessile biofilm phases using standard culture recovery techniques for cultivable cells and a peptide nucleic acid fluorescence in situ hybridisation assay for total cells. The results showed that the total number of L. pneumophila cells in biofilms was not affected by the concentrations of chlorine tested, and the presence of L. pneumophila could not be detected by culturing. To restrict the outbreaks of disease caused by this bacterium, efforts need to be concentrated on preventing L. pneumophila from re-entering an infectious state by maintaining residual disinfectant levels through the entire DWDS network so that the resuscitation of cells via contact with amoebae is prevented.  相似文献   

3.
A model biofilm, formed of multiple species from environmental drinking water, including opportunistic pathogens, was created to explore the tolerance of multi-species biofilms to chlorine levels typical of water-distribution systems. All species, when grown planktonically, were killed by concentrations of chlorine within the World Health Organization guidelines (0.2–5.0?mg?l?1). Higher concentrations (1.6–40-fold) of chlorine were required to eradicate biofilm populations of these strains, ~70% of biofilms tested were not eradicated by 5.0?mg?l?1 chlorine. Pathogenic bacteria within the model multi-species biofilms had an even more substantial increase in chlorine tolerance; on average ~700–1100?mg?l?1 chlorine was required to eliminate pathogens from the biofilm, 50–300-fold higher than for biofilms comprising single species. Confocal laser scanning microscopy of biofilms showed distinct 3D structures and multiple cell morphologies and arrangements. Overall, this study showed a substantial increase in the chlorine tolerance of individual species with co-colonization in a multi-species biofilm that was far beyond that expected as a result of biofilm growth on its own.  相似文献   

4.
Pipes that transport drinking water through municipal drinking water distribution systems (DWDS) are challenging habitats for microorganisms. Distribution networks are dark, oligotrophic and contain disinfectants; yet microbes frequently form biofilms attached to interior surfaces of DWDS pipes. Relatively little is known about the species composition and ecology of these biofilms due to challenges associated with sample acquisition from actual DWDS. We report the analysis of biofilms from five pipe samples collected from the same region of a DWDS in Florida, USA, over an 18 month period between February 2011 and August 2012. The bacterial abundance and composition of biofilm communities within the pipes were analyzed by heterotrophic plate counts and tag pyrosequencing of 16S rRNA genes, respectively. Bacterial numbers varied significantly based on sampling date and were positively correlated with water temperature and the concentration of nitrate. However, there was no significant relationship between the concentration of disinfectant in the drinking water (monochloramine) and the abundance of bacteria within the biofilms. Pyrosequencing analysis identified a total of 677 operational taxonomic units (OTUs) (3% distance) within the biofilms but indicated that community diversity was low and varied between sampling dates. Biofilms were dominated by a few taxa, specifically Methylomonas, Acinetobacter, Mycobacterium, and Xanthomonadaceae, and the dominant taxa within the biofilms varied dramatically between sampling times. The drinking water characteristics most strongly correlated with bacterial community composition were concentrations of nitrate, ammonium, total chlorine and monochloramine, as well as alkalinity and hardness. Biofilms from the sampling date with the highest nitrate concentration were the most abundant and diverse and were dominated by Acinetobacter.  相似文献   

5.
AIMS: The influence of two disinfection techniques on natural biofilm development during drinking water treatment and subsequent distribution is compared with regard to the supply of a high-quality drinking water. METHODS AND RESULTS: The growth of biofilms was studied using the biofilm device technique in a real public technical drinking water asset. Different pipe materials which are commonly used in drinking water facilities (hardened polyethylene, polyvinyl chloride, steel and copper) were used as substrates for biofilm formation. Apart from young biofilms, several months old biofilms were compared in terms of material dependence, biomass and physiological state. Vital staining of biofilms with 5-cyano-2,3-ditolyl tetrazolium chloride (CTC) and the DNA-specific 4',6-diamidino-2-phenylindole (DAPI) staining resulted in a significant difference in physiological behaviour of biofilm populations depending on the disinfection technique. Compared with chlorine dioxide disinfection (0.12-0.16 mg l-1), the respiratory activities of the micro-organisms were increased on all materials during u.v. disinfection (u.v.254; 400 J m-2). The biofilm biocoenosis was analysed by in situ hybridization with labelled oligonucleotides specific for some subclasses of Proteobacteria. Using PCR and additional hybridization techniques, the biofilms were also tested for the presence of Legionella spp., atypical mycobacteria and enterococci. The results of the molecular-biological experiments in combination with cultivation tests showed that enterococci were able to pass the u.v. disinfection barrier and persist in biofilms of the distribution system, but not after chlorine dioxide disinfection. CONCLUSIONS: The results indicated that bacteria are able to regenerate and proliferate more effectively after u.v. irradiation at the waterworks, and chlorine dioxide disinfection appears to be more applicative to maintain a biological stable drinking water. SIGNIFICANCE AND IMPACT OF THE STUDY: As far as the application of u.v. disinfection is used for conditioning of critical water sources for drinking water, the efficiency of u.v. irradiation in natural systems should reach a high standard to avoid adverse impacts on human health.  相似文献   

6.
The effect of phosphorus addition on survival of Escherichia coli in an experimental drinking water distribution system was investigated. Higher phosphorus concentrations prolonged the survival of culturable E. coli in water and biofilms. Although phosphorus addition did not affect viable but not culturable (VBNC) E. coli in biofilms, these structures could act as a reservoir of VBNC forms of E. coli in drinking water distribution systems.  相似文献   

7.
Aims: To evaluate the reduction of human norovirus (HuNoV) by chlorine disinfection under typical drinking water treatment conditions. Methods and Results: HuNoV, murine norovirus (MNV) and poliovirus type 1 (PV1) were inoculated into treated water before chlorination, collected from a drinking water treatment plant, and bench‐scale free chlorine disinfection experiments were performed for two initial free chlorine concentrations, 0·1 and 0·5 mg l?1. Inactivation of MNV reached more than 4 log10 after 120 and 0·5 min contact time to chlorine at the initial free chlorine concentrations of 0·1 and 0·5 mg l?1, respectively. Conclusions: MNV was inactivated faster than PV1, and there was no significant difference in the viral RNA reduction rate between HuNoV and MNV. The results suggest that appropriate water treatment process with chlorination can manage the risk of HuNoV infection via drinking water supply systems. Significance and Impact of the Study: The data obtained in this study would be useful for assessing or managing the risk of HuNoV infections from drinking water exposure.  相似文献   

8.
Abstract

This work aimed to evaluate the action of materials with different copper content (0, 57, 96 and 100%) on biofilm formation and control by chlorination and mechanical stress. Stenotrophomonas maltophilia isolated from drinking water was used as a model microorganism and biofilms were developed in a rotating cylinder reactor using realism-based shear stress conditions. Biofilms were characterized phenotypically and exposed to three control strategies: 10?mg l?1 of free chlorine for 10?min, an increased shear stress (a fluid velocity of 1.5?m s?1 for 30s), and a combination of both treatments. These shock treatments were not effective in biofilm control. The benefits from the use of copper surfaces was found essentially in reducing the numbers of non-damaged cells. Copper materials demonstrated better performance in biofilm prevention than chlorine. In general, copper alloys may have a positive public health impact by reducing the number of non-damaged cells in the water delivered after chlorine exposure.  相似文献   

9.
Aim: To determine if exposure of Pseudomonas aeruginosa biofilms to chloraminated drinking water can lead to individual bacteria with resistance to antibiotics. Methods and Results: Biofilms of P. aeruginosa PA14 were grown in drinking water in a Kadouri drip‐fed reactor; the biofilms were treated with either 0·5 mg l‐1 or 1·0 mg l‐1 of chloramine for 15 or 21 days; control biofilms were grown in water without chloramine. Fewer isolates with antibiotic resistance were obtained from the chloramine‐treated biofilms as compared to the control. Minimum inhibitory concentrations (MIC) for selected antibiotic‐resistant isolates were determined using ciprofloxacin, tobramycin, gentamicin, rifampicin and chloramphenicol. All of the isolates tested had increased resistance over the wildtype to ciprofloxacin, rifampicin and chloramphenicol, but were not resistant to tobramycin or gentamicin. Conclusions: Under these test conditions, there was no detectable increase in antibiotic resistance in P. aeruginosa exposed as biofilms to disinfectant residues in chloraminated drinking water. Significance and Impact of the study: Chloramine in drinking water, while unable to kill biofilm bacteria, does not increase the potential of P. aeruginosa to become resistant to antibiotics.  相似文献   

10.
Mycobacterium avium is a potential pathogen occurring in drinking water systems. It is a slowly growing bacterium producing a thick cell wall containing mycolic acids, and it is known to resist chlorine better than many other microbes. Several studies have shown that pathogenic bacteria survive better in biofilms than in water. By using Propella biofilm reactors, we studied how factors generally influencing the growth of biofilms (flow rate, phosphorus concentration, and temperature) influence the survival of M. avium in drinking water biofilms. The growth of biofilms was followed by culture and DAPI (4′,6′-diamidino-2-phenylindole) staining, and concentrations of M. avium were determined by culture and fluorescence in situ hybridization methods. The spiked M. avium survived in biofilms for the 4-week study period without a dramatic decline in concentration. The addition of phosphorus (10 μg/liter) increased the number of heterotrophic bacteria in biofilms but decreased the culturability of M. avium. The reason for this result is probably that phosphorus increased competition with other microbes. An increase in flow velocity had no effect on the survival of M. avium, although it increased the growth of biofilms. A higher temperature (20°C versus 7°C) increased both the number of heterotrophic bacteria and the survival of M. avium in biofilms. In conclusion, the results show that in terms of affecting the survival of slowly growing M. avium in biofilms, temperature is a more important factor than the availability of nutrients like phosphorus.  相似文献   

11.
Strategies to induce biofilm dispersal are of interest due to their potential to prevent biofilm formation and biofilm‐related infections. Nitric oxide (NO), an important messenger molecule in biological systems, was previously identified as a signal for dispersal in biofilms of the model organism Pseudomonas aeruginosa. In the present study, the use of NO as an anti‐biofilm agent more broadly was assessed. Various NO donors, at concentrations estimated to generate NO levels in the picomolar and low nanomolar range, were tested on single‐species biofilms of relevant microorganisms and on multi‐species biofilms from water distribution and treatment systems. Nitric oxide‐induced dispersal was observed in all biofilms assessed, and the average reduction of total biofilm surface was 63%. Moreover, biofilms exposed to low doses of NO were more susceptible to antimicrobial treatments than untreated biofilms. For example, the efficacy of conventional chlorine treatments at removing multi‐species biofilms from water systems was increased by 20‐fold in biofilms treated with NO compared with untreated biofilms. These data suggest that combined treatments with NO may allow for novel and improved strategies to control biofilms and have widespread applications in many environmental, industrial and clinical settings.  相似文献   

12.
Aims: To determine the range of free available chlorine (FAC) required for disinfection of the live vaccine strain (LVS) and wild‐type strains of Francisella tularensis. Methods and Results: Seven strains of planktonic F. tularensis were exposed to 0·5 mg·l?1 FAC for two pH values, 7 and 8, at 5 and 25°C. LVS was inactivated 2 to 4 times more quickly than any of the wild‐type F. tularensis strains at pH 8 and 5°C. Conclusions: Free available chlorine residual concentrations routinely maintained in drinking water distribution systems would require up to two hours to reduce all F. tularensis strains by 4 log10. LVS was inactivated most quickly of the tested strains. Significance and Impact of the Study: This work provides contact time (CT) values that are useful for drinking water risk assessment and also suggests that LVS may not be a good surrogate in disinfection studies.  相似文献   

13.
Aims: To examine whether phosphorus and biodegradable organic carbon interact to impact biofilm density and physiological function of biofilm‐forming bacteria under conditions relevant to chlorinated drinking water distribution systems. Materials and Results: The 2 × 2 factorial experiments with low and high levels of phosphorus and biodegradable organic carbon were performed on 4 ‐week‐old drinking water biofilms in four separate pipe systems in the presence of chlorine. Experimental results revealed that biofilm heterotrophic plate count levels increased with the increase in biodegradable organic carbon concentration, showed no response to increases in levels of phosphorus and was not affected by interaction between phosphorus and biodegradable organic carbon. However, a significant positive interaction between phosphorus and biodegradable organic carbon was found to exist on biofilm mass and physiological function and/or metabolic potentials of biofilm communities; the effects of biodegradable organic carbon on biofilm mass and physiological function of biofilm‐forming bacteria were accelerated in going from low to high level of phosphorus. Conclusions: Biodegradable organic carbon was found to be the primary nutrient in regulating biofilm formation in drinking water regardless of the presence of chlorine. It can be therefore concluded that the removal of an easily biodegradable organic carbon is necessary to minimize the biofilm growth potential induced by the intrusion of phosphorus. Significance and Impact of the Study: Phosphorus introduced to drinking water may interact with biodegradable organic carbon, thus leading to measurable impact on the biofilm formation.  相似文献   

14.
Formation of tenacious and massive black biofilms was occasionally observed at the water–air interphase of water taps and in associated habitats at several locations in Germany. Exophiala lecanii-corni was proven to be the dominant component of these biofilms. Water utility companies were interested to understand by which route fungi building these black biofilms enter their habitat at affected sites in domestic sanitary. A wide variety of fungi is known to be common in wet indoor environments, as well as in the drinking water resources. Two possible routes of entry are therefore considered as follows: (a) distribution by the drinking water system or (b) a retrograde route of colonisation. Previous compositional analysis revealed that the black constituents of biofilms primarily belong to the herpotrichiellaceous black yeast and relatives. Therefore, a systematic search for black fungi in the drinking water system was performed using Sabouraud’s glucose agar medium with chloramphenicol and erythritol–chloramphenicol agar as isolation media. Cadophora malorum was the dominant fungus in the investigated drinking water systems, and samples taken from the house connections (n = 50; 74 %, <200 cfu/L), followed by a so far undescribed Alternaria sp. (28 %; <10 cfu/L) and E. castellanii (26 %; <10 cfu/L). Of note, C. malorum was not present in any previously analysed biofilm. Since E. lecanii-corni was not found in any water sample from the distribution system tested, but represented the most abundant species in dark biofilms previously analysed, a retrograde route of contamination in case of E. lecanii-corni can be assumed.  相似文献   

15.
Abstract

In an attempt to determine whether electromagnetic field (EMF) exposure might lead to DNA damage, we exposed SnCl2-treated pBR322 plasmids to EMF and analysed the resulting conformational changes using agarose gel electrophoresis. An EMF-dependent potentiation of DNA scission (i.e. the appearance of relaxed plasmids) was observed. In confirmation of this, plasmids pre-exposed to EMF also were less capable of transforming Escherichia coli. The results indicate that EMF, in the presence of a transition metal, is capable of causing DNA damage. These observations support the idea that EMF, probably through secondary generation of reactive oxygen species, can be clastogenic and provide a possible explanation for the observed correlation between EMF exposure and the frequency of certain types of cancers in humans.  相似文献   

16.
《L' Année biologique》1998,37(3):117-161
The maintenance of the quality of water from the outlet of the treatment plant to the consumer tap is a major concern of water distributors. From a biological point of view, this maintenance must be characterized by a stability of biological features, namely bacterial growth from biodegradable organic matter, and protozoan bacterivory which must be not detectable. However, drinking water distribution systems are continuously exposed to a flow of biodegradable organic matter, which can represent around 20–30 % of the total dissolved organic carbon, and a flow of allochthonous microorganisms (bacteria, fungi, protozoa…), coming from the water treatment plant but also from incidents (breaks/repairs) on the distribution network itself. Apart from these microorganisms (heterotrophic bacteria in particular) can grow in this ultra-oligotrophic environment and colonize the all drinking water distribution system. The highest density of microorganisms occurs on the surface of pipewalls where they are organized in microcolonies (biofilm) that are mixed with corrosion products and inorganic precipitates. Five groups of organisms have been identified in distribution networks, in both the water phase and the biofilm: bacterial cells, protozoa, yeast, fungi and algae. The majority of these organisms are not pathogens, nevertheless potentially pathogen bacteria (Legionella…), fecal bacteria (coliforms, E. coli…), and pathogen protozoan cysts (Giardia intestinalis, Cryptosporidium parvum…) can transitorily find favorable conditions for their proliferation in the networks. Bacteria grow from the biodegradable fraction of dissolved organic matter while protozoa grow from dissolved organic matter, other protozoa but especially from bacterial prey items. The protozoan bacterivory was extensively studied in marine aquatic environments and in rivers, lakes,… but very rarely in drinking water distribution networks. Actually, proofs of the protozoan grazing on fixed and free-living bacterial cells were given by photography or film of biofilms accumulation on coupons that were previously immersed in potable water or by direct microscopic observation of bacteria in food vacuole of protozoa from potable water. A single and recent study has estimated protozoan bacterivory rate from laboratory experiences using fluorescent markers. It appears that in an experimental distribution system fed with biologically treated water (ozone/filtration through granular activated carbon), only ciliates present in the biofilm have a measurable grazing activity, estimated at 2 bacteria·ciliate−1·h−1 on average.Bacterial dynamics in drinking water distribution systems is complex and related to different parameters, like the biodegradable fraction of dissolved organic carbon, the presence of a residual of disinfectant, the nature and the state of pipewalls, the relative biomass of free and fixed bacterial, and grazing impact.The preservation of the biological stability of potable water during its storage in reservoir or its transport through the distribution systems can be achieved by (a) the use of chemical disinfectants (in particular by addition of chlorine) which is the widely used technique, or (b) the use of new techniques such as nanofiltration that can eliminate bacteria and significantly decrease the concentrations of organic matter at the inlet of the distribution network and in the potable water.
  • (a)The use of oxidant, usually chlorine, induces a number of problems, in particular the development of oxidation by-products like trihalomethans (THM), among which some are recognized as carcinogenic products for animals. In addition, chlorine added at the outlet of treatment plant is consumed in the network and the maintenance of a residual of chlorine along an entire distribution network would need high concentrations of chlorine at the outlet of the treatment plant. This may be incompatible with standards for both residual chlorine and its by-products. Nevertheless, chlorine has a disinfectant effect on planctonic bacteria, if considering that only around 10 % of free bacterial cells are living cells, i.e. are able of respiratory oxidation. However, some studies show that bacteria fixed on granular activated carbon particles can be resistant to chlorine, as well as bacteria in aggregates. Thus, the addition of chlorine in potable water does not inhibit the formation of a biofilm at the surface of pipewalls. In the same way, protozoa transported by potable water can resist to chlorine.
  • (b)The above disadvantages permitted the development of membrane filtration techniques like the nanofiltration, which is at the junction between reverse osmosis and ultrafiltration, and which seems to be an interesting alternative to conventional treatments because it presents the advantage to (i) decrease very strongly the concentrations of dissolved organic carbon (on average 90 % for DOC (Dissolved Organic Carbon) and 99 % for BDOC (Biodegradable Dissolved Organic Carbon)), (ii) to remove a very high proportion of almost the entire microorganisms (99 %), precursors of chlorination by-products, and micropollutans, (iii) to decrease the musty flavor of water (2-fold) and (iv) to produce a water that needs low concentration of chlorine.
  相似文献   

17.
The formation of biofilms in drinking water distribution networks is a significant technical, aesthetic and hygienic problem. In this study, the effects of assimilable organic carbon, microbially available phosphorus (MAP), residual chlorine, temperature and corrosion products on the formation of biofilms were studied in two full-scale water supply systems in Finland and Latvia. Biofilm collectors consisting of polyvinyl chloride pipes were installed in several waterworks and distribution networks, which were supplied with chemically precipitated surface waters and groundwater from different sources. During a 1-year study, the biofilm density was measured by heterotrophic plate counts on R2A-agar, acridine orange direct counting and ATP-analyses. A moderate level of residual chorine decreased biofilm density, whereas an increase of MAP in water and accumulated cast iron corrosion products significantly increased biofilm density. This work confirms, in a full-scale distribution system in Finland and Latvia, our earlier in vitro finding that biofilm formation is affected by the availability of phosphorus in drinking water.  相似文献   

18.
Nontuberculous mycobacteria (NTM) are ubiquitous in the environment and can cause nosocomial infections in immunocompromised patients. Recently the presence of NTM in public drinking water and hospital water distribution systems has been reported. Their ability to form biofilms and their resistance to chlorine both contribute to their survival and colonization in water distribution systems. Here we analyzed thirty-two hospital tap water samples that were collected from different locations in three hospitals so as to evaluate the prevalence of NTM species. The water samples were concentrated by membrane filtration and then eluted with sterilized water following sonication. Two-step direct PCR targeting the rpoB gene, restriction fragment length polymorphism (RFLP) using the MspI restriction enzyme, and sequence analysis were performed for identification of NTM to the species level. The sequences of each PCR product were analyzed using BLASTN. Seven samples (7/32, 21.9%) were positive for NTM as determined by nested-PCR. The PCR-RFLP results indicated five different patterns among the seven positive PCR samples. The water-born NTM were identified, including M. peregrinum, M. chelonae (2 cases), M. abscessus, M. gordonae (2 cases), and Mycobacterium sp. JLS. The direct two-step PCR-RFLP method targeting the rpoB gene was effective for the detection and the differentiation of NTM species from hospital tap water.  相似文献   

19.
目的:明确低频正弦波交变电磁场对缺铁性贫血大鼠贫血改善的作用效果,为其未来的临床应用提供实验依据。方法:雄性断乳的SPF级Sprague-Dawley(SD)大鼠,共36只,随机的等分为空白对照组(n=12)、缺铁性贫血组(n=12)和缺铁性贫血+电磁场刺激组(n=12)。缺铁性贫血组和缺铁性贫血+电磁场刺激组的大鼠饲养以低铁饲料和去离子水,每周尾静脉放血1 m L。空白对照组大鼠饲养以常规饲料和普通蒸馏水,且不予尾静脉放血。对缺铁性贫血+电磁场刺激组的12只大鼠施加全身低频交变电磁场刺激,每天刺激2小时,连续刺激10周。实验结束后提取大鼠血液样本,使用氰化高铁血红蛋白法进行测定全血血红蛋白含量,使用专用试剂盒测定血清铁和总铁结合力;提取肝脏和脾脏组织,对肝脏铁和脾脏铁含量进行测定。结果:全身暴露低频交变电磁场刺激显著提高了缺铁性贫血大鼠体重(P0.05),提升了其血清铁含量(P0.05),显著提高全血血红蛋白含量(P0.05),并显著降低了缺铁性贫血大鼠血清总铁结合力(P0.05);同时,电磁刺激也显著提高了缺铁性贫血大鼠肝脏铁和脾脏铁含量(P0.05)。结论:交变电磁场作为一种经济、安全、无创的物理作用方式,具有较为显著的缺铁性贫血的改善效果。  相似文献   

20.
The use of a specific peptide nucleic acid (PNA) probe demonstrated that Helicobacter pylori persisted inside biofilms exposed to low concentrations of chlorine (0.2 and 1.2 mg liter−1) for at least 26 days, although no culturable cells were recovered. Coupled with data obtained using viability stains in pure culture, this result suggests that H. pylori can survive chlorination but remain undetectable by culture methods, which can be effectively replaced by PNA hybridization.Helicobacter pylori is a Gram-negative microorganism that colonizes the human stomach and can cause gastric ulcers that can degenerate into gastric carcinoma (5). The route of transmission for this pathogen is not well known, and even though culturable H. pylori has never been isolated from drinking water distribution systems (DWDS), molecular techniques such as PCR have detected the presence of H. pylori DNA in potable water (6, 15, 17), indicating that this environment could act as a reservoir for this bacterium.Chlorine is the most commonly used disinfectant worldwide to ensure the safe distribution of water to the consumer (19). Although studies conducted by Johnson et al. (14) and Baker et al. (4) have shown that H. pylori is inactivated by chlorine, their conclusions were based on the lack of recovery using standard culture plating methods which fail to consider cells that have entered a viable but nonculturable (VBNC) state. Recently, Moreno et al. (16) applied molecular techniques to demonstrate that H. pylori can survive in low concentrations of chlorine in a VBNC state. However, all these studies were performed with pure cultures using suspended cells, and until now, there have been no studies reporting on the effect of chlorination on H. pylori when associated with heterotrophic biofilms where, as is well known, microorganisms become more resistant to the biocide effect of chlorine (10).In a recent study, we demonstrated that H. pylori can be incorporated into drinking water biofilms and remain viable in the lower layers of these structures (11). It is therefore important to understand the ability of this pathogen to be incorporated and survive in heterotrophic biofilms formed in chlorinated waters. If this pathogen can remain viable under these conditions, it might therefore represent a risk to public health when released into the bulk fluid.The aim of this work was to study the effect of low concentrations of chlorine on H. pylori cells both when associated with heterotrophic biofilms and when suspended in pure culture, to assess whether the biofilm can provide protection against disinfection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号