首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A DFT study of aminonitroimidazoles   总被引:2,自引:0,他引:2  
Density functional theory (DFT) calculations at the B3LYP/aug-cc-pVDZ level were performed to explore the geometric and electronic structures, band gaps, thermodynamic properties, densities and performances of aminonitroimidazoles. The calculated performance properties, stabilities and sensitivities of the model compounds appear to be promising compared with those of the known explosives 2,4-dinitro-1H-imidazole (2,4-DNI), 1-methyl-2,4,5-trinitroimidazole (MTNI), hexahydro-1,3,5-trinitro-1,3,5-triazinane (RDX), and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetraazocane (HMX). The position of the NH2 or the number of NO2 groups on the diazole presumably determines the structure, heat of formation, stability, sensitivity, density and performance of the compound.  相似文献   

2.
The common military explosives 2-methyl-1,3,5-trinitrobenzene (TNT), 1,3,5-trinitroperhydro-1,3,5-triazine (RDX) and 1,3,5,7-tetranitro-1,3,5,7-tetrazocane (HMX) are distributed in many military training areas, and are thus encountered by grazing animals. The aim of this study was to examine small ruminant's intake of forage contaminated with explosives. An indoor, experimental setup was used to determine if contamination of forage by these compounds affected intake by sheep. The results clearly demonstrate that contamination by any of the three explosives reduced forage intake in sheep; in order of increasing avoidance: RDX < TNT < HMX. The results are discussed in a risk assessment context.  相似文献   

3.
Three species of the family Enterobacteriaceae that biochemically reduced hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) were isolated from nitramine explosive-contaminated soil. Two isolates, identified as Morganella morganii and Providencia rettgeri, completely transformed both RDX and the nitroso-RDX reduction intermediates. The third isolate, identified as Citrobacter freundii, partially transformed RDX and generated high concentrations of nitroso-RDX intermediates. All three isolates produced 14CO2 from labeled RDX under O2-depleted culture conditions. While all three isolates transformed HMX, only M. morganii transformed HMX in the presence of RDX.  相似文献   

4.
A mixed microbial culture capable of metabolizing the explosive RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) was obtained from soil enrichments under aerobic and nitrogen-limiting conditions. A bacterium, Stenotrophomonas maltophilia PB1, isolated from the culture used RDX as a sole source of nitrogen for growth. Three moles of nitrogen was used per mole of RDX, yielding a metabolite identified by mass spectroscopy and 1H nuclear magnetic resonance analysis as methylene-N-(hydroxymethyl)-hydroxylamine-N'-(hydroxymethyl)nitroamin e. The bacterium also used s-triazine as a sole source of nitrogen but not the structurally similar compounds octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine, cyanuric acid, and melamine. An inducible RDX-degrading activity was present in crude cell extracts.  相似文献   

5.
We examined the bioremediation of soils contaminated with the munition compounds 2,4,6-trinitrotoluene (TNT), hexahydro-1,3,5-trinitro-1,3,5-triazine, and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetraazocine by a procedure that produced anaerobic conditions in the soils and promoted the biodegradation of nitroaromatic contaminants. This procedure consisted of flooding the soils with 50 mM phosphate buffer, adding starch as a supplemental carbon substrate, and incubating under static conditions. Aerobic heterotrophs, present naturally in the soil or added as an inoculum, quickly removed the oxygen from the static cultures, creating anaerobic conditions. Removal of parent TNT molecules from the soil cultures by the strictly anaerobic microflora occurred within 4 days. The reduced intermediates formed from TNT and hexahydro-1,3,5-trinitro-1,3,5-triazine were removed from the cultures within 24 days, completing the first stage of remediation. The procedure was effective over a range of incubation temperatures, 20 to 37 degrees C, and was improved when 25 mM ammonium was added to cultures buffered with 50 mM potassium phosphate. Ammonium phosphate buffer (50 mM), however, completely inhibited TNT reduction. The optimal pH for the first stage of remediation was between 6.5 and 7.0. When soils were incubated under aerobic conditions or under anaerobic conditions at alkaline pHs, the TNT biodegradation intermediates polymerized. Polymerization was not observed at neutral to slightly acidic pHs under anaerobic conditions. Completion of the first stage of remediation of munition compound-contaminated soils resulted in aqueous supernatants that contained no munition residues or aminoaromatic compounds.  相似文献   

6.
Environmental contamination by explosives is a worldwide problem. Of the 20 energetic compounds, 2,4,6-trinitrotoluene (TNT), hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) are the most powerful and commonly used. Nitroamines are toxic and considered as possible carcinogens. The toxicity and persistence of nitroamines requires that their fate in the environment be understood and that contaminated soil and groundwater be remediated. This study, written as a minireview, provides further insights for plant processes important for the transformation and degradation of explosives. Plants metabolize TNT and the distribution of the transformation products, conjugates, and bound residues appears to be consistent with the green liver model concept. Metabolism of TNT in plants occurs by reduction as well as by oxidation. Reduction probably plays an important role in the tolerance of plants towards TNT, and, therefore a high nitroreductase capacity may serve as a biochemical criterion for the selection of plant species to remediate TNT. Because the activities and the inducibilities of the oxidative enzymes are far lower than of nitroreductase, reducing processes may predominate. However, oxidation may initiate the route to conjugation and sequestration leading ultimately to detoxification of TNT, and, therefore, particularly the oxidative pathway deserves more study. It is possible that plants metabolize RDX also according to the green liver concept. In the case of plant metabolism of HMX, a conclusion regarding compliance with the green liver concept was not reached due to the limited number of available data.  相似文献   

7.
Summary Composting was investigated as a bioremediation technology for clean-up of sediments contaminated with explosives and propellants. Two field demonstrations were conducted, the first using 2,4,6-trinitrotoluene (TNT), octahydro-1,3,5,7-tetranitro-1,3,5,7-tetraazocine (HMX), hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), and N-methyl-N,2,4,6-tetranitroaniline (tetryl) contaminated sediment, and the second using nitrocellulose (NC) contaminated soil. Tests were conducted in thermophilic and mesophilic aerated static piles. Extractable TNT was reduced from 11840 mg/kg to 3 mg/kg, and NC from 13090 mg/kg to 16 mg/kg under thermophilic conditions. Under mesophilic conditions, TNT was reduced from 11 190 mg/kg to 50 mg/kg. The thermophilic and mesophilic half-lives were 11.9 and 21.9 days for TNT, 17.3 and 30.1 days for RDX, and 22.8 and 42.0 days for HMX, respectively. Known nitroaromatic transformation products increased in concentration over the first several weeks of the test period, but decreased to low concentrations thereafter.  相似文献   

8.
The metabolism of various explosive compounds—1,3,5-trinitrobenzene (TNB), hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetraazocine (HMX)—by a sulfate-reducing bacterial consortium, Desulfovibrio spp., was studied. The results indicated that the Desulfovibrio spp. used all of the explosive compounds studied as their sole source of nitrogen for growth. The concentrations of TNB, RDX, and HMX in the culture media dropped to below the detection limit (<0.5 ppm) within 18 days of incubation. We also observed the production of ammonia from the nitro groups of the explosive compounds in the culture media. This ammonia served as a nitrogen source for the bacterial growth, and the concentration of ammonia later dropped to <0.5 mg/L. The sulfate-reducing bacteria may be useful in the anaerobic treatment of explosives-contaminated soil. Received: 23 January 1998 / Accepted: 5 March 1998  相似文献   

9.
A series of polydinitroaminocubanes have been designed computationally. We calculated the heats of formation, the detonation velocity (D) and detonation pressure (P) of the title compounds by density function theory (DFT) with 6-311?G** basis set. The relationship between the heats of formation and the molecular structures is discussed. The result shows that all cubane derivatives have high and positive heats of formation, which increase with increasing number of dinitroamino groups. The detonation performances of the title compound were estimated by Kamlet-Jacobs equation, and the result indicated that most cubane derivatives have good detonation performance over RDX (hexahydro-1,3,5-trinitro-1,3,5-trizine) and HMX (1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane). In addition, we also found that the heat of detonation (Q) is another very important impact in increasing detonation performance except density. The relative stabilities of the title compound are discussed in the terms of the calculated heats of formation, and the energy gaps between the frontier orbitals. The results have not only shown that these compounds may be used as high energy density compounds (HEDCs), but also provide some useful information for further investigation.  相似文献   

10.
Phytoremediation is a viable technique for treating nitroaromatic compounds, particularly munitions. Continuous flow phyto-reactor studies were conducted at the following three influent concentrations of 2,4,6-trinitrotoluene (TNT): 1, 5, and 10?ppm. A control was also prepared with an influent TNT concentration of 5 ppm. Flow rates were systematically reduced to increase hydraulic retention times (HRT) which ranged from 12 to 76 days. Initially, the control reactor removed TNT as efficiently as the plant reactors. With time, however, the efficiency of the control became less than that of the plant reactors, suggesting that adsorption was initially the mechanism for removal. Up to 100% of the TNT was removed. Aminodinitrotoluene (ADNT) effluent concentration was higher for higher TNT influent concentrations. Increasing the retention time reduced ADNT concentration in the effluent. Supplementary batch studies confirmed that ADNT and diaminonitrotoluene (DANT) were phytodegraded. Preliminary batch studies were also conducted on the degradation of RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) and HMX (Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetraazocine). These batch studies indicated that the degradation of RDX was slower than that for TNT. A study with HMX indicated that the removal rates were reasonable, but required a lag phase.  相似文献   

11.
The Pantex facility near Amarillo, Texas, has soil and groundwater contaminated with differing combinations of high explosives (HEs), including hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), and 2,4,6-trinitrotoluene (TNT). This project was concerned with direct treatment of HMX in groundwater withdrawn at this plant. Several physical and chemical treatment schemes for the treatment of HMX have been successful. However, the successful biological treatment of HMX has been limited to anaerobic environments. The objective of this work was to identify microbial consortia and amendments capable of aerobically biodegrading HMX in water. Microbial consortia and amendments employed were provided as livestock manure and soil with its indigenous flora from nearby historically contaminated sites. Possible losses of HMX by nonbiological means such as adsorption and photolysis were accounted for by appropriate abiotic experiments. Loss of the parent compound was measured by high-performance liquid chromatography, using a modification of U.S. Environmental Protection Agency (EPA) Method 8330. Results varied from no degradation to a reduction of parent HMX from 6 to 1 mg/L in 5.2 days. Evidence for biodegradation was supported by the appearance of metabolites. Metabolite identification was performed at Oak Ridge National Laboratory. Five metabolites (four intermediate and one final) were identified.  相似文献   

12.
Native soil microbial populations and unadapted municipal anaerobic sludges were compared for nitramine explosive degradation in microcosm assays under various conditions. Microbial populations from an explosive-contaminated soil were only able to mineralize 12% hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) (at a concentration of 800 mg/kg slurry) or 4% octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) (at a concentration of 267 mg/kg slurry). In contrast, municipal anaerobic sludges were able to mineralize them to carbon dioxide, with efficiencies of up to 65%. Reduction of RDX and HMX into their corresponding nitroso-derivatives was notably faster than their mineralization. The biodegradation of HMX was typically delayed by the presence of RDX in the microcosm, confirming RDX is used as an electron acceptor preferentially to HMX. The laboratory-scale bioslurry reactor reproduced the results of the microcosm assays, yet with much higher RDX and HMX degradation rates. A radiolabel-based mass balance in the soil slurry indicated that, besides a significant mineralization to carbon dioxide, 25% and 31% of RDX and HMX, respectively, appeared as acetonitrile-extractable metabolites, while the remaining part was incorporated into biomass and irreversibly bound to the soil matrix. About 10% of the HMX derivatives were estimated to be chemically bound to the soil matrix, while for RDX the estimation was nil.  相似文献   

13.
The transformation of explosives, including hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), by xenobiotic reductases XenA and XenB (and the bacterial strains harboring these enzymes) under both aerobic and anaerobic conditions was assessed. Under anaerobic conditions, Pseudomonas fluorescens I-C (XenB) degraded RDX faster than Pseudomonas putida II-B (XenA), and transformation occurred when the cells were supplied with sources of both carbon (succinate) and nitrogen (NH4 +), but not when only carbon was supplied. Transformation was always faster under anaerobic conditions compared to aerobic conditions, with both enzymes exhibiting a O2 concentration-dependent inhibition of RDX transformation. The primary degradation pathway for RDX was conversion to methylenedinitramine and then to formaldehyde, but a minor pathway that produced 4-nitro-2,4-diazabutanal (NDAB) also appeared to be active during transformation by whole cells of P. putida II-B and purified XenA. Both XenA and XenB also degraded the related nitramine explosives octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine and 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane. Purified XenB was found to have a broader substrate range than XenA, degrading more of the explosive compounds examined in this study. The results show that these two xenobiotic reductases (and their respective bacterial strains) have the capacity to transform RDX as well as a wide variety of explosive compounds, especially under low oxygen concentrations.  相似文献   

14.
The ability of Phanerochaete chrysosporium to bioremediate TNT (2,4,6-trinitrotoluene) in a soil containing 12,000 ppm of TNT and the explosives RDX (hexahydro-1,3,5-trinitro-1,3,5- triazine; 3,000 ppm) and HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine; 300 ppm) was investigated. The fungus did not grow in malt extract broth containing more than 0.02% (wt/vol; 24 ppm of TNT) soil. Pure TNT or explosives extracted from the soil were degraded by P. chrysosporium spore-inoculated cultures at TNT concentrations of up to 20 ppm. Mycelium-inoculated cultures degraded 100 ppm of TNT, but further growth was inhibited above 20 ppm. In malt extract broth, spore-inoculated cultures mineralized 10% of added [14C]TNT (5 ppm) in 27 days at 37 degrees C. No mineralization occurred during [14C]TNT biotransformation by mycelium-inoculated cultures, although the TNT was transformed.  相似文献   

15.
The molecularly imprinted polymers (MIPs) for two structural analogs, 1,3,5‐triacetyl‐1,3,5‐triazacyclohexane (TRAT) and 1,3,5,7‐tetraacetyl‐1,3,5,7‐tetraazacyclooctane (TAT), have been synthesized respectively under the same conditions. The TAT‐MIP showed excellent imprinting effect, whereas the TRAT‐MIP did not. To understand the different imprinting effects of the MIPs prepared from these two templates, the geometric structures and energetic properties of complexes formed around TAT and TRAT were studied computationally. The results indicate that in liquid phase, for the complexes formed with TAT and its nearest neighbor molecules, the magnitude of the binding energy increases with the number of surrounding TAT, methacrylic acid, and acetonitrile (ACT), whereas for the cases of TRAT, the magnitude of the binding energy increases with the number of surrounding TRAT and trimethylolpropane trimethacrylate. The studied systems form stronger and thus more stable networks encapsulating TAT than with TRAT. ACT may also play an important role in the polymerization phase in stabilizing the shapes of the cavities that TATs reside in. We propose these as the major factors that affect the different imprinting effects of the two MIPs. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
17.
The ability of Phanerochaete chrysosporium to bioremediate TNT (2,4,6-trinitrotoluene) in a soil containing 12,000 ppm of TNT and the explosives RDX (hexahydro-1,3,5-trinitro-1,3,5- triazine; 3,000 ppm) and HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine; 300 ppm) was investigated. The fungus did not grow in malt extract broth containing more than 0.02% (wt/vol; 24 ppm of TNT) soil. Pure TNT or explosives extracted from the soil were degraded by P. chrysosporium spore-inoculated cultures at TNT concentrations of up to 20 ppm. Mycelium-inoculated cultures degraded 100 ppm of TNT, but further growth was inhibited above 20 ppm. In malt extract broth, spore-inoculated cultures mineralized 10% of added [14C]TNT (5 ppm) in 27 days at 37 degrees C. No mineralization occurred during [14C]TNT biotransformation by mycelium-inoculated cultures, although the TNT was transformed.  相似文献   

18.
The uptake and fate of 2,4,6-trinitrotoluene (TNT), hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) by hybrid poplars in hydroponic systems were compared and exposed leaves were leached with water to simulate potential exposure pathways from groundwater in the field. TNT was removed from solution more quickly than nitramine explosives. Most of radioactivity remained in root tissues for 14C-TNT, but in leaves for 14C-RDX and 14C-HMX. Radiolabel recovery for TNT and HMX was over 94%, but that of RDX decreased over time, suggesting a loss of volatile products. A considerable fraction (45.5%) of radioactivity taken up by whole plants exposed to 14C-HMX was released into deionized water, mostly as parent compound after 5 d of leaching. About a quarter (24.0%) and 1.2% were leached for RDX and TNT, respectively, mostly as transformed products. Leached radioactivity from roots was insignificant in all cases (< 2%). This is the first report in which small amounts of transformation products of RDX leach from dried leaves following uptake by poplars. Such behavior for HMX was reported earlier and is reconfirmed here. All three compounds differ substantially in their fate and transport during the leaching process.  相似文献   

19.
Undersea deposition of unexploded ordnance (UXO) constitutes a potential source of contamination of marine environments by hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX). Using sediment from a coastal UXO field, Oahu Island, Hawaii, we isolated four novel aerobic RDX-degrading fungi HAW-OCF1, HAW-OCF2, HAW-OCF3 and HAW-OCF5, tentatively identified as members of Rhodotorula, Bullera, Acremonium and Penicillium, respectively. The four isolates mineralized 15–34% of RDX in 58 days as determined by liberated 14CO2. Subsequently we selected Acremonium to determine biotransformation pathway(s) of RDX in more details. When RDX (100 μM) was incubated with resting cells of Acremonium we detected methylenedinitramine (MEDINA), N2O and HCHO. Also we detected hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine (MNX) together with trace amounts of hexahydro-1,3-dinitroso-5-nitro-1,3,5-triazine (DNX) and hexahydro-1,3,5-trinitroso-1,3,5-triazine (TNX). Under the same conditions MNX produced N2O and HCHO together with trace amounts of DNX and TNX, but we were unable to detect MEDINA. TNX did not degrade with Acremonium. These experimental findings suggested that RDX degraded via at least two major initial routes; one route involved direct ring cleavage to MEDINA and another involved reduction to MNX prior to ring cleavage. Nitrite was only detected in trace amounts suggesting that degradation via initial denitration did take place but not significantly. Aerobic incubation of Acremonium in sediment contaminated with RDX led to enhanced removal of the nitramine.  相似文献   

20.
The remediation efficiency of soils containing energetic materials (EM) is assessed using SW-846 USEPA Method 8330B. However, the extraction, which is performed by sonicating the soil samples in acetonitrile for several hours, could lead to additional degradation of EM during sample processing, and consequently, to an overestimation of remediation efficiency. To verify this, soil samples that were spiked with controlled amounts of EM were briefly exposed to remediation reagents, such as MuniRem® (a commercial sodium dithionite-based formulation) or hydrated lime, and analyzed using SW-846 USEPA Method 8330B. The most affected EM of this study was 2,4,6-trinitrotoluene (TNT), for which complete degradation was observed after exposure to hydrated lime or pH-buffered MuniRem®. Losses of 1,3,5-trinitro-1,3,5-triazinane (RDX) reached 30 ± 20% upon treatment with full pH-buffered MuniRem® and 90 ± 10% when exposed to lime. The concentrations of 1,3,5,7-tetranitro-1,3,5,7-tetrazocane (HMX) were near the method’s lower limit of quantification, and subjected to large errors, which prevented us from drawing any clear conclusions regarding its degradation under the studied experimental conditions. These results highlight the necessity of performing appropriate soil sample treatments to quench the remaining hydrated lime or sodium dithionite prior to the extraction and analysis steps with SW-846 USEPA Method 8330B. Quenching of remaining remediation reagents may possibly be also required for other remediation reagents and EM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号