首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The equilibrium structure, elastic constants Cij and thermodynamic functions of cubic titanium nitride (TiN) were calculated within the temperature range of 0–3100 K and under a pressure range 0–60 GPa. Properties were computed using the generalised gradient approximations (GGA) exchange-correlation functional. Calculated mechanical properties (Elastic constants, Young’s modulus and shear modulus) and phonon spectra of TiN obtained via robust DFT-QHA algorithm, were generally in a good agreement with available experimental and theoretical analogous values. In particular, a well-examined quasi-harmonic approximation method implemented in the Gibbs2 code is utilised herein to provide accurate estimation of thermal expansion coefficients, entropies, heat capacity values (at different combinations of temperature/volume/pressure) and Debye’s temperature. Parameters calculated herein shall be useful to elucidate the superior performance of TiN at harsh operational conditions encompassing elevated temperatures and pressures pertinent to cutting machineries and surface coatings.  相似文献   

2.
Density functional theory (DFT)-based investigations have been put forward on the elastic, mechanical, and thermo-dynamical properties of BaPaO3. The pressure dependence of electronic band structure and other physical properties has been carefully analyzed. The increase in Bulk modulus and decrease in lattice constant is seen on going from 0 to 30 GPa. The predicted lattice constants describe this material as anisotropic and ductile in nature at ambient conditions. Post-DFT calculations using quasi-harmonic Debye model are employed to envisage the pressure-dependent thermodynamic properties like Debye temperature, specific heat capacity, Grüneisen parameter, thermal expansion, etc. Also, the computed Debye temperature and melting temperature of BaPaO3 at 0 K are 523 K and 1764.75 K, respectively.  相似文献   

3.
The mechanism of welding of Au–Au, Ag–Ag and Au–Ag nanowires (NWs) with head-to-head contact is studied using molecular dynamics simulations based on the second-moment approximation of the many-body tight-binding potential. The effect of temperature in the range of 300–900 K is investigated. Simulation results show that at the initial welding, an incomplete jointing area forms through the interactions of the van der Waals attractive force, and that the jointing area increases with increasing the extent of contact between the two NWs during the welding process and temperature. Few defects form along the (1 1 1) close-packed plane during the welding process because the acting stress is quite low. Among the three NW pairs, the Au–Au NWs have the best cold-welding quality, whereas the Au–Ag NWs have the worst cold-welding quality due to the welding of different materials. With an increase in temperature, the weld stress and the mechanical strength of the NWs significantly decrease, and the number of disordered structures increases. The welding fails when the temperature exceeds the molten temperature of the NWs.  相似文献   

4.
5.
Filled skutterudite compound PrFe4P12 is studied using the full potential linear muffin-tin orbital method with the local density approximation for the exchange correlation potential to investigate the systematic trends for structural and elastic properties of the cubic PrFe4P12 skutterudite. The calculated ground state quantities such as the lattice constant and internal free parameters are in fairly good agreement with the available experimental data. The elastic constants and their pressure dependence are obtained by calculating the total energy versus volume-conserving strains using the Mehl model. Pressure and temperature effects on the lattice constant, bulk modulus, thermal expansion coefficient, Debye temperature and heat capacity are obtained in the range of 0–30 GPa and 0–1000 K. Reduction of bulk modulus and Debye temperature with temperature essentially indicates the thermal softening of the rare earth-filled skutterudites lattice.  相似文献   

6.
A set of 13 aliphatic alcohols was modelled by molecular dynamics simulations at temperatures from 288 to 338 K using the optimised potential for liquid simulations (OPLS) united-atom force field, the OPLS all-atom force field and the OPLS all-atom force field with modified partial charges of the hydroxyl group. The set includes primary and secondary alcohols, and mono-, di- and trialcohols, and covers a broad range of polarities from log P = ? 0.74 (methanol) to log P = 2.9 (octanol). The density, the radial distribution function, the self-diffusion coefficient and the dielectric constant were evaluated. A long equilibration time of at least 50 ns and a large size of the molecular system of more than 75,000 atoms were used. Except for glycerol, the OPLS all-atom force field reliably reproduced the experimentally determined density with deviations of less than 4% over the whole temperature range. In contrast, the modelled self-diffusion coefficient deviated from its experimental value by up to 55%. To modify the force field, the partial charges of the hydroxyl group were varied by up to 3%. Using the modified OPLS force field, the deviation of the self-diffusion coefficients from their experimental values decreased to less than 19%, while the densities changed by less than 1%.  相似文献   

7.
The effects of the configuration and temperature on the Young’s modulus of poly (methyl methacrylate) (PMMA) have been studied using molecular dynamics simulations. For the DREIDING force field under ambient temperatures, increasing the number of monomers significantly increases the modulus of isotactic and syndiotactic PMMA while the isotactic form has a greater modulus. The effects of temperature on the modulus of isotactic PMMA have been simulated using the DREIDING, AMBER, and OPLS force fields. All these force fields predict the effects of temperature on the modulus from 200 to 350 K that are in close agreement with experimental values, while at higher temperatures the moduli are greater than those measured. The glass transition temperature determined by the force fields, based on the variation of the modulus with temperature, is greater than the experimental values, but when obtained from a plot of the volume as a function of the temperature, there is closer agreement. The Young’s moduli calculated in this study are in closer agreement to the experimental data than those reported by previous simulations.  相似文献   

8.
Abstract

The optimisation of a peptide-capped glycine using the novel force field FFLUX is presented. FFLUX is a force field based on the machine-learning method kriging and the topological energy partitioning method called Interacting Quantum Atoms. FFLUX has a completely different architecture to that of traditional force fields, avoiding (harmonic) potentials for bonded, valence and torsion angles. In this study, FFLUX performs an optimisation on a glycine molecule and successfully recovers the target density-functional-theory energy with an error of 0.89 ± 0.03 kJ mol?1. It also recovers the structure of the global minimum with a root-mean-squared deviation of 0.05 Å (excluding hydrogen atoms). We also show that the geometry of the intra-molecular hydrogen bond in glycine is recovered accurately.  相似文献   

9.
The drying of reduced glutathione from a series of aqueous–ethanol binary solutions at 300 K (below human body temperature) and 330 K (above human body temperature) was investigated in detail by steered molecular simulation and an umbrella sampling method with the Gromacs software package and Gromos96(53a6) united atomic force field. The results show that electrostatic interactions between glutathione and solvent represent the main resistance to drying. When the aqueous solution was gradually changed to pure ethanol, the energy of electrostatic interaction between glutathione and solvent molecules increased by 445.088 kJ/mol, and the drying potential of mean force (PMF) free energy also fell by 253.040 kJ/mol. However, an increase in temperature from 300 to 330 K in the aqueous solution only results in an increase of 23.013 kJ/mol in electrostatic interaction energy and a decrease of 34.956 kJ/mol in drying PMF free energy. Furthermore, we show that hydrogen bonding is the major form of electrostatic interaction involved, and directly affects the drying of glutathione. Therefore, choosing water-miscible solvents that minimise hydrogen-bond formation with glutathione will enhance its drying rate, and this is likely to be more efficient than increasing the temperature of the process. Thus, a power-saving technology can be used to produce the high bioactivity medicines.  相似文献   

10.
Molecular dynamics (MD) computer simulations are utilized to better understand the dynamics of small (N = 5) endohedral Ne@C60 aggregates. Multiple runs at various temperatures are used to increase the reliability of our statistics. The aggregate holds together until somewhere between T = 1150 and 1200 K, where it dissociates, showing no intermediate sign of melting or fullerene disintegration. When the temperature is increased to around T = 4000 K, the encapsulated neon atoms begin to leave the aggregate, with the fullerene molecules still remaining intact. At temperatures near T = 4400 K, thermal disintegration of the fullerenes preempts the aggregate dissociation. Above this temperature neon atoms are more quickly released and the fullerenes form a larger connected structure, with bonding taking place in atom pairs from different original fullerene molecules. Escape constants and half lives are calculated for the temperature range 4000 K ≤ T ≤ 5000 K. The agreements and disagreements of results of this work with experiments suggest that classical MD simulations are useful in describing fullerene systems at low temperatures and near disintegration, but require development of new techniques before it is possible to accurately model windowing at temperatures below T = 3000 K.  相似文献   

11.
In the present study, the radial thermal rectification and thermal conductivity of the graphene were investigated by non-equilibrium molecular dynamics simulation and then corrected by quantum correction to make it closer to the fact. The Optimised three-body Tersoff potential is employed in order to simulate the interactions between the carbon atoms in the graphene sheet. A circular region in the centre and the one at the graphene edge are selected as hot and cold bath to generate radial temperature gradient. It is observed that the heat current passes through radially inward direction than outward with the same temperature gradient and hence there is a radial thermal rectification in graphene. Also, temperature distribution and heat flux are theoretically introduced as a function of distance from the graphene centre and then it is confirmed by the molecular dynamics simulation data. Finally, the influence of temperature gradient and size of graphene on radial thermal rectification and the impact of size on the radial thermal conductivity is investigated.  相似文献   

12.
Terahertz absorption spectra of alanine polypeptides in water were simulated with classical molecular dynamics at 310 K. Vibrational modes and oscillator strengths were calculated based on a quasi-harmonic approximation. Absorption spectra of Alan (n = 5, 15, 30) with different chain lengths and Ala15 in coiled and helical conformations were studied in 10–40 cm? 1 bandwidth. Simulation results indicated both the chain length and the conformation have significant influences on THz spectra of alanine polypeptides. With the increase of chain length, the average THz absorption intensity increases. Compared with the helical Ala15 polypeptide, the THz spectra of coiled one shows stronger absorption peaks. These results were explained from different numbers of hydrogen bonds formed between polypeptides and the surrounding water molecules.  相似文献   

13.
Using first-principles density functional theory and classical molecular dynamics (MD), the structural, electronic and mechanical properties of the energetic material β-HMX have been studied. The crystal structure optimised by the local density approximation calculations compares reasonably with the experimental data. Electronic band structure and density of states indicate that β-HMX is an insulator with a band gap of 3.059 eV. The pressure effect on the crystal structure and physical properties has been investigated in the range of 0–40 GPa. The crystal structure and electronic properties change slightly as the pressure increases from 0 to 2.5 GPa; when the pressure is above 2.5 GPa, further increment of the pressure results in significant changes in crystal structure. There is a larger compression along the b-axis than along the a- and c-axes. Isothermal–isobaric MD simulations on β-HMX were performed in the temperature range of 5–400 K. Phase transition at 360 K, corresponding to a volume interrupt, was found. The computed thermal expansion coefficients show anisotropic behaviour with a slightly larger expansion along the b- and c-axes than along the a-axis. In the temperature range of 5–360 K, β-HMX possesses good plasticity and its stiffness decreases with increasing the temperature.  相似文献   

14.
Single-walled carbon nanotubes (SWNTs) covalently functionalised with polyethylene glycol (PEG) or noncovalently coated with PEGylated lipids were simulated in water and in lipid bilayers at different PEG sizes and grafting densities using coarse-grained force fields. Starting with the random position of three SWNT–PEG complexes in water, larger PEGs at higher grafting densities more significantly inhibit the aggregation of SWNTs because of larger radii of gyration and hydrodynamic radii of the SWNT–PEG complex, which influence the thickness and the wrapping extent of PEG layer. In particular, PEG-functionalised SWNTs, where PEGs are evenly grafted along the SWNT, disperse, while PEG-coated SWNTs aggregate because SWNTs are less covered by randomly adsorbed PEGylated lipids. Simulations of SWNT–PEGs in lipid bilayers show that PEG (Mw = 550 and 2000)-functionalised SWNTs bind to the bilayer surface but do not insert into the bilayer, while PEG-coated SWNTs insert into the bilayer because PEGylated lipids detach from SWNTs and mix with bilayer lipids. These findings support recent experiments at the same PEG size and density, which suggested that PEG-coated SWNTs may form bundles and thus cannot be easily excreted through the renal route, while PEG-functionalised SWNTs may remain individual and thus show more renal excretion.  相似文献   

15.
Molecular dynamics simulations of the adsorption of hydrogen molecules in finite single-walled carbon nanotube bundles are presented using a curvature dependent force field. The heat of formation and the effective adsorption capacity are expressed as a function of H2 distance from adsorbent. The heat of adsorption decreases rapidly with the distance and increasing H2 loading results in weakening adsorption strength. The effects of nanotube packing and bundle thickness on hydrogen adsorption strength were investigated and the results show that the heat of adsorption can be improved slightly if hydrogen molecules are placed in thicker and inhomogeneously packed nanotube bundles. Only very small diameter nanotube bundles were found to hold promise for significant hydrogen storage for onboard applications.  相似文献   

16.
1,4-dioxane, a cyclic ether, is an emerging contaminant which is difficult to remove from water with conventional water treatment methods and resistant to biodegradation. Once a reliable force field is developed for 1,4-dioxane, molecular simulation techniques can be useful to study alternative adsorbents for its removal. For this purpose, we carried out Monte Carlo simulations in a constant volume Gibbs Ensemble to generate a force field which is capable of predicting the vapour–liquid coexistence curve and critical data of 1,4-dioxane. Results are given in comparison with experimental data and results from simulations with other force fields. Liquid densities and critical temperature are predicted in excellent agreement with experimental data using the new force field. At high temperatures, predicted vapour densities are in good agreement with experimental data, however, at lower temperatures the predicted vapour densities deviate about an order of magnitude from the experimental values. The critical density is slightly underestimated with our new force field. However, overall, the results of simulations with the new parameters give much better agreement with experimental data compared to the results obtained using other force fields.  相似文献   

17.
The effects of temperature and urea denaturation (6M urea) on the dominant structures of the 20‐residue Trp‐cage mini‐protein TC5b are investigated by molecular dynamics simulations of the protein at different temperatures in aqueous and in 6M urea solution using explicit solvent degrees of freedom and the GROMOS force‐field parameter set 45A3. In aqueous solution at 278 K, TC5b is stable throughout the 20 ns of MD simulation and the trajectory structures largely agree with the NMR‐NOE atom–atom distance data available. Raising the temperature to 360 K and to 400 K, the protein denatures within 22 ns and 3 ns, showing that the denaturation temperature is well below 360 K using the GROMOS force field. This is 40–90 K lower than the denaturation temperatures observed in simulations using other much used protein force fields. As the experimental denaturation temperature is about 315 K, the GROMOS force field appears not to overstabilize TC5b, as other force fields and the use of continuum solvation models seem to do. This feature may directly stem from the GROMOS force‐field parameter calibration protocol, which primarily involves reproduction of condensed phase thermodynamic quantities such as energies, densities, and solvation free energies of small compounds representative for protein fragments. By adding 6M urea to the solution, the onset of denaturation is observed in the simulation, but is too slow to observe a particular side‐chain side‐chain contact (Trp6‐Ile4) that was experimentally observed to be characteristic for the denatured state. Interestingly, using temperature denaturation, the process is accelerated and the experimental data are reproduced.  相似文献   

18.
The conformational space and structural ensembles of amyloid beta (Aβ) peptides and their oligomers in solution are inherently disordered and proven to be challenging to study. Optimum force field selection for molecular dynamics (MD) simulations and the biophysical relevance of results are still unknown. We compared the conformational space of the Aβ(1‐40) dimers by 300 ns replica exchange MD simulations at physiological temperature (310 K) using: the AMBER‐ff99sb‐ILDN, AMBER‐ff99sb*‐ILDN, AMBER‐ff99sb‐NMR, and CHARMM22* force fields. Statistical comparisons of simulation results to experimental data and previously published simulations utilizing the CHARMM22* and CHARMM36 force fields were performed. All force fields yield sampled ensembles of conformations with collision cross sectional areas for the dimer that are statistically significantly larger than experimental results. All force fields, with the exception of AMBER‐ff99sb‐ILDN (8.8 ± 6.4%) and CHARMM36 (2.7 ± 4.2%), tend to overestimate the α‐helical content compared to experimental CD (5.3 ± 5.2%). Using the AMBER‐ff99sb‐NMR force field resulted in the greatest degree of variance (41.3 ± 12.9%). Except for the AMBER‐ff99sb‐NMR force field, the others tended to under estimate the expected amount of β‐sheet and over estimate the amount of turn/bend/random coil conformations. All force fields, with the exception AMBER‐ff99sb‐NMR, reproduce a theoretically expected β‐sheet‐turn‐β‐sheet conformational motif, however, only the CHARMM22* and CHARMM36 force fields yield results compatible with collapse of the central and C‐terminal hydrophobic cores from residues 17‐21 and 30‐36. Although analyses of essential subspace sampling showed only minor variations between force fields, secondary structures of lowest energy conformers are different.  相似文献   

19.
An effective use of computer simultion methods in the study of solids depends on the derivation of reliable potential models. Hence, the empirically derived interionic potentials of LaF3 were tested by free energy minimisation techniques, within the quasi-harmonic approximation. This was achieved by calculating the temperature variation of elastic constants derived directly from the shell model potentials. These changes agree reasonably well with those calculated from an experimental lattice expansion, below 800 K. However, the departure from linearity and experimental results occur in the range 800–1100 K, which is below the transition temperature to the state of high ionic conductivity. This shows how far the fitted shell model potentials can reliably predict the elastic behaviour of LaF3.  相似文献   

20.
Sustainable nutrient cycling in agroecosystems combining grazing and crops has global ramifications for protecting these ecosystems and for the livelihoods they support. We sought to understand environmental, management, and social drivers of nutrient management and sustainability in Andean grazing/crop systems. We assessed the impact of farmer wealth, fields’ proximity to villages, topography, and rangeland net primary productivity (NPP) on mass balances for nitrogen (N), phosphorus (P), and potassium (K) of 43 fields. Wealthier farmers applied greater total amounts (kg) of manure nutrients. However, higher manure application rates (kg ha?1) were associated with field proximity and NPP rather than wealth. Manure P inputs in far fields (> 500-m distant) were half those in near fields. Harvest exports increased with manure inputs (P < 0.001) so that balances varied less than either of these flows. Erosion nutrient losses in steeper far fields matched crop exports, and yields declined with increasing field slope (P < 0.001), suggesting that erosion reduces productivity. Balances for P were slightly positive in near and far fields (+2.2 kg P ha?1 y?1, combined mean) when calculated without erosion, but zero in near fields and negative in far fields with erosion included (?6.1 kg P ha?1 y?1 in far fields). Near/far differences in both inputs and erosion thus drove P limitation. Crop K exports dominated K balances, which were negative even without accounting for erosion. Modeled intensification scenarios showed that remediating far field deficits would require P addition and erosion reduction. Management nested within environmental constraints (NPP, erosion) rather than socioeconomic status drives soil nutrient sustainability in these agroecosystems. Time-lags between management and long-term degradation are a principal sustainability challenge to farming in these montane grazing/crop agroecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号