首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Streptococcus pyogenes is the frequent cause of purulent infections in humans. Formation of a biofilm is one of the important aspects of its pathogenicity. Streptococcus pyogenes biofilm communities tend to exhibit significant tolerance to antimicrobial challenge during infections. Exploring novel targets against biofilm-forming pathogens is therefore an important alternative treatment measure. We attempted to screen marine bacteria, especially coral-associated bacteria (CAB), for antibiofilm activity against streptococcal biofilm formation. The bacterial biofilms were quantified by crystal violet staining. Of 43 CAB isolates, nine clearly demonstrated antibiofilm activity. At biofilm inhibitory concentrations (BIC), biofilm formation was reduced up to 80%, and sub-BIC (0.5 and 0.25 BIC) significantly reduced biofilm formation by up to 60% and 40–60%, respectively. Extracts of Bacillus horikoshii (E6) displayed efficient antibiofilm activity. As quorum sensing (QS) and cell surface hydrophobicity (CSH) are crucial factors for biofilm formation in S. pyogenes , the CAB were further screened for QS inhibition properties and CSH reduction properties. This study reveals the antibiofilm and QS inhibition property of CAB.  相似文献   

2.
Increased contamination of the environment with toxic pollutants has paved the way for efficient strategies which can be implemented for environmental restoration. The major problem with conventional methods used for cleaning of pollutants is inefficiency and high economic costs. Bioremediation is a growing technology having advanced potential of cleaning pollutants. Biofilm formed by various micro-organisms potentially provide a suitable microenvironment for efficient bioremediation processes. High cell density and stress resistance properties of the biofilm environment provide opportunities for efficient metabolism of number of hydrophobic and toxic compounds. Bacterial biofilm formation is often regulated by quorum sensing (QS) which is a population density-based cell–cell communication process via signaling molecules. Numerous signaling molecules such as acyl homoserine lactones, peptides, autoinducer-2, diffusion signaling factors, and α-hydroxyketones have been studied in bacteria. Genetic alteration of QS machinery can be useful to modulate vital characters valuable for environmental applications such as biofilm formation, biosurfactant production, exopolysaccharide synthesis, horizontal gene transfer, catabolic gene expression, motility, and chemotaxis. These qualities are imperative for bacteria during degradation or detoxification of any pollutant. QS signals can be used for the fabrication of engineered biofilms with enhanced degradation kinetics. This review discusses the connection between QS and biofilm formation by bacteria in relation to bioremediation technology.  相似文献   

3.
4.
群体感应(quorum sensing,QS)是指细胞感知周围同类细胞的多寡或密度并调控基因表达的系统,它对大多数细菌的生物膜形成至关重要。目前对霍乱弧菌的QS系统已有较深入的研究,该菌的群体感应系统通过HapR、LuxO等多种信号分子调控生物膜的形成及消散。干扰QS系统将成为治疗生物膜相关感染的新方向。  相似文献   

5.
We develop a multiphasic hydrodynamic theory for biofilms taking into account interactions among various bacterial phenotypes, extracellular polymeric substance (EPS), quorum sensing (QS) molecules, solvent, and antibiotics. In the model, bacteria are classified into down-regulated QS, up-regulated QS, and non-QS cells based on their QS ability. The model is first benchmarked against an experiment yielding an excellent fit to experimental measurements on the concentration of QS molecules and the cell density during biofilm development. It is then applied to study development of heterogeneous structures in biofilms due to interactions of QS regulation, hydrodynamics, and antimicrobial treatment. Our 3D numerical simulations have confirmed that (i). QS is beneficial for biofilm development in a long run by building a robust EPS population to protect the biofilm; (ii). biofilms located upstream can induce QS downstream when the colonies are close enough spatially; (iii). QS induction may not be fully operational and can even be compromised in strong laminar flows; (v). the hydrodynamic stress alters the biofilm morphology. Through further numerical investigations, our model suggests that (i). QS-regulated EPS production contributes to the structural formation of heterogeneous biofilms; (ii) QS down-regulated cells tend to grow at the surface of the biofilm while QS up-regulated ones tend to grow in the bulk; (iii) when nutrient supply is sufficient, QS induction might be more effective upstream than downstream; (iv) QS may be of little benefit in a short timescale in term of fighting against invading strain/species; (v) the material properties of biomass (bacteria and EPS) have strong impact on the dilution of QS molecules under strong shear flow. In addition, with this modeling framework, hydrodynamic details and rheological quantities associated with biofilm formation under QS regulation can be resolved.  相似文献   

6.
细菌群体感应调控多样性及群体感应淬灭   总被引:3,自引:0,他引:3  
群体感应(Quorum sensing, QS)是细菌通过信号分子分泌、识别,从而调控基因水平转移、毒力因子分泌、芽孢产生及生物膜形成等群体行为的细胞交流机制。干扰信号分子的分泌、识别,可以阻断群体感应,实现群体淬灭。群体淬灭(Quorum quenching, QQ)是目前致病性控制、致腐性预防以及生物膜污染削减的重要策略之一。本文以群体感应信号分泌-识别-响应为主线,将群体感应分为等级、平行及竞争型三类调控方式,并对其特征进行了详细阐述;同时,探讨了信号分子类似物、信号分子降解酶剂、信号受体激活剂/抑制剂等策略在不同调控方式淬灭中的适用性;最后,对群体感应调控及淬灭进行了展望,以期为丰富细菌群体感应认知、促进群体淬灭应用提供参考。  相似文献   

7.
细菌群体感应与细菌生物被膜形成之间的关系   总被引:2,自引:0,他引:2  
由于滥用抗生素,人类致病菌的耐药日益成为全球性的公共卫生难题。据统计,细菌感染80%以上与细菌生物被膜有关。近年来,有关细菌群体感应和细菌生物被膜的形成乃至机理已有报道,但就群体感应与细菌生物被膜的关系却报道较少,而揭示二者之间的关系可能会为解决致病菌耐药问题提供一个全新的思路。本文立足群体感应和细菌生物被膜的形成机制,结合本课题组的阶段性研究内容,拟阐明细菌群体感应与生物被膜形成的关系。  相似文献   

8.
Bacterial quorum sensing (QS) systems are cell density—dependent regulatory networks that coordinate bacterial behavioural changes from single cellular organisms at low cell densities to multicellular types when their population density reaches a threshold level. At this stage, bacteria produce and perceive small diffusible signal molecules, termed autoinducers in order to mediate gene expression. This often results in phenotypic shifts, like planktonic to biofilm or non-virulent to virulent. In this way, they regulate varied physiological processes by adjusting gene expression in concert with their population size. In this review we give a synopsis of QS mediated cell–cell communication in bacteria. The first part focuses on QS circuits of some Gram-negative and Gram-positive bacteria. Thereafter, attention is drawn on the recent applications of QS in development of synthetic biology modules, for studying the principles of pattern formation, engineering bi-directional communication system and building artificial communication networks. Further, the role of QS in solving the problem of biofouling is also discussed.  相似文献   

9.
Bacteria sense and respond to environmental cues to control important developmental processes. Two widely conserved and important strategies that bacteria employ to sense changes in population density and local environmental conditions are quorum sensing (QS) and cyclic di-GMP (c-di-GMP) signaling, respectively. The importance of these pathways in controlling a broad variety of functions, including virulence, biofilm formation, and motility, has been recognized in many species. Recent research has shown that these pathways are intricately intertwined. Here we review the regulatory connections between QS and c-di-GMP signaling. We propose that the integration of QS with c-di-GMP allows bacteria to assimilate information about the local bacterial population density with other physicochemical environmental signals within the broader c-di-GMP signaling network.  相似文献   

10.
Serratia marcescens is an opportunistic pathogen causing severe urinary tract infections in hospitalized individuals. Infections of S. marcescens are of great concern because of its increasing resistance towards conventional antibiotics. Quorum sensing (QS)-a cell to cell communication-system of S. marcescens acts as a global regulator of almost all the virulence factors and majorly its biofilm formation. Since, the QS system of S. marcescens directly accords to its pathogenesis, targeting QS system will provide an improved strategy to combat drug resistant pathogens. In the present study, QS system of S. marcescens has been used as target and its inhibition has been studied upon exposure to bioactives from coral associated bacteria (CAB). This study also emphasises the potential of CAB in producing bioactive agents with anti-QS and antibiofilm properties. Two CAB isolates CAB 23 and 41 have shown to inhibit biofilm formation and the production of QS dependent virulence factors like prodigiosin, protease, lipase and swarming motility. The study, on the whole explicates the potential of QS system as a target to treat drug resistant bacterial infections.  相似文献   

11.
Acylated homoserine lactone molecules are used by a number of gram-negative bacteria to regulate cell density-dependent gene expression by a mechanism known as quorum sensing (QS). In Pseudomonas aeruginosa, QS or cell-to-cell signaling controls expression of a number of virulence factors, as well as biofilm differentiation. In this study, we investigated the role played by the las and rhl QS systems during the early stages of static biofilm formation when cells are adhering to a surface and forming microcolonies. These studies revealed a marked difference in biofilm formation between the PAO1 parent and the QS mutants when glucose, but not citrate, was used as the sole carbon source. To further elucidate the contribution of lasI and rhlI to biofilm maturation, we utilized fusions to unstable green fluorescent protein in concert with confocal microscopy to perform real-time temporal and spatial studies of these genes in a flowing environment. During the course of 8-day biofilm development, lasI expression was found to progressively decrease over time. Conversely, rhlI expression remained steady throughout biofilm development but occurred in a lower percentage of cells. Spatial analysis revealed that lasI and rhlI were maximally expressed in cells located at the substratum and that expression decreased with increasing biofilm height. Because QS was shown previously to be involved in biofilm differentiation, these findings have important implications for the design of biofilm prevention and eradication strategies.  相似文献   

12.
Quorum sensing in streptococcal biofilm formation   总被引:10,自引:0,他引:10  
Bacteria in their natural ecosystems preferentially grow as polysaccharide-encased biofilms attached to surfaces. Although quorum-sensing (QS) systems directing the 'biofilm phenotype' have been extensively described in Gram-negative bacteria, there is little understanding of the importance of these systems in Gram-positive biofilm formation. Streptococci are a diverse group of Gram-positive bacteria that colonize epithelial, mucosal and tooth surfaces of humans. In several streptococci, competence-stimulating peptide (CSP)-mediated QS has been connected with competence development for genetic transformation. Recent work, especially with bacteria that inhabit the biofilm of dental plaque, has linked CSP stimuli to other cell-density adaptations, such as biofilm formation.  相似文献   

13.
Quorum sensing (QS), a cell-to-cell communication process, entails the production of signaling molecules that enable synchronized gene expression in microbial communities to regulate myriad microbial functions, including biofilm formation. QS disruption may constitute an innovative approach to the design of novel antifouling and anti-biofilm agents. To identify novel quorum sensing inhibitors (QSI), 2,500 environmental bacterial artificial chromosomes (BAC) from uncultured marine planktonic bacteria were screened for QSI activity using soft agar overlaid with wild type Chromobacterium violaceum as an indicator. Of the BAC library clones, 7% showed high QSI activity (>40%) against the indicator bacterium, suggesting that QSI is common in the marine environment. The most active compound, eluted from BAC clone 14-A5, disrupted QS signaling pathways and reduced biofilm formation in both Pseudomonas aeruginosa and Acinetobacter baumannii. The mass spectra of the active BAC clone (14-A5) that had been visualized by thin layer chromatography was dominated by a m/z peak of 362.1.  相似文献   

14.
The emergence of multidrug resistance has become an alarming and lifethreatening phenomenon for humans. Various mechanisms are involved in the development of resistance in bacteria towards antimicrobial compounds and immune system. Bacterial biofilm is a complicated, selfdefensive, rigid structure of bacteria crowded together to develop a selfrecessive nature, which enhances the ability to cause infections much easier in the living host. P. aeruginosa biofilm formation is supported by extracellular polymeric substances (EPS) such as exopolysaccharides, extracellular DNA (eDNA), proteins and biomolecules. Published evidences suggest that biofilm formation can also be the result of several other mechanisms such as cell signaling or communication. Bacterial biofilm is also regulated by strong intercellular communication known as Quorum Sensing (QS). It is a cellular communication mechanism involving autoinducers and regulators. In P. aeruginosa, Acyl Homoserine Lactone, the prime signaling molecule, controls approximately 300 genes responsible for various cellular functions, including its pathogenesis. The surrounding environment and metabolism have a specific effect on the biofilm and QS, thus, understanding the involvement of QS in the biofilm developing mechanism is still complicated and complex to understand. Therefore, this review will include basic knowledge of the biofilmforming mechanism and other regulatory factors involved in causing infections and diseases in the host organisms.  相似文献   

15.
Algae are ubiquitous in the marine environment, and the ways in which they interact with bacteria are of particular interest in the field of marine ecology. The interactions between primary producers and bacteria impact the physiology of both partners, alter the chemistry of their environment, and shape microbial diversity. Although algal-bacterial interactions are well known and studied, information regarding the chemical-ecological role of this relationship remains limited, particularly with respect to quorum sensing (QS), which is a system of stimuli and response correlated to population density. In the microbial biosphere, QS is pivotal in driving community structure and regulating behavioral ecology, including biofilm formation, virulence, antibiotic resistance, swarming motility, and secondary metabolite production. Many marine habitats, such as the phycosphere, harbor diverse populations of microorganisms and various signal languages (such as QS-based autoinducers). QS-mediated interactions widely influence algal-bacterial symbiotic relationships, which in turn determine community organization, population structure, and ecosystem functioning. Understanding infochemicals-mediated ecological processes may shed light on the symbiotic interactions between algae host and associated microbes. In this review, we summarize current achievements about how QS modulates microbial behavior, affects symbiotic relationships, and regulates phytoplankton chemical-ecological processes. Additionally, we present an overview of QS-modulated co-evolutionary relationships between algae and bacterioplankton, and consider the potential applications and future perspectives of QS.  相似文献   

16.
群体感应是细菌根据细胞密度变化进行基因表达调控的一种生理行为。当细菌密度达到临界阈值时能释放一些特定的自诱导信号分子,从而调节本种群或同环境中其他种群的群体行为。细菌群体感应参与包括人类、动植物、病原菌在内的多种生物的生物学功能调节,如生物膜的形成、毒力因子的产生、病原菌的耐药性等。深入研究病原菌群体感应系统的调控机制,将提高对病原菌发病机制的认识,有利于以群体感应作为防治疾病策略的研究。系统阐述了群体感应系统的组成类型、群体感应与病原菌致病性的关系,及其在抑制病原菌致病方面的应用。  相似文献   

17.
Acylated homoserine lactone molecules are used by a number of gram-negative bacteria to regulate cell density-dependent gene expression by a mechanism known as quorum sensing (QS). In Pseudomonas aeruginosa, QS or cell-to-cell signaling controls expression of a number of virulence factors, as well as biofilm differentiation. In this study, we investigated the role played by the las and rhl QS systems during the early stages of static biofilm formation when cells are adhering to a surface and forming microcolonies. These studies revealed a marked difference in biofilm formation between the PAO1 parent and the QS mutants when glucose, but not citrate, was used as the sole carbon source. To further elucidate the contribution of lasI and rhlI to biofilm maturation, we utilized fusions to unstable green fluorescent protein in concert with confocal microscopy to perform real-time temporal and spatial studies of these genes in a flowing environment. During the course of 8-day biofilm development, lasI expression was found to progressively decrease over time. Conversely, rhlI expression remained steady throughout biofilm development but occurred in a lower percentage of cells. Spatial analysis revealed that lasI and rhlI were maximally expressed in cells located at the substratum and that expression decreased with increasing biofilm height. Because QS was shown previously to be involved in biofilm differentiation, these findings have important implications for the design of biofilm prevention and eradication strategies.  相似文献   

18.
Quorum sensing (QS) is a process by which bacteria use small molecules or peptidic signals to assess their local population densities. At sufficiently high density, bacteria can alter gene expression levels to regulate group behaviors involved in a range of important and diverse phenotypes, including virulence factor production, biofilm formation, root nodulation, and bioluminescence. Gram-negative bacteria most commonly use N-acylated l-homoserine lactones (AHLs) as their QS signals. The AHL lactone ring is hydrolyzed relatively rapidly at biological pH, and the ring-opened product is QS inactive. We seek to identify AHL analogues with heightened hydrolytic stability, and thereby potentially heightened activity, for use as non-native modulators of bacterial QS. As part of this effort, we probed the utility of thiolactone analogues in the current study as QS agonists and antagonists in Gram-negative bacteria. A focused library of thiolactone analogs was designed and rapidly synthesized in solution. We examined the activity of the library as agonists and antagonists of LuxR-type QS receptors in Pseudomonas aeruginosa (LasR), Vibrio fischeri (LuxR), and Agrobacterium tumefaciens (TraR) using bacterial reporter strains. The thiolactone library contained several highly active compounds, including some of the most active LuxR inhibitors and the most active synthetic TraR agonist reported to date. Analysis of a representative thiolactone analog revealed that its hydrolysis half-life was almost double that of its parent AHL in bacterial growth medium.  相似文献   

19.
Aerobic granular sludge (AGS) has recently attracted attention because of its excellent settling ability and treatment efficiency compared with traditional activated sludge. This review provides recent advances on the formation process of AGS and mainly analyzes the function of quorum sensing (QS) and cell signaling during AGS formation. QS and cell signaling play important roles in the formation of AGS. QS can accelerate the synthesis of extracellular polymeric substance (EPS) and increase microbial adhesion to the surface of AGS. Cell signaling can also promote the secretion of EPS and influence biofilm formation. Cyclic diguanylate (c-di-GMP), as a second messenger, acts an important role in granulation. C-di-GMP causes bacteria to adhere to each other and form a biofilm. Adding Ca2+ benefits bacterial growth and promotes c-di-GMP secretion. Adding Mn2+ reduces c-di-GMP content and triggers AGS disintegration. Finally, the review discusses the possible trends of AGS: QS and cell signaling can lay a theoretical foundation for the formation mechanism of AGS and would be of practical significance for its application in the future.  相似文献   

20.
Cell-cell communication and coordinated population-based behavior among single cell organisms have gained considerable attention in the recent years. The ability to send, receive, and process information allows unicellular organisms to act as multicellular entities and increases their chances of survival in complex environments. Quorum sensing (QS), a density-dependent cell-signaling mechanism, is one way by which bacteria 'talk' to one another. QS is commonly associated with adverse health effects such as biofilm formation, bacteria pathogenicity, and virulence. But there exists great potential to harness QS circuitry and its properties for other applications, enabling even wider societal impact. Interesting avenues are envisioned for the detection of chemicals and pathogens, the navigation of interspecies communication, the synchronization and control of cell phenotype, and the creation of novel materials based on synthetic biology. In this review, we first highlight the recent discoveries of the molecular underpinnings of QS function, with emphasis on the formation of biofilms. We then discuss how researchers have used QS circuitry to their advantage to build synthetic networks, rewire native metabolic pathways, and engineer cells for a variety of applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号