首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The aim of this paper was to elucidate the mechanisms behind salivary lubrication with special emphasis on the lubricity of three key components of the pellicle, viz human acidic proline-rich protein 1 (PRP-1), human statherin and bovine submaxillary mucin (BSM). The lubricating properties of the proteins have been assessed by means of colloidal probe atomic force microscopy, and are discussed in relation to their adsorption behaviour. To various extents, the proteins investigated all showed a lubricating effect when adsorbed to silica surfaces. For comparable concentrations, PRP-1 was found to have a more pronounced lubricating effect than BSM, which in turn showed a higher lubricity than statherin. The relative lubricity is in accordance with previously reported relative adsorbed amounts of the three proteins, within the investigated concentration interval. It is concluded that PRP-1 has the highest lubricating capacity as a pure fraction among the preparations investigated, and that the lubricating effect of PRP-1 as a pure fraction is notably large as compared to the lubricity of human whole saliva.  相似文献   

2.

The influence of saliva concentration, saliva total protein content and the wetting characteristics of exposed solids on in vitro film formation was studied by the technique of in situ ellipsometry. The rates and plateau values of adsorption (45 min) at solid/liquid interfaces (hydrophilic silica and hydrophobic methylated silica surfaces) were determinated for human parotid (HPS) and submandibular/sublingual (HSMSLS) resting saliva solutions (0.1 and 1.0%, (v/v), saliva in phosphate buffered saline). Adsorption rates were related to a model assuming mass transport through an unstirred layer adjacent to the surface. The results showed that the adsorption was rapid, concentration dependent and higher on hydrophobic than on hydrophilic surfaces. Analysis of the influence of protein concentration on the adsorbed amounts demonstrated an interaction between protein concentration and the two surfaces for HPS and HSMSLS, respectively. This may indicate differences in binding mode. Inter‐individual differences were found not to be significant at the 1% level of probability. Comparison of the observed adsorption and calculated diffusion rates suggest that on hydrophilic surfaces initial adsorption of proteins diffusing at rates corresponding to those of statherin and aPRPs takes place, whereas on hydrophobic surfaces lower molecular mass compounds appear to be involved.  相似文献   

3.
Human glandular salivary secretions contain several acidic proline-rich phosphoproteins (PRPs). These proteins have important biological functions related to providing a protective environment for the teeth, and appear to possess other activities associated with modulation of adhesion of bacteria to oral surfaces. These functions and activities depend on the primary structures of the PRPs. Previously determined amino acid sequences of two 150-residue molecules, PRP-1 and PRP-2, and two related 106-residue proteins, PRP-3 and PRP-4, indicated that residue 4 was Asn in PRP-1 and PRP-3, and Asp in PRP-2 and PRP-4, and position 50 was Asn in all four proteins. Recent data from cDNA sequence studies and further structural studies, however, showed that the previously proposed sequences cannot be completely correct. The present work has shown that the protein previously designated as PRP-1 actually consisted of two positional isomers, PIF-s, which has Asn and Asp at positions 4 and 50 respectively, and authentic PRP-1, which has the reverse arrangement. The same isomerism is present in the smaller proteins, PIF-f and PRP-3. Since the isomeric pairs have identical compositions and charges, their presence was not previously detected. Also, by using a more highly purified preparation, it has been found that position 50 in PRP-2 and PRP-4 is Asp, rather than Asn previously reported. These new findings for the six PRPs define their complete primary structures, which are now consistent with those proposed for PRP-1 and PIF-s from cDNA data, and are also consistent with the chromatographic and electrophoretic behaviours of the six PRPs and their derived peptides. These corrected structures are important for understanding the biological functions and activities of these unusual proteins.  相似文献   

4.
In situ ellipsometry was employed to study adsorption from human palatal saliva (HPalS) in terms of dependence on surface wettability and saliva concentration (相似文献   

5.
In situ ellipsometry was employed to study adsorption from human palatal saliva (HPalS) in terms of dependence on surface wettability and saliva concentration ( ? 1%). Adsorbed amounts, kinetics, and elutability with buffer and sodium dodecyl sulphate (SDS) were determined. The low-molecular weight protein content of bulk HPalS was also investigated using two-dimensional gel electrophoresis, and this revealed the presence of a large group of proteins < 100 kDa in size. Adsorption to pure (hydrophilic) and methylated (hydrophobized) silica surfaces revealed that the total adsorbed amounts were greater on hydrophobized silica. Below concentrations of 0.5 and 0.25% saliva, adsorption was concentration dependent on hydrophobized and hydrophilic surfaces, respectively. The initial adsorption ( ? 30 min) was faster on hydrophobized surfaces. Addition of SDS removed more material than buffer rinsing on both surfaces. Analysis of the adsorption kinetics indicated that the presence of low-molecular weight proteins plays a role in adsorption from HPalS.  相似文献   

6.
Adsorption characteristics of zein protein on hydrophobic and hydrophilic surfaces have been investigated to understand the orientation changes associated with the protein structure on a surface. The protein is adsorbed by a self-assembly procedure on a monolayer-modified gold surface. It is observed that zein shows higher affinity toward hydrophilic than hydrophobic surfaces on the basis of the initial adsorption rate followed by quartz crystal microbalance studies. Reflection absorption infrared (RAIR) spectroscopic studies reveal the orientation changes associated with the adsorbed zein films. Upon adsorption, the protein is found to be denatured and the transformation of alpha-helix to beta-sheet form is inferred. This transformation is pronounced when the protein is adsorbed on hydrophobic surfaces as compared to hydrophilic surfaces. Electrochemical techniques (cyclic voltammetry and impedance techniques) are very useful in assessing the permeability of zein film. It is observed that the zein moieties adsorbed on hydrophilic surfaces are highly impermeable in nature and act as a barrier for small molecules. The topographical features of the deposits before and after adsorption are analyzed by atomic force microscopy. The protein adsorbed on hydrophilic surface shows rod- and disclike features that are likely to be the base units for the growth of cylindrical structures of zein. The thermal stability of the adsorbed zein film has been followed by variable-temperature RAIR measurements.  相似文献   

7.
Human salivary secretions contain many proteins in which proline forms an unusually large fraction of the amino-acid residues present, typically from 20% to over 40%. These proteins are also unusually rich in glycine and glutamine, generally account for over half the total protein in saliva, and include acidic, basic and glycosylated molecules. The functions of most of these are not clearly defined. One group, however, the acidic proline-rich phosphoproteins (PRP), have been shown to be potent inhibitors of secondary precipitation (crystal growth) of calcium phosphate salts. Acting together with a salivary protein inhibitor of primary precipitation of calcium phosphates, statherin, the PRP stabilize saliva which is supersaturated with respect to the calcium phosphate salts which form dental enamel. These inhibitory activities act to provide a protective, reparative, but stable environment for dental enamel, which is important for maintaining the health of the teeth. The PRP are a complex group of phosphoproteins which include four major and at least eight minor members. The primary structures of three of the major proteins have been determined. These are PRP-1, also designated Protein-C, PRP-3, also designated Protein-A (17), and PRP-4. The designations PRP-1,-2,-3 and -4 will be used here. The purpose of this paper is to report the complete primary structure of PRP-2 as a further step towards establishing the structural basis of the biological activity of the PRP, and clarifying the genetic and biosynthetic relationships of these closely related proteins.  相似文献   

8.
Study of peptides adsorption on surfaces remains a current challenge in literature. A complementary approach, combining X‐ray photoelectron spectroscopy (XPS) and time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS) was used to investigate the antimicrobial peptide nisin adsorption on hydrophilic and hydrophobic surfaces. The native low density polyethylene was used as hydrophobic support and it was grafted with acrylic acid to render it hydrophilic. XPS permitted to confirm nisin adsorption and to determine its amount on the surfaces. ToF‐SIMS permitted to identify the adsorbed bacteriocin type and to observe its distribution and orientation behavior on both types of surfaces. Nisin was more oriented by its hydrophobic side to the hydrophobic substrate and by its hydrophilic side to the outer layers of the adsorbed peptide, in contrast to what was observed on the hydrophilic substrate. A correlation was found between XPS and ToF‐SIMS results, the types of interactions on both surfaces and the observed antibacterial activity. Such interfacial studies are crucial for better understanding the peptides interactions and adsorption on surfaces and must be considered when setting up antimicrobial surfaces. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

9.
Human salivary statherin was purified from parotid saliva and adsorbed to bare hydrophilic (HP) mica and STAI-coated hydrophobic (HB) mica in a series of Surface Force Balance experiments that measured the normal (F(n)) and friction forces (F(s)*) between statherin-coated mica substrata. Readings were taken both in the presence of statherin solution (HP and HB mica) and after rinsing (HP mica). F(n) measurements showed, for both substrata, monotonic steric repulsion that set on at a surface separation D ~20 nm, indicating an adsorbed layer whose unperturbed thickness was ca 10 nm. An additional longer-ranged repulsion, probably of electrostatic double-layer origin, was observed for rinsed surfaces under pure water. Under applied pressures of ~1 MPa, each surface layer was compressed to a thickness of ca 2 nm on both types of substratum, comparable with earlier estimates of the size of the statherin molecule. Friction measurements, in contrast with F(n) observations, were markedly different on the two different substrata: friction coefficients, μ ≡ ?F(s)*/?F(n), on the HB substratum (μ ≈ 0.88) were almost an order of magnitude higher than on the HP substratum (μ ≈ 0.09 and 0.12 for unrinsed and rinsed, respectively), and on the HB mica there was a lower dependence of friction on sliding speed than on the HP mica. The observations were attributed to statherin adsorbing to the mica in multimer aggregates, with internal re-arrangement of the protein molecules within the aggregate dependent on the substratum to which the aggregate adsorbed. This internal re-arrangement permitted aggregates to be of similar size on HP and HB mica but to have different internal molecular orientations, thus exposing different moieties to the solution in each case and accounting for the very different friction behaviour.  相似文献   

10.
The structural characteristics and the activity of a hyperthermophilic endoglucanase were investigated upon adsorption. Silica (hydrophilic) and Teflon (hydrophobic) surfaces were selected for the study. The materials were specially designed so that the interaction of the particles with light was negligible, and the enzyme conformation in the adsorbed state was monitored in situ. The adsorption isotherms were determined, and the adsorbed endoglucanase was studied using a number of spectroscopic techniques, enzymatic activity tests, and dynamic light scattering. Experiments were performed at pH values below, at, and above the isoelectric point of the enzyme. It was shown that the enzyme adsorbed on the hydrophobic surface of Teflon with higher affinity as compared to the hydrophilic silica nanoparticles. In all cases, adsorption was followed by (slight) changes in the secondary structure resulting in decreased beta-structural content. The changes were more profound upon adsorption on Teflon. The adsorbed enzyme remained active in the adsorbed state in spite of the structural changes induced when interacting with the surfaces.  相似文献   

11.
The ability of Tween 20 to reduce the adsorption of albumin on silicon surfaces of different hydrophobicity was investigated by ellipsometry. As expected, protein adsorption was found to depend on the degree of hydrophobicity of the surfaces and on the concentration of the surfactant. A reduction of 90% in albumin adsorption on hydrophobic methylated surfaces by 0.05% Tween 20 was achieved, whereas a reduction of only 15% on hydrophilic surfaces was observed. Experiments of time-dependent protein adsorption in both pure protein and protein-surfactant mixtures were conducted to ascertain the stability of physically adsorbed Tween 20 films on intermediate silicon surfaces. It was found that the adsorbed Tween 20 film was robust and there was no evidence of exchange of the Tween molecules with albumin for up to 240 min exposure. Adsorption minima were confirmed to correlate with minima in contact angle and critical micelle concentration (CMC). (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 56: 618-625, 1997.  相似文献   

12.
Using a quartz crystal microbalance with dissipative monitoring (QCM-D) we have determined the adsorption reversibility and viscoelastic properties of ribonuclease A adsorbed to hydrophobic self-assembled monolayers. Consistent with previous work with proteins unfolding on hydrophobic surfaces, high protein solution concentrations, reduced adsorption times, and low ammonium sulfate concentrations lead to increased adsorption reversibility. Measured rigidity of the protein layers normalized for adsorbed protein amounts, a quantity we term specific dissipation, correlated with adsorption reversibility of ribonuclease A. These results suggest that specific dissipation may be correlated with changes in structure of adsorbed proteins.  相似文献   

13.
Abstract

Exopolymers secreted by algal and cyanobacterial strains isolated from building façades were imaged by microscopy techniques. They were extracted and characterised to investigate their possible contribution to interactions with solid surfaces. The polymers were polysaccharides, with anionic and hydrophobic properties varying between the various strains. Capsular polysaccharides extracted from a strain of Klebsormidium flaccidum adsorbed in higher amounts on hydrophobic than on hydrophilic surfaces. These results tend to confirm the hypothesis that exopolymers are important in the colonisation process of microorganisms to surfaces.  相似文献   

14.
J F Halsall  M Kalaji  A L Neal 《Biofouling》2013,29(2-4):105-118

Analysis of the adsorption of capsular exopolymers (EPS) from Pseudomonas sp. NCIMB 2021 to hydrophilic and hydrophobic gold surfaces was examined, in situ, using Fourier transform infrared spectroscopy. The molecular sequence of events occurring upon EPS adsorption to hydrophilic and hydrophobic surfaces has been elucidated using dynamic 2D‐FTIR correlation spectroscopy. This method of analysis enables the enhancement of the resolution of overlapping spectral features and the elucidation of time‐dependent changes. The data reveal the existence of surface dependent adsorption mechanisms. At both surfaces, the aromatic tyrosyl side chains of the protein moiety displace water. This is followed by an adsorption step dominated by carboxylate groups. However, at the hydrophobic surface, the two steps are interrupted by the ingress of water back to the surface. Furthermore, the amount of neutral exopolymer present was greater at the hydrophilic surface than the hydrophobic surface.  相似文献   

15.
Ellipsometry and mechanically assisted sodium dodecyl sulphate elution was utilized to study the adsorption of human serum albumin (HSA), human immunoglobulin G (IgG), and laminin-1, as well as competitive adsorption from a mixture of these proteins on spin-coated and sintered hydroxyapatite (HA) surfaces, respectively. The HA surfaces were characterized with respect to wettability and roughness by means of water contact angles and atomic force microscopy, respectively. Both surface types were hydrophilic, and the average roughness (Sa) and surface enlargement (Sdr) were lower for the sintered compared to the spin-coated HA surfaces. The adsorbed amounts on the sintered HA increased as follows: HSA < laminin-1 < IgG < the protein mixture. For the competitive adsorption experiments, the adsorbed fractions increased accordingly: HSA < laminin-1 < IgG on both types of HA substratum. However, a higher relative amount of HSA and laminin-1 and a lower relative amount of IgG was found on the spin-coated surfaces compared to the sintered surfaces. The effects observed could be ascribed to differences in surface roughness and chemical composition between the two types of HA substratum, and could have an influence on selection of future implant surface coatings.  相似文献   

16.
Understanding protein adsorption kinetics to surfaces is of importance for various environmental and biomedical applications. Adsorption of bovine serum albumin to various self-assembled monolayer surfaces including neutral and charged hydrophilic and hydrophobic surfaces was investigated using in-situ combinatorial quartz crystal microbalance with dissipation and spectroscopic ellipsometry. Adsorption of bovine serum albumin varied as a function of surface properties, bovine serum albumin concentration and pH value. Charged surfaces exhibited a greater quantity of bovine serum albumin adsorption, a larger bovine serum albumin layer thickness, and increased density of bovine serum albumin protein compared to neutral surfaces at neutral pH value. The quantity of adsorbed bovine serum albumin protein increased with increasing bovine serum albumin concentration. After equilibrium sorption was reached at pH 7.0, desorption of bovine serum albumin occurred when pH was lowered to 2.0, which is below the isoelectric point of bovine serum albumin. Our data provide further evidence that combinatorial quartz crystal microbalance with dissipation and spectroscopic ellipsometry is a sensitive analytical tool to evaluate attachment and detachment of adsorbed proteins in systems with environmental implications.  相似文献   

17.
Experimental evidence suggests that proteins adsorbed to hydrophobic surfaces at low coverages are stabilized relative to the bulk. For larger coverages, proteins unfold and form β-sheets. We performed computer simulations on model proteins and found that: 1), For weakly adsorbing surfaces, unfolded conformations lose more entropy upon adsorption than folded ones. 2), The melting temperature, both in the bulk and at surfaces, decreases with increasing protein concentration because of favorable interprotein interactions. 3), Proteins in the bulk show large unfolding free energy barriers; this barrier decreases at stronger adsorbing surfaces. We conjecture that typical experimental temperatures appear to be below the bulk melting temperature for a single protein, but above the melting temperature for concentrated protein solutions. Purely thermodynamic factors then explain protein stabilization on adsorption at low concentrations. However, both thermodynamic and kinetic factors are important at higher concentrations. Thus, proteins in the bulk do not denature with increasing concentration due to large kinetic barriers, even though the aggregated state is thermodynamically preferred. However, they readily unfold upon adsorption, with the surface acting as a heterogeneous catalyst. The thermal behavior of proteins adsorbed to hydrophobic surfaces thus appears to follow behavior independent of their chemical specificity.  相似文献   

18.
The relationships among surface energy, adsorbed organic matter, and attached bacterial growth were examined by measuring the degradation of adsorbed ribulose-1,5-bisphosphate carboxylase (a common algal protein) by attached bacteria (Pseudomonas strain S9). We found that surface energy (work of adhesion of water) determined the amount and availability of adsorbed protein and, consequently, the growth of attached bacteria. Percent degradation of adsorbed ribulose-1,5-bisphosphate carboxylase decreased with increasing hydrophobicity of the surface (decreasing work of adhesion). As a result, growth rates of attached bacteria were initially higher on hydrophilic glass than on hydrophobic polyethylene. However, during long (6-h) incubations, growth rates increased with surface hydrophobicity because of increasing amounts of adsorbed protein. Together with previous studies, these results suggest that the number of attached bacteria over time will be a complex function of surface energy. Whereas both protein adsorption and bacterial attachment decrease with increasing surface energy, availability of adsorbed protein and consequently initial bacterial growth rates increase with surface energy.  相似文献   

19.
The human salivary acidic proline-rich proteins (aPRPs) complex was investigated by different chromatographic and mass spectrometric approaches and the main aPRPs, namely PRP-1, PRP-2 and PIF-s (15,515 amu), Db-s (17,632 amu) and Pa (15,462 amu) proteins, were detected. All these isoforms are phosphorylated at Ser-8 and Ser-22 and have a pyroglutamic moiety at the N-terminus. Apart from Pa, all the other aPRPs undergo a proteolytic cleavage at Arg-106 residue (Arg-127 in Db-s protein), that generates the small PC peptide (4371 amu) and PRP-3, PRP-4, PIF-f (11,162 amu) and Db-f (13,280 amu) proteins, all of which were detected. With regard to the Pa protein, the main form detected was the dimeric derivative (Pa 2-mer, 30,922 amu) originated by a disulfide bond involving Cys-103 residue. Besides these known isoforms, several previously undetected aPRP derivatives were found (in minor amounts): (i) the triphosphorylated derivatives of PRP-1/PRP-2/PIF-s and Db-s, showing the additional phosphate group at Ser-17; (ii) the mono-phosphorylated forms at either Ser-22 or Ser-8 of PRP-1/PRP-2/PIF-s, PRP-3/PRP-4/PIF-f, Db-s and Db-f; (iii) a nonphosphorylated form of PRP-3/PRP-4/PIF-f; (iv) the triphosphorylated and diphosphorylated forms of Pa 2-mer. Moreover, minor quantities of PRP-3/PRP-4/PIF-f lacking the C-terminal Arg (11,006 amu), and of Pa 2-mer lacking the C-terminal Gln (30,793 amu) were found. By this approach the different phenotypes of PRH1 locus in 59 different subjects were characterized.  相似文献   

20.
The structure of the adsorbing layers of native and denatured proteins (fibrinogen, gamma-immunoglobulin, albumin, and lysozyme) was studied on hydrophilic TiO(2) and hydrophobic Teflon-AF surfaces using the quartz crystal microbalance with dissipation and optical waveguide lightmode spectroscopy techniques. The density and the refractive index of the adsorbing protein layers could be determined from the complementary information provided by the two in situ instruments. The observed density and refractive index changes during the protein-adsorption process indicated the presence of conformational changes (e.g., partial unfolding) in general, especially upon contact with the hydrophobic surface. The structure of the formed layers was found to depend on the size of the proteins and on the experimental conditions. On the TiO(2) surface smaller proteins formed a denser layer than larger ones and the layer of unfolded proteins was less dense than that adsorbed from the native conformation. The hydrophobic surface induced denaturation and resulted in the formation of thin compact protein films of albumin and lysozyme. A linear correlation was found between the quartz crystal microbalance measured dissipation factor and the total water content of the layer, suggesting the existence of a dissipative process that is related to the solvent molecules present inside the adsorbed protein layer. Our measurements indicated that water and solvent molecules not only influence the 3D structure of proteins in solution but also play a crucial role in their adsorption onto surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号