首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 3 毫秒
1.
A turbulent channel flow apparatus was used to determine the adhesion strength of the three perimetamorphic stages of the asteroid Asterina gibbosa, i.e. the brachiolaria larvae, the metamorphic individuals and the juveniles. The mean critical wall shear stresses (wall shear stress required to dislodge 50% of the attached individuals) necessary to detach larvae attached by the brachiolar arms (1.2 Pa) and juveniles attached by the tube feet (7.1 Pa) were one order of magnitude lower than the stress required to dislodge metamorphic individuals attached by the adhesive disc (41 Pa). This variability in adhesion strength reflects differences in the functioning of the adhesive organs for these different life stages of sea stars. Brachiolar arms and tube feet function as temporary adhesion organs, allowing repetitive cycles of attachment to and detachment from the substratum, whereas the adhesive disc is used only once, at the onset of metamorphosis, and is responsible for the strong attachment of the metamorphic individual, which can be described as permanent adhesion. The results confirm that the turbulent water channel apparatus is a powerful tool to investigate the adhesion mechanisms of minute organisms.  相似文献   

2.
Summary

Primary lysosomes appear in the oocytes of A. gibbosa at the end of previtellogenesis. The lysosomes fuse with the cisternae of the endoplasmic reticulum and give rise to yolk globules containing acid phosphatase. The yolk globules then grow by fusion.  相似文献   

3.
4.
Summary In the starfish, Asterina gibbosa, the histofluorescence method gives evidence of an aminergic activity in the course of arm-tip regeneration. This activity can be detected as variations in the localization and intensity of a green fluorescence in the nerve structures of the arm, the radial nerve, and the circumoral nerve ring connected to it. Biochemical assays reveal that dopamine levels increase on the 2nd and 4th days of regeneration, when the blastema is forming and when differentiation commences. The level of noradrenaline also increases on the 2nd day after amputation of the arm.  相似文献   

5.
Adhesion in sea stars is the function of specialized structures, the tube feet or podia, which are the external appendages of the water-vascular system. Adhesive secretions allow asteroid tube feet to perform multiple functions. Indeed, according to the sea star species considered, the tube feet may be involved in locomotion, fixation, or burrowing. Different tube foot shapes usually correspond to this variety of function. In this study, we investigated the variability of the morphology of sea star tube feet as well as the variability of the composition of their adhesive secretions. This second aspect was addressed by a comparative immunohistochemical study using antibodies raised against the adhesive material of the forcipulatid Asterias rubens. The tube feet from 14 sea star species representing five orders and 10 families of the Class Asteroidea were examined. The histological study revealed three main tube foot morphotypes, i.e., knob-ending, simple disc-ending, and reinforced disc-ending. Analysis of the results suggests that tube foot morphology is influenced by species habitat, but within limits imposed by the evolutionary lineage. In immunohistochemistry, on the other hand, the results were very homogeneous. In every species investigated there was a very strong immunolabeling of the adhesive cells, independently of the taxon considered, of the tube foot morphotype or function, or of the species habitat. This indicates that the adhesives in all the species considered are closely related, probably sharing many identical molecules or, at least, many identical epitopes on their constituents.  相似文献   

6.
Phylogeny and classification of the Asteroidea (Echinodermata)   总被引:6,自引:0,他引:6  
Post-Palaeozoic asteroids share a large number of derived characters of the ambulacral column and the mouth frame, and constitute the crown group of the monophyletic group Asteroidea. This crown group is here called the Neoasteroidea (new subclass). The stem species of the crown group lived in the Permian or early Triassic and so the evolution of the asteroids parallels that of the echinoids. Character distribution within the Neoasteroidea, especially morphology of the skeleton, digestive system, larvae and tube feet, allows subdivision into four orders (Paxillosida, Notomyotida, Valvatida, Forcipulatida). The latter three orders possess the synapomorphy of suckered tube feet and are united as the Surculifera (new superorder); the Paxillosida are their primitive sister group. Palaeozoic asteroids represent the stem group of the class, and may be divided into plesions according to the order of appearance of synapomorphies with the crown group. Classification of Palaeozoic asteroids requires much further study. The appearance of new characters within the crown group asteroids, such as suckered tube feet, implies that these were absent in the stem group. The range of life-habits possible in Palaeozoic asteroids can thus be partly deduced from evidence provided by living asteroids. Palaeozoic asteroids are deduced to have lacked suckered tube feet and were presumably unable to evert the stomach; hence they were precluded from life on hard substrates and extraoral feeding on epifaunal organisms. It is suggested that they lived on soft substrates by deposit feeding, scavenging and predation on small benthos.  相似文献   

7.
The Valvatacea is one the most ecologically important, taxonomically diverse, and widespread groups of post‐Palaeozoic (i.e. modern) Asteroidea. Classification within the group has been historically problematic. We present a comprehensively sampled, three‐gene (12S, 16S, early‐stage histone H3) molecular phylogenetic analysis of the Valvatacea. We include five of the six families within the Paxillosida, the monotypic Notomyotida, and 13 of the 16 families of the living Valvatida. The Solasteridae is removed from the Velatida (Spinulosacea) and joins the Ganeriidae and the Leilasteridae as members of the clade containing the Asterinidae. The Poraniidae is supported as the sister group to the large cluster of Valvatacea. Asteropseids and poraniids are phylogenetically distant, contrary to morphological evidence. Several goniasterid‐like ophidiasterids, such as Fromia and Neoferdina are supported as derived goniasterids rather than as Ophidiasteridae. The Benthopectinidae (Notomyotida) are supported as members of the Paxillosida as are two members of the Pseudarchasterinae that have traditionally been considered members of the Goniasteridae. Our data suggest that Antarctic valvataceans may be derived from sister taxa in adjacent regions. © 2011 The Linnean Society of London, Zoological Journal of the Linnean Society, 2011, 161 , 769–788.  相似文献   

8.
Danis B  Jangoux M  Wilmes J 《ZooKeys》2012,(185):73-78
This dataset includes information on sea stars collected during the ANDEEP3 expedition, which took place in 2005. The expedition focused on deep-sea stations in the Powell Basin and Weddell Sea.Sea stars were collected using an Agassiz trawl (3m, mesh-size 500µm), deployed in 16 stations during the ANTXXII/3 (ANDEEP3, PS72) expedition of the RV Polarstern. Sampling depth ranged from 1047 to 4931m. Trawling distance ranged from 731 to 3841m. The sampling area ranges from -41°S to -71°S (latitude) and from 0 to -65°W (longitude). A complete list of stations is available from the PANGAEA data system (http://www.pangaea.de/PHP/CruiseReports.php?b=Polarstern), including a cruise report (http://epic-reports.awi.de/3694/1/PE_72.pdf).The dataset includes 50 records, with individual counts ranging from 1-10, reaching a total of 132 specimens.The andeep3-Asteroidea is a unique dataset as it covers an under-explored region of the Southern Ocean, and that very little information was available regarding Antarctic deep-sea starfish. Before this study, most of the information available focused on starfish from shallower depths than 1000m. This dataset allowed to make unique observations, such as the fact that some species were only present at very high depths (Hymenaster crucifer, Hymenaster pellucidus, Hymenaster praecoquis, Psilaster charcoti, Freyella attenuata, Freyastera tuberculata, Styrachaster chuni and Vemaster sudatlanticus were all found below -3770m), while others displayed remarkable eurybathy, with very high depths amplitudes (Bathybiaster loripes (4842m), Lysasterias adeliae (4832m), Lophaster stellans (4752m), Cheiraster planeta (4708m), Eremicaster crassus (4626m), Lophaster gaini (4560m) and Ctenodiscus australis (4489m)).Even if the number of records is relatively small, the data bring many new insights on the taxonomic, bathymetric and geographic distributions of Southern starfish, covering a very large sampling zone. The dataset also brings to light six species, newly reported in the Southern Ocean.The quality of the data was controlled very thoroughly, by means of on-board Polarstern GPS systems, checking of identification by a renowned specialist (Prof. Michel Jangoux, Université Libre de Bruxelles), and matching to the Register of Antarctic Marine Species (RAMS) and World Register of Marine Species (WoRMS). The data is therefore fit for completing checklists, for inclusion in biodiversity patterns analysis, or niche modeling. It also nicely fills an information gap regarding deep-sea starfish from the Southern Ocean, for which data is very scarce at this time. The authors may be contacted if any additional information is needed before carrying out detailed biodiversity or biogeographic studies.  相似文献   

9.
 The perimetamorphic period in Paracentrotus lividus lasts for 8–12 days. It starts from the acquisition of larval competence, includes the change in form (metamorphosis) and the endotrophic postlarval life, and stops with the appearance of the exotrophic juvenile. All major postlarval appendages already occur in competent larvae being either grouped into the echinoid rudiment (terminal plates, early spines and primary podia) or scattered within the larval integument (genital plates and sessile pedicellariae). Competent larvae show particular behaviour which brings them close to the substratum. The latter is tested by primary podia protruding through the vestibular aperture of the larva. Primary podia are sensory–secretory appendages that are deprived ampullae. They are able to adhere to the substratum in order to allow evagination of the echinoid rudiment (i.e. metamorphosis) and substatum adhesion of the postlarva. Particular spines are borne by the postlarva; these are multifid non-mobile appendages forming a kind of protective armour. Like those of the larva, all characteristic structures of the postlarva (primary podia, multified spines and sessile pedicellariae) are transitory and regress either at the end of postlarval life (primary podia) or during early juvenile life (multifid spines and sessile pedicellariae). Other appendages that develop during postlarval life (i.e. podia with ampulla, point-tipped spines and sphaeridiae) are similar to those borne by the adults and become functional when the individual enters its juvenile life. Thus, the perimetamorphic period appears to be a fully fledged period in the life-cycle of P. lividus, and presumably in the life-cycle of any other sea-urchin species. Accepted: 7 October 1997  相似文献   

10.
Tauropine dehydrogenase (tauropine:NAD oxidoreductase; TaDH) was purified to homogeneity from the body wall of the starfish Asterina pectinifera Müller at Troschel(Echinodermata: Asteroidea) by means of (NH4)2SO4 precipitation followed by column chromatographies in DEAE-cellulose, Sephadex G75, Macro-prep ceramic hydroxyapatite, PBE 94, and Toyopearl HW50S. The enzyme was a monomeric protein of approximately 42000 Da and pI 5.2. The maximum rate of the tauropine biosynthetic reaction was observed at pH 6.0, and that of the tauropine catabolic reaction was at pH 8.7-9.2. Taurine and pyruvate were the preferred substrates. The tauropine catabolic reaction was inhibited by the substrate tauropine: the peak rate was observed at 12.5 mM. Apparent Km values for NADH, taurine, and pyruvate were 0.036 +/- 0.002, 21.3 +/- 1.6, and 0.46 +/- 0.02 mM, respectively, and for tauropine and NAD+ were 2.64 +/- 0.73 and 0.068 +/- 0.005 mM, respectively. The molecular and catalytic properties of the starfish TaDH were basically similar to those of TaDH from other species belonging to the lower invertebrate phyla and the middle phyla of Prostostomia. Tauropine accumulation in vivo during experimental anoxia was also demonstrated. These results gave clear evidence of opine production pathway in deutrostome invertebrate.  相似文献   

11.
The reproductive cycle of Ophidiaster ophidianus (strictly protected status) from São Miguel Island, in the Azorean Archipelago was studied. The reproductive strategy; the energy allocation of each sex during the reproductive cycle and the nutritional condition of the population were analyzed. Gonadal index (GI) showed a clear seasonal pattern with spawning between August and October but histological examination revealed that gamete release can occur throughout the entire year. The pyloric caeca index (PCI) showed little annual variation but with an inverse relationship with the GI. Allocation of energy to the gonads and to the pyloric caeca reflected the seasonal reproductive strategy of this species. Individuals were able to simultaneously develop gonads, pyloric caeca, and quickly regenerate lost arms. There was a major expenditure of energy by females compared to males but, sexual size dimorphism was not observed. The reproductive pattern observed in O. ophidianus combining rich food availability and seawater temperatures characteristic of a temperate zone may be the key to the success of this species in the Azorean oceanic Island.  相似文献   

12.
The morphology of the following eight major ossicle types is described and illustrated for the goniopectinid asteroid Ctenodiscus crispatus: terminal plates, superomarginal and inferomarginal ossicles, adambulacral and ambulacral ossicles, odontophores, oral intermediate plates, and superambulacral ossicles. Development, variation, and relationships with soft body-parts and with other ossicles are embphasized. Each ossicle type is distinguished by numerous structures related to its function and to articulation with adjoining skeletal elements. Because major structures (such as pustules, alveoli, and articulation surfaces) distinguishing ossicle types develop early during ontogeny, immature ossicles are readily identifiable. However, changes in form and orientation of these structures occur during ossicle growth. Ontogenetic changes are influenced by development of associated skeletal and soft parts. Ambulacral and adambulacral ossicles near the peristome are highly modified but retain the basic characteristics of structure and orientation which define these major types of skeletal elements.  相似文献   

13.
Because of their taxonomic and morphologic diversity, the asteroids of the Lower Devonian Hunsrück Slate of Germany are important to both an understanding of the history of the class Asteroidea and to the interpretation of community evolution during the Paleozoic. Helianthaster Roemer, 1863, a large multiarmed Hunsrück asteroid, is redescribed. The Helianthasteridae Gregory is restricted to Helianthaster and Arkonaster Kesling, 1982 (Middle Devonian, Canada); Lepidasterella Schuchert is similar to the other two genera but known specimens are of poor quality and as a result the status of the genus is uncertain. Helianthaster is noteworthy in part because its size, multiarmed state, and presence of pedicellariae suggest certain crown-group genera, yet aspects of the arrangement of the ambulacral column are characteristic of the Paleozoic asteroid evolutionary grade. Neither Helianthaster nor other Hunsrück asteroids appear closely linked to the crown group; instead, functional patterns apparently re-emerged through time, although identification of specific behavior of ancient asteroids is difficult to impossible.   相似文献   

14.
Among echinoderms, nonfeeding larvae usually are simplified in body shape, have uniform ciliation, and have lost the larval gut. A few species have nonfeeding larvae that express some remnant features of feeding larvae like ciliated bands and larval skeleton or larval arms, but typically their larval mouth never opens and their gut does not function. Still other species have retained the feeding larval form, a functional gut, and can feed, but they do not require food to metamorphose. The present note describes the development of a tropical holothurian, Holothuria mexicana, which hatches as a gastrula that is already generating coelomic structures. A translucent auricularia forms with a mouth that opens but becomes reduced soon thereafter. In form and ciliation this auricularia resembles a feeding larva, but it does not respond to food. A doliolaria forms on day 4 and the pentactula on day 6 post‐fertilization. Further study of this larva and that of its closely related congener, Holothuria floridana, is warranted.  相似文献   

15.
The fine structure of conspicuous extracellular materials during the life history of a sea star (Patiria miniata) is described. The outer surface of the developing sea star is covered by two morphologically different cuticles that appear sequentially during ontogeny. The primary cuticle, which is about 120 nm thick and two-layered, is present from mid-blastula through the end of the larval stage. The secondary cuticle, which is about 1 micron thick and three-layered, first appears on the epidermis of the rudiment region of the larva and, after metamorphosis, covers the entire epidermis of the juvenile and adult stages. During ontogeny, there are only two conspicuous gut cuticles: the first lines the newly invaginated archenteron at the start of the gastrula stage, and the second lines the esophagus during the larval stage. A blastocoelic basal lamina first appears at mid-blastula and persists as subectodermal and subendodermal basal laminae. Ruthenium red-positive granules are detectable between the lateral surfaces of adjacent ectodermal cells during part of the gastrula stage; this transient intercellular material may possibly aid in lateral adhesion between cells.  相似文献   

16.
17.
The ultrastructure of the axial organ of Asterias amurensis has been studied The organ is a network of canals of the axial coelom separated by haemocoelic spaces. The axial coelom is lined with two types of monociliary cells: podocytes and musculo-epithelial cells. Podocytes form numerous basal processes adjacent to the basal lamina on the coelomic side. Musculo-epithelial cells form processes running along the basal lamina. Some bundles of these processes wrapped in the basal lamina pass through haemocoelic spaces between neighboring coelomic canals. It is hypothesized that the axial organ serves for filtration of fluid from haemocoelic spaces into the axial coelom cavity, from which urine is excreted through the madreporite to the exterior.  相似文献   

18.
Jarosław Kobak 《Biofouling》2013,29(3):141-150
Abstract

The effects of several factors (shell length, exposure time, substratum orientation in space, illumination, temperature, conspecifics) upon the attachment strength (measured with a digital dynamometer) of the freshwater, gregarious bivalve Dreissena polymorpha were studied under laboratory conditions. A rapid increase in attachment strength was observed on resocart (a thermosetting polymer based on phenol-formaldehyde resin, with paper as filler) substrata during the first 4-d exposure, after which it stabilised at ca 1 N. The attachment strength increased also with mussel size. Mussel adhesion on variously oriented surfaces (vertical, upper horizontal and lower horizontal) was similar. Illumination inhibited attachment strength, as expected for a photophobic species, but only after a 2-d exposure. After 6 d, no effects of light were detected. Thus, illumination seemed to influence the attachment rate, rather than the final strength. The optimum temperature for mussel attachment was 20 – 25°C. At lower and higher temperatures (5 – 15°C and 30°C), their adhesion strength decreased. The presence of conspecifics stimulated mussel attachment strength.  相似文献   

19.
Despite a diversity of larval forms, remarkably conservative features of asteroid development define a larval body plan that occurs throughout the class. However, recent work on the starfish Pteraster tesselatus has documented a highly derived pattern of development. Several features, including radial symmetry, parallel embryonic and adult axes of symmetry, absence of a preoral lobe, and formation of coeloms in the adult orientation from seven separate enterocoels, have not been reported in asteroids before. The complete absence of the larval body plan features that are found in other asteroids, indicates that P. tesselatus develops directly from the embryo to the juvenile and has a pelagic, nonfeeding (lecithotrophic), but nonlarval mode of development. I postulate that direct development evolved over an extended period in a lineage of brooding, deep-sea velatid (probably pterastcrid) ancestors of P. tesselatus. Selection for increased developmental efficiency (loss of nonfunctional larval features) in the brooded offspring, could explain the lack of larval settlement structures, the nonlarval arrangement of coeloms, the lack of a preoral lobe, the transverse orientation of the juvenile disc, and the lack of bilateral symmetry. The pattern of coclomogenesis could have been derived from that of other velatids (e.g. solasterids) by relatively simple changes in timing and orientation of entcroeoel formation. Rotation and posterior translation of the coelomic fate map of the archenteron prior to enlerocoel formation would produce the coelomic compartments in the adult orientation that characterizes direct development in P. tesselatus. These unusual developmental features lead to a radically different interpretation for the evolution of the pelagic ‘larva’ of P. tesselatus: (1) evolution of benthie brooding, (2) extreme simplification of development involving the loss of all larval features from the life cycle, and (3) subsequent re-evolution of pelagic development. In the case of P. tesselatus, where all larval structures were lost, there do not seem to be functional constraints preventing the re-evolution of pelagic development. Analysis of pelagic and benthie larvae, in other asteroids, suggests that major ecological transitions in life histories need not be associated with substantia] changes in morphology. The loss of pelagic development should have occurred repeatedly and should be readily reversible. These findings have interesting implications for the loss and evolution of pelagic dispersal in the life histories of marine benthie invertebrates.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号