首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Histamine is an important mediator of immediate hypersensitivity for both animals and humans. The action of histamine on target tissues is believed to be mediated by specific cell surface receptors, especially H1 and H2 receptors for hypersensitivity and inflammatory reactions, which involve stimulation of smooth muscle contractility, alterations in vascular permeability, and modifications in the activities of macrophages and lymphocytes. Although the nature of histamine receptors in the brain and peripheral tissues has been studied extensively by many laboratories, the molecular mechanism of histamine receptor-mediated reactions is not fully understood, mainly because histamine receptors are incompletely characterized from the biochemical point of view. In previous studies, we have found that the cultured smooth muscle cell line DDT1MF-2, derived from hamster vas deferens, expresses low-affinity histamine H1 receptors and responds biochemically and functionally to H1-specific stimulation (Mitsuhashi and Payan, J Cell Physiol 134:367, 1988). This cell line provides a model for analyzing the biochemical responses of H1 receptor-mediated reactions in peripheral tissues. In this review, we summarized our recent progress in the study of low-affinity H1 receptors on DDT1MF-2 cells.  相似文献   

3.
The aim of this study was to identify novel scaffolds and utilise them in designing potent PLK1 inhibitors. Three-dimensional pharmacophore models on the basis of chemical features were developed for PLK1 on the basis of the known inhibitors. The best pharmacophore model, Hypo 1, which has the highest correlation (0.96), the highest cost difference (75.7494), the lowest total cost and RMSD (75.7494, 0.5458), contains two hydrophobics, one ring aromatic and one hydrogen donor. Hypo 1 was validated by the test set, decoy set and the Fischer's randomisation method. Then it was used for chemical database virtual screening. The hit compounds were filtered by Lipinski's rule of five and absorption, distribution, metabolism, elimination and toxicity properties. Finally, 24 compounds with good estimated activity values were used for docking studies. These results will be used to develop new inhibitors of PLK1 as leads.  相似文献   

4.
Abstract

Toll-like receptor 7 (TLR7) is a transmembrane glycoprotein playing very crucial role in the signaling pathways involved in innate immunity and has been demonstrated to be useful in fighting against infectious disease by recognizing viral ssRNA & specific small molecule agonists. In order to find novel human TLR7 (hTLR7) modulators, computational ligand-based pharmacophore modeling approach was used to identify the molecular chemical features required for the modulation of hTLR7 protein. A training set of 20 TLR7 agonists with their known experimental activity was used to create pharmacophore model using 3D-QSAR pharmacophore generation (HypoGen algorithm) module in Discovery Studio. The best developed hypothesis consists of four pharmacophoric features namely, one hydrogen bond donor (HBD), one ring aromatic (RA), and two hydrophobic (HY) character. The developed hypothesis was then validated by different methods such as cost analysis, test set method, and Fischer’s test method for consistency. Hence, this validated model was further employed for screening of natural hit compounds from InterBioScreen Natural product database, consisting of more than 60,000 natural compounds and derivatives. The screened hit compounds were subsequently filtered by Lipinski’s rule of 5, ADME and toxicity parameters and molecular docking studies to remove the false positive rates. Finally, molecular docking analysis led to identification of the (3a′S,6a′R)-3′-(3,4-dihydroxybenzyl)-5′-(3,4-dimethoxyphenethyl)-5-ethyl-3′,3a′-dihydro-2′H-spiro[indoline-3,1′-pyrrolo[3,4-c]pyrrole]-2,4′,6′(5′H,6a′H)-trione (Compound ID: STOCK1N-65837) as potent hTLR7 modulator due to its better docking score and molecular interactions compared to other compounds. The result of virtual screening was further validated using molecular dynamics (MD) simulation analysis. Thus, a 30?ns MD simulation analysis revealed high stability and effective binding of STOCK1N-65837 within the binding site of hTLR7. Therefore, the present study provides confidence for the utility of the selected chemical feature based pharmacophore model to design novel TLR7 modulators with desired biological activity.  相似文献   

5.
A 3D model of the canine H2 receptor was built and analysed. This model was constructed using primary sequence comparisons and three-dimensional homology building with bacteriorhodopsin serving as a template. The energy analysis of the interaction between the N3H+ form and the N1H+ form of histamine with the receptor shows that both have the same binding affinity for the H2 receptor, but only the N3H+ form provokes structural changes. The calculated potential energies are consistent with the published binding data and suggest that Asp 98 is the principal residue for ligand recognition. On the basis of sequence alignment studies we postulate that Glu 270 in helix 7 may be important for activation of the H2 receptor. Docking studies of the N3H+ folded conformation in our model show that an intramolecular hydrogen bond between N3 and the amino group of the histamine molecule is broken, and the histamine then adopts a conformation similar to the N3H+ extended form to interact optimally with the H2 receptor. Mutations were made in the H2 receptor model to mimic published experimental point mutations. The interactions of the mutated receptor models with histamine are consistent with the experimental data.  相似文献   

6.
组胺H3受体研究进展   总被引:2,自引:0,他引:2  
李明凯  罗晓星  谢建军 《生命科学》2001,13(5):198-199,197
组胺H3受体作为突触前自身受体和异身受体,广泛分布于中枢和外周组织,抑制组胺的释放和合成,调节多种神经递质的释放,组胺H3受体是G蛋白偶联受体家族成员,激活后由G蛋白介导,通过调控N型Ca^2 通道,产生生物学效应,组胺H3受体在中枢和外周器官有着重要的生理功能,对心功能,胃酸分泌,觉醒的睡眠,认知和记忆,惊厥抽搐等都有调节作用。  相似文献   

7.
The histamine H(3) receptor is a constitutively active G protein-coupled receptor for the neurotransmitter histamine that serves a negative feedback function. A role for the histamine H(3) receptor has been suggested in neurodegenerative diseases, such as Parkinsons disease and Alzheimer's disease. Mice deficient in apolipoprotein E (apoE), a protein involved in development, regeneration, neurite outgrowth, and neuroprotection, show increased measures of anxiety and reduced sensitivity to effects of histamine H(3) receptor antagonists on measures of anxiety. In this study, we tested whether in mice lacking apoE (Apoe-/-) histamine levels and histamine release in brain areas involved in the regulation of anxiety are altered. H(3) receptor antagonist-induced histamine release was lower in the amygdala of Apoe-/- than wild-type mice. In contrast, there were no genotype differences in histamine release in the hypothalamus. Consistent with these data, histamine immunohistochemistry revealed lower total and synaptic histamine levels in the central nucleus of the amygdala of Apoe-/- than wild-type mice. Such changes were not seen in the hypothalamus, hippocampus, or cortex. In Apoe-/- mice, chronically decreased histamine levels and reduced histamine release in the amygdala might contribute to increased measures of anxiety.  相似文献   

8.
Obesity and patient morbidity has become a health concern worldwide. Obesity is associated with over activity of the endocannabinoid system, which is involved in the regulation of appetite, lipogenesis and insulin resistance. Hypothalamic cannabinoid-1 receptor (CB1R) inverse agonists reduce body weight and improve cardiometabolic abnormalities in experimental and human obesity but displayed neuropsychiatric side effects. Hence, there is a need to develop therapeutics which employs blocking peripheral CB1 receptors and still achieve substantial weight loss. In view of the same, adipose tissue CB1 receptors are employed for this study since it is more specific in reducing visceral fat. Computer aided structure based virtual screening finds application to screen novel inhibitors and develop highly selective and potential drug. The rational drug design requires crystal structure for the CB1 receptor. However, the structure for the CB1 receptor is not available in its native form. Thus, we modelled the crystal structure using a lipid G-Protein coupled receptor (PDB: 3V2W, chain A) as template. Furthermore, we have screened a herbal ligand Quercetin [- 2- (3, 4-dihydroxyphenyl) - 3, 5, 7-trihydroxychromen-4-one] a flavonol present in Mimosa pudica based on its better pharmacokinetics and bioavailability profile. This ligand was selected as an ideal lead molecule. The docking of quercetin with CB1 receptor showed a binding energy of -6.56 Kcal/mol with 4 hydrogen bonds, in comparison to the known drug Rimonabant. This data finds application in proposing antagonism of CB1 receptor with Quercetin, for controlling obesity.  相似文献   

9.
10.
Fenobam [N-(3-chlorophenyl)-N'-(4,5-dihydro-1-methyl-4-oxo-1H-imidazole-2-yl)urea], a clinically validated non-benzodiazepine anxiolytic, has been shown to be a potent and non-competitive metabotropic glutamate (mGlu)-5 receptor antagonist. In the present study, we have used the site-directed mutagenesis coupled with three-dimensional receptor-based pharmacophore modelling to elucidate the interacting mode of fenobam within the seven-transmembrane domain (7TMD) of mGlu5 receptor and its comparison with that of 2-methyl-6-(phenylethynyl)pyridine (MPEP), the prototype antagonist. The common residues involved in the recognition of MPEP and fenobam include Pro654(3.36), Tyr658(3.40), Thr780(6.44), Trp784(6.48), Phe787(6.51), Tyr791(6.55) and Ala809(7.47). The differentiating residues between both modulators' interacting modes are Arg647(3.29), Ser657(3.39) and Leu743(5.47). Our data suggest that these chemically unrelated mGlu5 antagonists act similarly, probing a functionally unique region of the 7TMD. Using [3H]inositol phosphates accumulation assay, we have also identified the critical residues involved in the inverse agonist effect of MPEP. The mutation W784(6.48)A completely blocked the inverse agonist activity of MPEP; two mutations F787(6.51)A and Y791(6.55)A, caused a drastic decrease in the MPEP inverse agonism. Furthermore, these three mutations led to an increased efficacy of quisqualate without having any effect on its potency. The fact that the residues Trp784(6.48) and Phe787(6.51) are essential equally in antagonism and inverse agonism effects emphasizes again the key role of these residues and the involvement of a common transmembrane network in receptor inactivation by MPEP.  相似文献   

11.
To further proceed with our previous work, novel steroid-based histamine H3 receptor antagonists were identified and characterized. Using an ‘amine-to-amide’ modification strategy at position 17, in vitro and in vivo potent monoamino steroid derivatives were found during the lead optimization. Usage of the non-basic amide moiety resulted in beneficial effects both in activity and selectivity. The 15α-carboxamido derivative 10 was not only highly active at human and rat H3 receptors, but also showed negligible activity at rat muscarinic receptors. Furthermore, it proved to be considerably stable in human and rat microsomes and showed significant in vivo potency in the pharmacodynamic rat dipsogenia test and in the water-labyrinth cognitive model. Based on all of these considerations, compound 10 was appointed to be a preclinical candidate.  相似文献   

12.
Gq/11 protein‐coupled human histamine H1 receptors in Chinese hamster ovary cells stimulated with histamine undergo clathrin‐dependent endocytosis followed by proteasome/lysosome‐mediated down‐regulation. In this study, we evaluated the effects of a sustained increase in intracellular Ca2+ concentrations induced by a receptor‐bypassed stimulation with ionomycin, a Ca2+ ionophore, on the endocytosis and down‐regulation of H1 receptors in Chinese hamster ovary cells. All cellular and cell‐surface H1 receptors were detected by the binding of [3H]mepyramine to intact cells sensitive to the hydrophobic and hydrophilic H1 receptor ligands, mepyramine and pirdonium, respectively. The pretreatment of cells with ionomycin markedly reduced the mepyramine‐ and pirdonium‐sensitive binding sites of [3H]mepyramine, which were completely abrogated by the deprivation of extracellular Ca2+ and partially by a ubiquitin‐activating enzyme inhibitor (UBEI‐41), but were not affected by inhibitors of calmodulin (W‐7 or calmidazolium) and protein kinase C (chelerythrine or GF109203X). These ionomycin‐induced changes were also not affected by inhibitors of receptor endocytosis via clathrin (hypertonic sucrose) and caveolae/lipid rafts (filipin or nystatin) or by inhibitors of lysosomes (E‐64, leupeptin, chloroquine, or NH4Cl), proteasomes (lactacystin or MG‐132), and a Ca2+‐dependent non‐lysosomal cysteine protease (calpain) (MDL28170). Since H1 receptors were normally detected by confocal immunofluorescence microscopy with an antibody against H1 receptors, even after the ionomycin treatment, H1 receptors appeared to exist in a form to which [3H]mepyramine was unable to bind. These results suggest that H1 receptors are apparently down‐regulated by a sustained increase in intracellular Ca2+ concentrations with no process of endocytosis and lysosomal/proteasomal degradation of receptors.

  相似文献   


13.
Acid-sensing ion channels are ligand/proton-gated ion channels belonging to the family of the degenerin/epithelial Na+ channel (DEG/ENaC). They function as a sodium-selective pore for Ca2+ entry into neuronal cells during pathological conditions. The blocking of this channel has therapeutic importance, because at basal physiological pH (7.2), it is in a closed state and under a more acidic condition, and the ASIC1a ion channel is activated. To investigate the different states of the hASIC1a channel based on mutational analysis, structure-based virtual screening and molecular dynamics simulation studies. The system showed stability after 30 ns (after 1500 frame), and it was stabilized to an average value around 2.2Å. During the simulation, the ion channel residues in persistent contact with toxin PcTx1 were D237, E238, D347, D351, E219 and E355. These residues are important physiologically for the activation of the channel. From in silico alanine scanning, the significant hotspots obtained in hASIC1 are E344, P347, F352, D351, E355 and E219. From the sitemap analysis, it was evident that the sitemap found one of the active sites at the PcTx1 binding site with a site score of 1.086 and a D-score of 1.035 for hASIC1. We obtained a few promising hits and final potential hits from the virtual screening in hASIC1 that made interactions with the residues in the acidic pocket (E344, P347, F352, D351, E355 and E219). Based on these studies, the hits and scaffolds of potential therapeutic interest against various pathological conditions are associated with hASIC1a for future studies.  相似文献   

14.
Neurotensin (NT), a tridecapeptide found in the mammalian brain and peripheral tissues, induces a decrease in food intake after central administration. In this investigation, we examine whether the histaminergic system is involved in NT-induced suppression of feeding. Intracerebroventricular injection of NT (0.1–1 nmol/mouse) led to dose-dependent inhibition of food intake in fasted ddY mice. The anorectic effect induced by NT (0.1 nmol/mouse) was ameliorated upon co-administration of pyrilamine (3 nmol/mouse), an antagonist for histomine H1 receptor. The NT-induced anorectic effect was partially ameliorated in H1 knockout mice. The findings suggest that the H1 receptor in part mediates the NT-induced suppression of food intake.  相似文献   

15.
The dramatic rise of the twin epidemics, type 2 diabetes and obesity is associated with increased mortality and morbidity worldwide. Based on this global development there is clinical need for anti-diabetic therapies with accompanied weight reduction. From the approved therapies, the injectable glucagon-like peptide-1 receptor agonists (GLP-1 RAs) are the only class of agents which are associated with a modest weight reduction. Physiological effects of the gastro-intestinal hormone GLP-1 are improvement of glycemic control as well as a reduction in appetite and food intake. Different approaches are currently under clinical evaluation to optimize the therapeutic potential of GLP-1 RAs directed to once-weekly up to once-monthly administration. The next generation of peptidic co-agonists comprises the activity of GLP-1 plus additional gastro-intestinal hormones with the potential for increased therapeutic benefits compared to GLP-1 RAs.  相似文献   

16.
Three group I mGluR antagonists CPCCOEt, LY367385 and BAY36-7620, were analyzed for their effect on cell surface expression of metabotropic glutamate receptor 1a and 1b. All three antagonists inhibited glutamate-induced internalization of mGluR1a and mGluR1b. However, when added alone, either LY367385 or BAY36-7620 increased the cell surface expression of mGluR1a but not mGluR1b. Both LY367385 and BAY36-7620 displayed inverse agonist activity as judged by their ability to inhibit basal inositol phosphate accumulation in cells expressing the constitutively active mGluR1a. Interestingly, mGluR1a but not mGluR1b was constitutively internalized in HEK293 cells and both LY367385 and BAY36-7620 inhibited the constitutive internalization of this splice variant. Furthermore, coexpression of dominant negative mutant constructs of arrestin-2 [arrestin-2-(319-418)] or Eps15 [Eps15(E Delta 95-295)] increased cell surface expression of mGluR1a and blocked constitutive receptor internalization. In the presence of these dominant negative mutants, incubation of cells with LY367385 and BAY36-7620 produced no further increase in cell surface expression of mGluR1a. Taken together, these results suggest that the constitutive activity of mGluR1a triggers the internalization of the receptor through an arrestin- and clathrin-dependent pathway, and that inverse agonists increase the cell surface expression of mGluR1a by promoting an inactive form of mGluR1a, which does not undergo constitutive internalization.  相似文献   

17.
18.
Abstract

Farnesoid X receptor (FXR), a bile acid receptor, has important roles in maintaining bile acid and cholesterol homeostasis, which is an attractive target for hyperlipidemia. Present study aimed to discover potential selective FXR agonists over G-protein coupled bile acid receptor 1 (GPBAR1, TGR5) from traditional Chinese medicine (TCM) by using virtual screening, in vitro studies and molecular dynamics simulation (MD). Ligand-based pharmacophore model for FXR was firstly built to screen FXR agonists from the Traditional Chinese Medicine Database (TCMD). Then, 21 FXR crystal structures were clustered in two types and two representative structures (PDB ID: 3OMM and 3P89) were, respectively, used to carry out molecular docking to refine the screened result. Moreover, the pharmacophore model for GPBAR1 was built to screen selective FXR agonists with no activity on GPBAR1. A set of 24 candidate selective FXR agonists which fitvalue of FXR pharmacophore model and docking score of 3OMM and 3P89 were in the top 100 and cannot match the pharmacophore model for GPBAR1 were obtained. By the lipid-lowering activity test in HepG2 cell lines, Arctigenin was identified to be potential selective FXR agonist with the activity of 20?μmol·L?1. After down-regulating FXR, Arctigenin could increase the mRNA of FXR while exerted no effect on the mRNA of GPBAR1. MD was further used to interpret the mechanism of Arctigenin with the representative structures. This research provided a new screening procedure for finding selective candidate compounds and appropriate docking models of a target by considering the structure diversity of PDB structures, which was applied to discovery novel selective FXR agonists to treat hyperlipidemia.

Communicated by Ramaswamy H. Sarma  相似文献   

19.
H1-antihistamine has been shown to be effective in treating patients with allergic rhinitis (AR), but its mechanism is still uncertain. We investigated effects of histamine H1 receptor (HRH1) gene polymorphisms on the efficacy of oral H1-antihistamine in perennial patients with AR caused by mites in the Chinese Han population for the first time. A total of 224 Han Chinese patients with AR and 165 Han Chinese healthy volunteers were selected. Genotype and allele frequency distribution of −17C/T in HRH1 gene in patients with AR, serum levels of eosinophil cationic protein (ECP), total immunoglobulin E (IgE), and specific IgE were detected. The clinical symptoms of patients with AR were evaluated with visual analogue scale (VAS). Direct counting method was applied to calculate genotype and allele frequencies. Higher levels of serum ECP and total IgE were shown in the AR group. Moreover, patients with CT, TT, or CT+TT genotype increased the risk of AR incidence in the in the −17C/T site of HRH1, and CC genotype and CT+TT genotype were associated with gender, asthma, VAS score, total IgE level, and specific IgE level in patients with AR. In addition, oral administration of H1-antihistamines improves clinical symptoms of patients with AR. At last, patients with the CC genotype showed the increased efficacy of H1-antihistamines in patients with AR. Our study provides evidence that HRH1 gene polymorphisms may correlate with oral H1-antihistamine efficacy for the treatment of patients with AR, which can be used as a biological indicator of the prediction of therapeutic efficacy of patients with AR.  相似文献   

20.
The serotonin receptors, also known as 5-hydroxytryptamine (5-HT) receptors, are a group of G protein-coupled receptors (GPCRs) and ligand-gated ion channels found in the central and peripheral nervous systems. GPCRs have a characteristic feature of activating different signalling pathways upon ligand binding and these ligands display several efficacy levels to differentially activate the receptor. GPCRs are primary drug targets due to their central role in several signal transduction pathways. Drug design for GPCRs is also most challenging due to their inherent promiscuity in ligand recognition, which gives rise to several side effects of existing drugs. Here, we have performed the ligand interaction study using the two prominent states of GPCR, namely the active and inactive state of the 5-HT2A receptor. Active state of 5-HT2A receptor model enhances the understanding of conformational difference which influences the ligand-binding site. A 5-HT2A receptor active state model was constructed by homology modelling using active state β2-adrenergic receptor (β2-AR). In addition, virtual screening and docking studies with both active and inactive state models reveal potential small molecule hits which could be considered as agonist-like and antagonist-like molecules. The results from the all-atom molecular dynamics simulations further confirmed that agonists and antagonists interact in different modes with the receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号