首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The effect of sodium salicylate (NaSal) on the spherical-to-threadlike micelle shape transition in 3-hexadecyloxy-2-hydroxy-propyl trimethyl ammonium bromide (R16HTAB) solution was studied using molecular dynamics simulation. The simulations were started from a preassembled infinitely long threadlike micelle of R16HTAB. By analyzing the aggregation morphologies and structural details, we find that the preassembled threadlike micelle in the absence of NaSal was unstable and assembled into a spherical micelle. While in the presence of NaSal, the threadlike micelle exhibited fluctuations but remained the threadlike shape during the long simulation run. The Sal? ions were found to penetrate inside the micelle, which promoted the junction between the surfactant and salicylate counterion. The aromatic Sal? ions located in the surfactant headgroup region with their phenyl groups pointing toward the interior core region of the micelle. From another simulation started with two individual spherical micelles, we found that the Sal? ions can link the two spherical micelles into a long threadlike micelle, in accordance with a mode proposed by experimental studies. Our studies showed that the H-bonds and electrostatic interactions between the Sal? ions and the surfactants played an important role in micellar growth and stabilising the threadlike micelle.  相似文献   

2.
This study investigated nanojet processes by a non-equilibrium molecular dynamics simulation. The phenomena of liquid thread break-up and droplet formation were simulated by compressing liquid propane molecules with various compressing velocities. Properties' distributions show that, at the nanoscale, density and pressure were neither uniform nor continuous during the ejection process. Shear heating phenomena were found in the contact area of the nozzle channel. A linear relationship between the length of liquid threads and the compressing velocity was also found in this study. The results from different trials using various compressing velocities show that higher compressing velocities in nanojet processes result in longer liquid thread lengths and liquid molecules with higher energy levels. Therefore, the ejection process is more unstable, resulting in an increase in the number of evaporating molecules and satellite droplets. Results that illustrate various features are presented to aid in the comprehension of the nanojet processes.  相似文献   

3.
Intrinsically disordered proteins are biomolecules that do not have a definite 3D structure; therefore, their dynamical simulation cannot start from a known list of atomistic positions, such as a Protein Data Bank file. We describe a method to start a computer simulation of these proteins. The first step of the procedure is the creation of a multi-rod configuration of the molecule, derived from its primary sequence. This structure is dynamically evolved in vacuo until its gyration radius reaches the experimental average value; at this point solvent molecules, in explicit or implicit implementation, are added to the protein and a regular molecular dynamics simulation follows. We have applied this procedure to the simulation of tau, one of the largest totally disordered proteins.  相似文献   

4.
This study was carried out to evaluate the stability of the 89 bound water molecules that were observed in the neutron diffraction study of CO myoglobin. The myoglobin structure derived from the neutron analysis was used as the starting point in the molecular dynamics simulation using the software package CHARMM. After solvation of the protein, energy minimization and equilibration of the system, 50 ps of Newtonian dynamics was performed. This data showed that only 4 water molecules are continously bound during the length of this simulation while the other solvent molecules exhibit considerable mobility and are breaking and reforming hydrogen bonds with the protein. At any instant during the simulation, 73 of the hydration sites observed in the neutron structure are occupied by water. © 1995 Wiley-Liss, Inc.  相似文献   

5.
In this paper, the solubilisation process of pyrene molecule, as the fluorescence probe molecule, in cetyltrimethylammonium bromide (CTAB) surfactant micelle solution is studied by molecular dynamics (MD) method. When one pyrene molecule is in the micellar solution, it can be adsorbed into the micelle spontaneously and vertically. The probe molecule mainly locates in the interior cavity or the palisade layer of the micelle. When two pyrene molecules exist in the micellar solution, they transfer from the interior to the palisade layer. Although strong π–π interactions exist between the pyrene molecules, the pyrenes separate to each other in the palisade layer in two-third simulated time.  相似文献   

6.
Two glycolytic enzymes, phosphoglycerate mutase (PGM) and enolase from Saccharomyces cerevisiae, have been chosen to detect complex formation and possible channeling, using molecular dynamics simulation. The enzymes were separated by 10 angstroms distance and placed in a water-filled box of size 173 x 173 x 173 angstroms. Three different orientations have been investigated. The two initial 3-phosphoglycerate substrate molecules near the active centers of the initial structure of PGM have been replaced with final product (2-phosphoglycerate) molecules, and 150 mM NaCl together with three Mg2+ ions have been added to the system to observe post-catalytic activity under near-physiological conditions. Analysis of interaction energies and conformation changes for 3 nsec simulation indicates that PGM and enolase do show binding affinity between their near active regions, which is necessary for channeling to occur. Interaction of the C-terminal residues Ala239 and Val240 of PGM (which partially "cap" the 2-phosphoglycerate) with enolase also favors the existence of channeling.  相似文献   

7.
Methane (CH4) hydrate dissociation and the mechanism by depressurisation are investigated by molecular dynamics (MD) simulation. The hydrate decomposition processes are studied by the ‘vacuum removal method’ and the normal method. It is found that the hydrate decomposition is promoted by depressurisation. The quasi-liquid layer is formed in the hydrate surface layer. The driving force of dissociation is found to be controlled by the concentration gradient between the H2O molecules of the hydrate surface layer and the H2O molecules of the hydrate inner layer. The clathrates collapse gradually, and the hydrate decomposes layer by layer. Relative to our previous MD simulation results, this study shows that the rate of the hydrate dissociation by depressurisation is slower than that by the thermal stimulation and the inhibitor injection. This study illustrated that MD simulation can play a significant role in investigating the hydrate decomposition mechanisms.  相似文献   

8.
We performed molecular dynamics (MD) simulations of water-in-oil droplet shape transformations induced by the addition of polymer chains. In a prior experiment, transformations of spherical droplets to rod-like, worm-like and network-like droplets were observed. In our previous study, we reproduced rod-like droplets via coarse-grained MD simulations, and the mechanism for the droplet shape change was elucidated by considering the contact area between the chains and the surfactant head groups. However, in that simulation model, we could not reproduce the worm-like and network-like droplets. In this study, we improved the simulation model. For a small number of chains, several spherical droplets were obtained. As the number of chains increased, the spherical droplets were transformed to rod-like, worm-like and network-like shapes by coalescence of the droplets. The calculated and experimental results agreed well, and we verified that the mechanism for the droplet shape transformations observed in the present simulations could be explained by the mechanism suggested in the previous study.  相似文献   

9.
Molecular dynamics simulations were performed for the hexameric nanocubes of methylated (16) and demethylated (26) gear-shaped amphiphiles in pure methanol to reveal the difference in structural fluctuation between 16 and 26. Within our simulation time of 2.0 ns, the cubic structure of 16 in methanol is maintained, whereas that of 26 is collapsed. We found that the triple π-stacking moieties consisting of the three 3-pyridyl groups in 26 are more fluctuated than those in 16. This suggests that methyl groups serve to reduce structural fluctuation for nanocubes. We also found that the existence of the solvent molecules near the nanocube is an important factor for the collapse of the 26 structure.  相似文献   

10.
11.
In this paper, the formation of nanodroplets in piezoelectric nanoejection processes is investigated by non-equilibrium molecular dynamics simulation. By compressing liquid propane molecules with various specific pushing periods of oscillation, the phenomena of liquid thread breakup and droplet formation are simulated. The simulation results revealed that various features aid the piezoelectric nanoejection system. Two breakup shapes including double-cone and long tail structures were found in this process. To analyse the ejection process in detail, 2D contour plots and thermal properties for various pushing periods are shown and discussed in this paper. The results show that the sizes of nanodroplets are linear depending on the pushing periods. The findings show a new control factor and mechanism for nanodroplet formation through piezoelectric nanoejection processes.  相似文献   

12.
The isothermal crystallisation of polyethylene (PE) chains around single PE lamella in vacuum is investigated by molecular dynamic simulation. The crystallisation process is analysed in terms of the orientational order parameters, principal moments of inertia for the simulated systems. The effects of charge interactions between the polymer chains and lamella are discussed. It is found that the crystallisation process for uncharged systems can be divided into three stages: (1) adsorption, (2) orientation and (3) arrangement. The single polymer lamella changes a little during the three stages. PE chains are arranged parallel to the chain direction of the stems in the crystalline state. When considering the effect of charge interactions between the polymer chains and lamella, a different crystallisation process appears. The single polymer lamella is affected by the charged polymer chains.  相似文献   

13.
Glycoprotein-glycans have recently been implicated to play a variety of functional roles. The same glycan chain have been found complexed with proteins of diverse functions. In this article two such glycan chains found attached to Fc regions of immunoglobulin G and immunoglobulin M have been studied. An extensive simulated annealing procedure have been adopted to arrive at a low-energy minimum of the two oligosaccharides. Molecular dynamics simulations have been performed to study the flexibility of the glycosidic linkages. It was found that both glycan chains can undergo conformational transitions and adopt folded and extended conformations. The two β(1–2) linkages of complex-type glycan had been found to prefer different conformational regime and the terminal fucose linked to the GlcNAc residue drastically modifies the GlcNAc β(1–4)GlcNAc linkage conformation. In the high-mannose type glycan chain α(1–3) linkages can induce flexibility in addition to the α(1–6) linkages. The results have been compared with recent experimental nmr and fluorescence energy transfer data. © 1998 John Wiley & Sons, Inc. Biopoly 45: 177–190, 1998  相似文献   

14.
Dilute aqueous systems composed of sodium oleate micelles and sodium oleate/oleic acid vesicles were investigated as a function of pH by electron spin resonance spectroscopy with TEMPO-stearate TEMPO-stearamide as well as with a positively charged water soluble spin label, TEMPO-choline. The dynamics of the three TEMPO-spin labels were found to be sensitive to changes in the interfacial region of the aggregates as a function of pH. The results obtained are consistent with the formation of a hydrogen bond network (RCOO ↔ HOOCR) at the surface of the sodium oleate/oleic acid system in the course of the transformation of micelles into the closed bilayers (vesicles). Vesicles formation below pH 10 was determined independently with a spin labeled glucose derivative.  相似文献   

15.
A suitable approach which combines nuclear magnetic resonance (NMR) spectroscopy and molecular dynamics (MD) simulations have been used to study the structure and the dynamics of the glycosylphosphatidylinositol (GPI) anchor Manalphal-2Manalpha1-6Manalphal -4GlcNalpha1-6myo-inositol-1-OPO(3)-sn-1,2-dimyristoylglycerol (1) incorporated into dodecylphosphatidylcholine (DPC) micelles. The results have been compared to those previously obtained for the products obtainable from (1) after phospholipase cleavage, in aqueous solution. Relaxation and diffusion NMR experiments were used to establish the formation of stable aggregates and the insertion of (1) into the micelles. MD calculations were performed including explicit water, sodium and chloride ions and using the Particle Mesh Ewald approach for the evaluation of the electrostatic energy term. The MD predicted three dimensional structure and dynamics were substantiated by nuclear overhauser effect (NOE) measurements and relaxation data. The pseudopentasaccharide structure, which was not affected by incorporation of (1) into the micelle, showed a complex dynamic behaviour with a faster relative motion at the terminal mannopyranose unit and decreased mobility close to the micelle. This motion may be better described as an oscillation relative to the membrane rather than a folding event.  相似文献   

16.
Molecular dynamics simulation was performed to analyse the phenomena of replacement of methane hydrate with carbon dioxide (CO2) at 270 K and 5.0 MPa for 5300 ps. The methane hydrate phase was constructed with 16 unit cells of hydrate. Every cage in the hydrate was occupied by one methane molecule. The methane hydrate phase was sandwiched between two CO2 phases. During the simulation the hydrate partially melted and liquid water phase appeared, and CO2 dissolved in the liquid water phase. The replacements were observed three times at the hydrate–liquid water interface during the simulation. In the first case, the replacement occurred at a S-cage without changing the structure. In the second case, an M-cage of methane hydrate partially collapsed, and methane and CO2 molecules exchanged. After the exchange, the cage occupied by CO2 remained in the M-cage structure. In the third case, a S-cage of methane hydrate partially collapsed, and methane and CO2 molecules exchanged. After the exchange, the cage occupied by CO2 changed to an M-cage-like structure.  相似文献   

17.
Shakya SK  Gu W  Helms V 《Biopolymers》2005,78(1):9-20
The 128 amino acid long soluble protein adrenodoxin (Adx) is a typical member of the ferredoxin protein family that are electron carrier proteins with an iron-sulfur cofactor. Adx carries electrons from adrenodoxin reductase (AdR) to cytochrome P450s. Its binding modes to these proteins were previously characterized by site-directed mutagenesis, by X-ray crystallography for the complex Adx:AdR, and by NMR. However, no clear evidence has been provided for the driving force that promotes Adx detachment from AdR upon reduction. Here, we characterized the conformational dynamics of unbound Adx in the oxidized and reduced forms using 2-20 ns long molecular dynamics simulations. The most noticeable difference between both forms is the enhanced flexibility of the loop (47-51) surrounding the iron-sulfur cluster in the reduced form. Together with several structural displacements at the binding interface, this increased flexibility may be the key factor promoting unbinding of reduced Adx from AdR. This points to an intrinsic property of reduced Adx that drives dissociation.  相似文献   

18.
Molecular dynamics simulations were performed to gain fundamental insights into the mechanisms for the primary detonation process of 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) under shock wave loading using self-consistent charge density-functional tight binding(SCC-DFTB) calculations combined with the multiscale shock technique (MSST). The primary process starts with shock loading and ends with the formation of dynamically stable heterocyclic clusters, which could inhibit the reactivity of TATB. The results show that the initial step of shocked TATB decomposition is the N–O bond cleavage; then carbon rings aggregate and connect by N atoms to form clusters; after the carbon rings open, heterocyclic clusters with nitrogen are formed, and persist throughout the simulation. This is a new mechanism for the primary processes of shocked TATB and this initiation mechanism is independent of the initial shock speeds.  相似文献   

19.
Abstract

Atomistic molecular dynamics simulations have been performed on the peptide amphiphiles (PAs) with four amyloid beta peptide fragments as head groups. The stable structures were monitored by the root mean square deviation with respect to the energy minimised initial structures. Random coil and β-sheet structures with hydrogen bonds along and perpendicular to the long axis of the nanofibre were obtained due to the different nature of the head groups. Influences of pH and capping ends on the nanofibre structures were investigated through variation of the protonation states of the ionic amino acids in the peptides. The peptides with opposite charges on both sides were found to have the fewest β-sheet structures, and the charges on the outer terminal tended to destruct the β-sheets while those at the inner side did not. The isolated charge in the centre of peptides was found to be able to promote the formation of regular β-sheets, while multiple charged residues could not support ordered β-sheet structures. When charge neutralisation occurred between adjacent residues, regular β-sheet laminates might also occur for systems with charges at the outer terminal. With the increase of β-sheet structures formed, the original twisted structures found for random coil structures of the PAs could be diminished by the hydrogen bonds.  相似文献   

20.
ABSTRACT

Lactate dehydrogenase (LDH) is a tetrameric enzyme which is composed of two subunits known as LDHA and LDHB, which are encoded by the LDHA and LDHB genes respectively. LDH catalyses the last step in anaerobic glycolysis through the reversible conversion of pyruvate to lactate via coupled oxidation of NADH cofactor. The LDHA plays an important regulatory role in anaerobic glycolysis, by catalysing the final step of the process. Therefore, it is likely that increases in the expression level of LDHA in cancer cells could facilitate the efficiency of anaerobic glycolysis. Measuring the level of serum LDHA is a key step in the diagnosis of many cancer types. In this study, the adsorption, stability, and dynamics of LDHA on the surface of pristine graphene (PG) and carboxylated graphene (COOH-Graphene) were investigated using its molecular dynamics simulation. Variations in root mean square deviation, root mean square fluctuation, solvent accessible surface area and adsorption energy of the LDHA during the simulation were calculated to analyse the effect of PG and COOH-Graphene on the overall conformation of LDHA. Results showed that the adsorption of LDHA on COOH-Graphene is mostly mediated by electrostatic interactions, whereas on the PG, both Van der Waals and π-π interactions are prominent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号