首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The experimental and theoretical studies on the molecular structure and vibrational spectra of bis(thiourea)zinc(II) chloride (BTZC) crystals were investigated. The Fourier transform infrared, Fourier transform Raman and UV–vis spectra of BTZC were recorded. The molecular geometry and vibrational frequencies of BTZC in the ground state were calculated by using B3LYP with LANL2DZ as basis set. Comparison of the observed structural parameters of BTZC with single-crystal X-ray studies yields a good agreement. Vibrational analysis of the simultaneous IR and Raman activation of the Zn–Cl stretching mode in the molecule provides the evidence for the charge transfer interaction taking place within the molecule. The energy and oscillator strength are calculated by time-dependent density functional theory. The simulated spectra satisfactorily coincide with the experimental spectra.  相似文献   

2.
The FTIR and FT-Raman spectra are reported for the arabinonucleoside ara-T (1-beta-D-arabinofuranosylthymine), which shows antiviral activity. The accurate knowledge of the vibrational modes is a prerequisite for the elucidation of drug-nucleotide and drug-enzyme interactions. The FTIR and FT-Raman spectra of ara-T were recorded from 4000 to 30 cm(-1). A tetradeuterated derivative (deuteration at N3, and hydroxyl groups O'2, O'3, and O'5) was synthesized and the observed isotopic shifts in its spectra were used for the vibrational analysis of ara-T. The theoretical frequencies and the potential energy distribution (PED) of the vibrational modes of ara-T were calculated using the ab initio Hartree-Fock/3-21G method. An assignment of the vibrational spectra of ara-T is proposed considering the scaled PED and the observed band shifts under deuteration. The scaled ab initio frequencies were in reasonable agreement with the experimental data.  相似文献   

3.
The Fourier transform Raman and Fourier transform infrared spectra 4-nitrobenzylchloride of (NBC) were recorded in the solid phase. The Fourier transform gas phase infrared spectrum of NBC was also recorded. The equilibrium geometry, harmonic vibrational frequencies, infrared intensities and Raman scattering activities were calculated by HF/DFT (B3LYP and BLYP) and SVWN methods with the 6-31G(d,p) basis set. The scaled theoretical wave numbers by B3LYP showed very good agreement with the experimental ones. A detailed interpretation of the infrared and Raman spectra of NBC is reported on the basis of the calculated potential energy distribution. The theoretical spectrograms for the IR spectrum of the title molecule have been constructed.  相似文献   

4.
Fourier transform infrared (FT-IR) and Fourier transform Raman (FT-Raman) spectra of 3,4-dihydroxy-l-phenylalanine (3,4-DPA) in solid phase were recorded and analysed in this research. Along with this, the IR spectra in CHCl3 and the use of acetone as solvents of 3,4-DPA were also recorded. The equilibrium geometry, bonding features and harmonic vibrational frequencies were investigated with the help of density functional theory (DFT) method. The 1H and 13C nuclear magnetic resonance chemical shifts of the molecule were calculated using the gauge including atomic orbital method and compared with experimental results. Stability of the molecule arising from hyperconjugative interactions and charge delocalisation was analysed using natural bond orbital analysis. The results show that charge in electron density (E D) in the σ* and π* antibonding orbitals and second-order delocalisation energies E(2) confirms the occurrence of intramolecular charge transfer within the molecule. UV–vis spectrum of the compound was recorded and the electronic properties, such as HOMO and LUMO energies, were analysed using the time-dependent (TD)-DFT approach. Finally, the calculation results were applied to simulate infrared and Raman spectra of the title compound, which showed good agreement with the observed spectra.  相似文献   

5.
Fourier transform infrared and Raman spectra of nicorandil have been recorded. The structure, conformational stability, geometry optimisation and vibrational frequencies have been investigated. Complete vibrational assignments were made for the stable conformer of the molecule using restricted Hartree–Fock (RHF) and density functional theory (DFT) calculations (B3LYP) with the 6-31G(d,p) basis set. Comparison of the observed fundamental vibrational frequencies of the molecule and calculated results by RHF and DFT methods indicates that B3LYP is superior for molecular vibrational problems. The thermodynamic functions of the title molecule were also performed using the RHF and DFT methods. Natural bond order analysis of the title molecule was also carried out. Comparison of the simulated spectra with the experimental spectra provides important information about the ability of the computational method to describe the vibration modes.  相似文献   

6.
This study deals with the identification of glutamic acid by means of quantum chemical approach. FT-IR, FT-Raman and UV–vis spectra were recorded in the region 4000–400, 4000–50 cm? 1 and 200–600 nm, respectively. CAM-B3LYP/6-31G(d,p) and B2PLYP/6-31G(d,p) calculations were performed to obtain the optimised molecular structures, vibrational frequencies and corresponding vibrational assignment, thermodynamic properties and natural bonding orbital (NBO) analysis. The results show that the obtained optimised geometric parameters (bond lengths, bond angles and bond dihedrals) and vibrational frequencies were found to be in good agreement with the experimental results. The calculations of the electronic spectra were compared with the experimental ones. Furthermore, highest occupied molecular orbital and lowest unoccupied molecular orbital analyses and UV–vis spectral analysis were also performed to determine the energy band gaps and transition states. NBO analysis, calculated using density functional theory methods (CAM-B3LYP/6-31G(d,p) and B2PLYP/6-31G(d,p)), was induced to find inter-molecular atoms. 13C and 1H NMR isotropic chemical shifts were calculated and the assignments made were compared with the ChemDraw Ultra values.  相似文献   

7.
The vibrational spectra of a synthetic purine nucleoside with known antiviral activity, 9--D-arabino-furanosyladenine hydrochloride (ara-A.HCl) are reported. The Fourier transform infrared (FT-IR) and Fourier transform Raman (FT-Raman) spectra were recorded in the 4000-30 cm–1 spectral region. The harmonic frequencies and potential energy distributions (PED) of the vibrational modes of ara-A.HCI were calculated by two different methods: a classical molecular mechanics method and a semiempirical molecular orbital (MO) method, PM3. The results of both computational methods, based on the Wilson GF method, are compared with observed spectra, and an assignment of the vibrational modes of ara-A.HCl is proposed on the basis of the potential energy distributions (PED). It is found that the wavenumbers can be calculated with remarkable accuracy (1% deviation in most cases), with the classical mechanics method, by transferring a sufficiently large set of available harmonic force constants, thus permitting a reliable assignment. The semiempirical MO method, PM3, is found to be useful for the assignment of experimental frequencies although it is less accurate (10% deviation). IR intensities calculated by this method did not coincide with the experimental values. Certain out-of-plane vibrations in the base, not reported in previous studies, have been observed. The performance of both methods was related to the crystallographic and ab initio data available. Previous normal coordinate calculations for the adenine base and the nucleoside 5-dGMP are compared with our results and discussed, in relation to the crystal structure of Ara-A.HCl. Correspondence to: A. Hernanz  相似文献   

8.
Vibrational analysis of 2-amino-6-nitrobenzothiazole (2A6NBT) molecule has been carried out at room temperature using FT-IR and FT-Raman spectroscopic techniques. The equilibrium geometry, bonding features and harmonic vibrational frequencies have been investigated with the help of the density functional theory DFT method. The non-linear optical (NLO) behaviour of the examined molecule has been studied followed by the determination of the electric dipole moment μ, the polarisability α and hyperpolarisability β using HF/6-31G(d,p) method. Stability of the molecule arising from hyperconjugative interactions and charge delocalisation have been analysed using the natural bond orbital analysis. The results show that charge in electron density in the σ* and π* antibonding orbitals and second-order delocalisation energies (E2) confirms the occurrence of intramolecular charge transfer within the molecule. The assignments of the vibrational spectra have been carried out with the help of normal coordinate analysis following the scaled quantum mechanical force field methodology. The energy and oscillator strength calculated by time-dependent density functional theory complements with the experimental findings. The simulated spectra satisfactorily coincide with the experimental spectra.  相似文献   

9.
The Fourier transform infrared (FT-IR) spectrum of 6-chloro-8-thia-1,4-epoxybicyclo[4.3.0]non-2-ene has been recorded in the region 4000–525 cm? 1. The optimised geometry, frequency and intensity of the vibrational bands of the title compound have been calculated using the ab initio Hartree–Fock and the density functional theory method with 6-31G(d,p) and 6-311G(d,p) basis set levels. The harmonic vibrational frequencies were calculated and the scaled values have been compared with experimental FT-IR spectrum. The observed and the calculated frequencies are found to be in good agreement. The theoretical vibrational spectrum of the title compound were interpreted by means of potential energy distributions using VEDA 4 program.  相似文献   

10.
11.
Abstract

The advantages of different methods for obtaining a reliable assignment of the vibrational spectra of the antitumoral and antiviral nucleoside analogue, 5-fluoro-2′-deoxyuridine. FdU, are evaluated as a basis for the study of FdU-containing polymers and drug-target interactions. The experimental FT-IR and FT-Raman spectra, are compared with theoretical frequencies obtained by a classical mechanics method and a semiempirical molecular orbital (MO) method, PM3.  相似文献   

12.
Fourier transform infrared and Raman spectra of nebivolol have been recorded. The structure, conformational stability, geometry optimisation, and vibrational wave numbers have been investigated. Satisfactory vibrational assignments were made for the stable conformer of the molecule using Restricted Hartree–Fock (RHF) and density functional theory (DFT) calculation (B3LYP) with the 6-31G(d,p) basis set. Comparison of the observed fundamental vibrational wave numbers of the molecule and calculated results by RHF and DFT methods indicates that B3LYP is superior for molecular vibrational problems. Comparison of the simulated spectra with the experimental spectra provides important information about the ability of the computational method to describe the vibrational modes. The RHF and DFT-based NMR calculation procedure was also done. It was used to assign the 13C NMR chemical shift of nebivolol.  相似文献   

13.
NIR FT-Raman, FTIR and UV-vis spectra of the herbicide metamitron were recorded and analyzed. The aromaticities, equilibrium geometries, bonding features, electrostatic potentials, and harmonic vibrational wavenumbers of the monomers and dimers of triazinone derivatives were also investigated with the aid of BLYP/6-311 G(df, p) density functional theory. Features in the vibrational spectra were assigned with the aid of the VEDA.4 program. The calculated results were a good match to the experimental data obtained from FTIR, Raman, and electronic absorption spectra. Mulliken population analysis was performed on the atomic charges and the HOMO-LUMO energies were also calculated. NBO analysis highlighted the intra- and intermolecular N-H…O and C-H…O hydrogen bonds in the crystal structures of the triazinones. The solvent effect was calculated using time-dependent density functional theory in combination with the polarizable continuum model.  相似文献   

14.
The experimental FTIR and FT-Raman spectra of 5-chloro-2'-deoxyuridine have been assigned on the basis of normal coordinate analyses, in the light of observed and calculated wavenumbers and isotopic shifts. The results indicate that virtually all normal modes of IDU involve some degree of vibrational coupling between the chlorouracil base and the deoxyribose moiety.  相似文献   

15.
The Fourier transform Raman (FTR) and Fourier transform infrared (FTIR) spectra of 2-bis (2-chloroethyl) aminoperhydro-1,3,2-oxazaphosphorinane-2-oxide were recorded in the regions 4000–100 cm? 1 and 4000–400 cm1, respectively, in the solid phase. Molecular electronic energy, geometrical structure, harmonic vibrational spectra, infrared intensities and Raman scattering activities, highest occupied molecular orbital, lowest unoccupied molecular orbital energy, energy gaps and thermodynamical properties such as zero-point vibrational energies, rotational constants, entropies and dipole moment were computed at the Hartree–Fock/6-31G(d,p) and three parameter hybrid functional Lee–Yang–Parr/6-31G(d,p) levels of theory. The vibrational studies were interpreted in terms of potential energy distribution. The results were compared with experimental values with the help of scaling procedures. The observed wave number in FTIR and FTR spectra was analysed and assigned to different normal modes of the molecule. Most of the modes have wave numbers in the expected range and are in good agreement with computed values.  相似文献   

16.
The Fourier transform Raman and infrared (IR) spectra of the Ceramide 3 (CER3) have been recorded in the regions 200–3500 cm? 1 and 680–4000 cm? 1, respectively. We have calculated the equilibrium geometry, harmonic vibrational wavenumbers, electrostatic potential surfaces, absolute Raman scattering activities and IR absorption intensities by the density functional theory with B3LYP functionals having extended basis set 6-311G. This work is undertaken to study the vibrational spectra of CER3 completely and to identify the various normal modes with better wavenumber accuracy. Good consistency is found between the calculated results and experimental data for the IR and Raman spectra.  相似文献   

17.
Abstract

The experimental FTIR and FT-Raman spectra of 5-chloro-2′-deoxyuridine have been assigned on the basis of normal coordinate analyses, in the light of observed and calculated wavenumbers and isotopic shifts. The results indicate that virtually all normal modes of IDU involve some degree of vibrational coupling between the chlorouracil base and the deoxyribose moiety.  相似文献   

18.
The molecular structure (hydrogen bonding, bond distances and angles), dipole moment and vibrational spectroscopic data [vibrational frequencies, IR and vibrational circular dichroism (VCD)] of cyclobutanone?HX (X?=?F, Cl) complexes were calculated using density functional theory (DFT) and second order Møller–Plesset perturbation theory (MP2) with basis sets ranging from 6–311G, 6–311G**, 6–311 + + G**. The theoretical results are discussed mainly in terms of comparisons with available experimental data. For geometric data, good agreement between theory and experiment is obtained for the MP2 and B3LYP levels with basis sets including diffuse functions. Surface potential energy calculations were carried out with scanning HCl and HF near the oxygen atom. The nonlinear hydrogen bonds of 1.81 Å and 175° for HCl and 1.71 Å and 161° for HF were calculated. In these complexes the C=O and H–X bonds participating in the hydrogen bond are elongated, while others bonds are compressed. The calculated vibrational spectra were interpreted and the band assignments reported are in excellent agreement with experimental IR spectra. The C=O stretching vibrational frequencies of the complexes show red shifts with respect to cyclobutanone.  相似文献   

19.
In the present work, the experimental and the theoretical vibrational spectra of trifluorothymine were investigated. The FT-IR (400-4000?cm(-1)) and μ-Raman spectra (100-4000?cm(-1)) of trifluorothymine in the solid phase were recorded. The geometric parameters (bond lengths and bond angles) and vibrational frequencies of the title molecule in the ground state were calculated using ab initio Hartree-Fock (HF) method and density functional theory (B3LYP) method with the 6-31++G(d,p) and 6-311++G(d,p) basis sets for the first time. The optimized geometric parameters and the theoretical vibrational frequencies were found to be in good agreement with the corresponding experimental data and with results found in the literature. Vibrational frequencies were assigned based on the potential energy distribution using the VEDA 4 program. The dimeric form of trifluorothymine was also simulated to evaluate the effect of intermolecular hydrogen bonding on the vibrational frequencies. It was observed that the stretching modes shifted to lower frequencies, while the in-plane and out-of-plane bending modes shifted to higher frequencies due to the intermolecular N-H?O hydrogen bonds.  相似文献   

20.
Near-infrared absorption spectra of A2CoX4 (A = Cs, ethyl4N; X = Cl, Br) single crystals and from KBr pellets at low temperature are recorded by the Fourier transform technique. At 2 K a rich fine structure of v1(4A24T2) and v2(4A24T1) ligand field spectra is detected which can be assigned to low symmetry level splittings due to actual site symmetries superimposed by vibrational fine structure. Comparison of fundamental frequencies obtained from far-infrared spectra allows an assignment of all peaks measured in the vibronic spectra to vibrational modes of the MX4 complex. Zero-phonon bands are identified using the assistance of angular overlap calculations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号