首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Surfaces submerged in an aquatic milieu are covered to some degree with biofilms – organic matrices that can contain bacteria, microalgae, and protozoans, sometimes including disease-causing forms. One unquantified risk of aquatic biological invasions is the potential for biofilms within ships’ ballast water tanks to harbor pathogens, and, in turn, seed other waters. To begin to evaluate this vector, we collected biofilm samples from tanks’ surfaces and deployed controlled-surface sampling units within tanks. We then measured a variety of microbial metrics within the biofilms to test the hypotheses that pathogens are present in biofilms and that biofilms have higher microbial densities compared to ballast water. Field experiments and sampling of coastwise and oceangoing ships arriving at ports in Chesapeake Bay and the North American Great Lakes showed the presence of abundant microorganisms, including pathogens, in biofilms. These results suggest that ballast-tank biofilms represent an additional risk of microbial invasion, provided they release cells into the water or they are sloughed off during normal ballasting operations.  相似文献   

2.
Chlorination is an effective method to control biofilm formation in enclosed pipelines. To date, very little is known about how to control biofilms at the mesoscale in complex pipelines through chlorination. In this study, the dynamic of microbial communities was examined under different residual chlorine concentrations on the biofilms attached to labyrinth channels for drip irrigation using reclaimed water. The results indicated that the microbial phospholipid fatty acids, extracellular polymeric substances, microbial dynamics, and the ace and Shannon microbial diversity indices showed a gradual decrease after chlorination. However, chlorination increased microbial activity by 0.5–19.2%. The increase in the relative abundances of chloride-resistant bacteria (Acinetobacter and Thermomonas) could lead to a potential risk of chlorine resistance. Thus, keeping a low chlorine concentration (0.83?mg l?1 for 3?h) is effective for controlling biofilm formation in the labyrinth channels.  相似文献   

3.
Drinking water distribution networks are known to harbor microbial biofilms. The aim of the present work is to (i) identify the culturable bacteria presented in the drinking-water distribution network, (ii) investigate the ability of isolated bacteria to form biofilm under some environmental stress conditions and some eliminating or removing treatments. To achieve it, 57 strains were isolated from biofilm (43 isolates) and water samples (14 isolates) collected from five stations in drinking-water distribution network in Taif city, Kingdom of Saudi Arabia (KSA). Partial sequences of 16S rRNA gene in the 57 isolates ensured the presence of only 22 different strains in biofilm samples. Among these strains, only 14 strains were also detected in water samples. Gram-negative Aeromonas hydrophila was the most occurred bacterium in the microbial biofilm obtained from the purified-water storage tanks followed by Gram-negative Pseudomonas sp. Gram-positive Bacillus subtilis was the most occurred bacterium in the microbial biofilm collected from the ends of the distribution pipes. Among the 22 isolated strains, 13 strains were strong biofilm producers at 30 and 37°C. The effects of environmental stresses including nutrient starvation (diluted TSB, 20:1), heating (100°C for 10 min), UV-treatment (240 nm for 10 min) and dynamic incubation (150 rpm min?1) on the formation of biofilm were also investigated. These conditions affected the biofilm formation ability of the isolated strains at different levels. Nutrient starvation enhanced biofilm formation by most of the isolates. Among some biofilm deforming treatments, SDS and trypsin had considerable effects on preventing biofilm formation by most of the isolated strains. In conclusion, the results of the present work indicated that not all biofilm strains released from biofilm to the drinking water. Also, not all biofilm strains were able to form biofilm. Most of isolated bacteria had ability to form biofilm at suboptimum temperature of growth. These results may provide basic information on formation of microbial biofilms and overcome the problem of deteriorating of water quality in the drinking-water distribution networks.  相似文献   

4.
A combinatory approach using metabolomics and gut microbiome analysis techniques was performed to unravel the nature and specificity of metabolic profiles related to gut ecology in obesity. This study focused on gut and liver metabolomics of two different mouse strains, the C57BL/6J (C57J) and the C57BL/6N (C57N) fed with high-fat diet (HFD) for 3 weeks, causing diet-induced obesity in C57N, but not in C57J mice. Furthermore, a 16S-ribosomal RNA comparative sequence analysis using 454 pyrosequencing detected significant differences between the microbiome of the two strains on phylum level for Firmicutes, Deferribacteres and Proteobacteria that propose an essential role of the microbiome in obesity susceptibility. Gut microbial and liver metabolomics were followed by a combinatory approach using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) and ultra performance liquid chromatography time of tlight MS/MS with subsequent multivariate statistical analysis, revealing distinctive host and microbial metabolome patterns between the C57J and the C57N strain. Many taurine-conjugated bile acids (TBAs) were significantly elevated in the cecum and decreased in liver samples from the C57J phenotype likely displaying different energy utilization behavior by the bacterial community and the host. Furthermore, several metabolite groups could specifically be associated with the C57N phenotype involving fatty acids, eicosanoids and urobilinoids. The mass differences based metabolite network approach enabled to extend the range of known metabolites to important bile acids (BAs) and novel taurine conjugates specific for both strains. In summary, our study showed clear alterations of the metabolome in the gastrointestinal tract and liver within a HFD-induced obesity mouse model in relation to the host–microbial nutritional adaptation.  相似文献   

5.
Aims: The focus of this work was to investigate the contribution of native Escherichia coli to the microbial quality of irrigation water and to determine the potential for contamination by E. coli associated with heterotrophic biofilms in pipe‐based irrigation water delivery systems. Methods and Results: The aluminium pipes in the sprinkler irrigation system were outfitted with coupons that were extracted before each of the 2‐h long irrigations carried out with weekly intervals. Water from the creek water and sprinklers, residual water from the previous irrigation and biofilms on the coupons were analysed for E. coli. High E. coli concentrations in water remaining in irrigation pipes between irrigation events were indicative of E. coli growth. In two of the four irrigations, the probability of the sample source, (creek vs sprinkler), being a noninfluential factor, was only 0·14, that is, source was an important factor. The population of bacteria associated with the biofilm on pipe walls was estimated to be larger than that in water in pipes in the first three irrigation events and comparable to one in the fourth event. Conclusion: Biofilm‐associated E. coli can affect microbial quality of irrigation water and, therefore, should not be neglected when estimating bacterial mass balances for irrigation systems. Significance and Impact of the Study: This work is the first peer‐reviewed report on the impact of biofilms on microbial quality of irrigation waters. Flushing of the irrigation system may be a useful management practice to decrease the risk of microbial contamination of produce. Because microbial water quality can be substantially modified while water is transported in an irrigation system, it becomes imperative to monitor water quality at fields, rather than just at the intake.  相似文献   

6.
Exoenzyme accumulation in epilithic biofilms   总被引:1,自引:1,他引:0  
Although exoenzyme accumulation is often proposed as an explanation for the high metabolic activity of biofilms, little is known about the abundance, distribution and turnover rates of exoenzymes within these communities. To assess accumulation, epilithic biofilm samples were collected from a fourth-order boreal river and homogenized. The resulting particles were fractionated by size and each fraction was assayed for nine exoenzyme activities, chlorophyll, and ATP. In general, carbohydrase activities were not correlated with microbial biomass indicators; the largest pool of activity was in the aqueous phase (< 0.2 µm). Phenol oxidase, peroxidase, and phosphatase activities were largely particle-bound and often correlated with microbial biomass distribution. It was concluded that the epilithic biofilm matrix was effective at accumulating carbohydrase activity and that this accumulation may partially account for the metabolic resistance of epilithic biofilms to dissolved organic matter fluctuations.  相似文献   

7.
Abstract

An experimental system has been developed that allows the monitoring of biofilm development on supports exposed to water of different characteristics. The system consists of a series of packed-bed reactors filled with glass beads, and by periodically removing biofilm attached to these beads for off-line analyses this provides a means for monitoring biofilm development. Despite its reduced dimensions (6.9 cm long and 1.58 cm in diameter), the experimental system used has a sampling surface of 90.3 cm2 (including only the surface of the glass beads). This allows reproducible and representative samples to be taken from different water systems, providing a reliable and economic method for evaluating in situ the formation of biofilms from different environments. The set-up of the entire experimental system was constructed to meet the demands of field experiments in a well-defined hydrodynamic environment and to allow easy removal of samples for biomass quantification and microscopic observation. Data obtained using this device can be used as an indicator of the risk of biofilm formation in different water systems. This indicator, “the biofilm accumulation potential”, represents an effective and representative tool for the monitoring of biofilm development in an integrated antifouling strategy, in order to help keep biofouling, scaling and microbial risks under control. According to the experiments with the packed-bed reactors used with a high flow regime, the ratio TCN/HPC could provide an indication of the state of the biofilm, and lower ratios could indicate a higher biofilm accumulation potential.  相似文献   

8.
In biofilm environments, heavy metal and radionuclide pollutants are removed by a variety of mechanisms, including biosorption, precipitation as sulfides or phosphates and microbial reductive precipitation. Even if the elemental composition and localization of the precipitate trapped in the biofilm is well described thanks to spectroscopic and microscopic techniques, this review highlights that little is known about metal immobilisation mechanisms in microbial biofilms, i.e., mass transfer of metals, mechanisms involved in (bio)sorption and precipitation and the influence of physicochemical micro-environments within the biofilm matrix. The review shows the advantage of using a combination of different techniques to evaluate the fate of metals within microbial biofilms. By combining a variety of techniques (e.g., selective extraction, microscopy, spectroscopy and miniaturised sensors ...), it is possible to gain high-resolution structural and chemical information of biofilms on a level of the individual cell. This approach will facilitate the characterization of the metal immobilisation sites and the metal sorption and (bio)crystallisation mechanisms in biofilms. The results provided by the combination of these techniques will allow to predict the amount of metal accumulation in biofilms as well as their chemical speciation. This review demonstrates that an interdisciplinary approach is required to study metal fate within the biofilm matrix. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

9.
Microbial biofilms assemble from cells that attach to a surface, where they develop into matrix-enclosed communities. Mechanistic insights into community assembly are crucial to better understand the functioning of natural biofilms, which drive key ecosystem processes in numerous aquatic habitats. We studied the role of the suspended microbial community as the source of the biofilm community in three streams using terminal-restriction fragment length polymorphism and 454 pyrosequencing of the 16S ribosomal RNA (rRNA) and the 16S rRNA gene (as a measure for the active and the bulk community, respectively). Diversity was consistently lower in the biofilm communities than in the suspended stream water communities. We propose that the higher diversity in the suspended communities is supported by continuous inflow from various sources within the catchment. Community composition clearly differed between biofilms and suspended communities, whereas biofilm communities were similar in all three streams. This suggests that biofilm assembly did not simply reflect differences in the source communities, but that certain microbial groups from the source community proliferate in the biofilm. We compared the biofilm communities with random samples of the respective community suspended in the stream water. This analysis confirmed that stochastic dispersal from the source community was unlikely to shape the observed community composition of the biofilms, in support of species sorting as a major biofilm assembly mechanism. Bulk and active populations generated comparable patterns of community composition in the biofilms and the suspended communities, which suggests similar assembly controls on these populations.  相似文献   

10.
Microbiological analyses were conducted on core samples collected along a vertical profile (0-66 m below surface) from the tailings management facility (TMF) at the Rabbit Lake uranium mine in northern Saskatchewan, Canada. Bacterial numbers in the core materials were similar to surrounding soils and surface waters, regardless of the seemingly unfavorable pH (mean=9.9) and temperature (approximately 0 degrees C) in the TMF. The greatest number of viable cells (105 CFU/g) was detected at the interface between the tailings and overlying standing water, below which cell counts decreased rapidly with depth. Whole-community metabolic profiles for samples from the different depths grouped into 3 clusters; however, these groups could not be positively correlated with sampling depth, temperature, redox potential, pH, or ore-mill feed. Flow-cell studies demonstrated microbial communities in the tailings surface water could develop biofilms and maintain cell activity at both pH 10 and 7, and altering the pH between these 2 values had little effect on biofilm viability. These results demonstrate the resilience and adaptive nature of naturally occurring microbial communities and signify a potential role of microbial activity in the long-term geochemical evolution of the TMF.  相似文献   

11.
Microbial metabolomics: past,present and future methodologies   总被引:1,自引:0,他引:1  
Microbial metabolomics has received much attention in recent years mainly because it supports and complements a wide range of microbial research areas from new drug discovery efforts to metabolic engineering. Broadly, the term metabolomics refers to the comprehensive (qualitative and quantitative) analysis of the complete set of all low molecular weight metabolites present in and around growing cells at a given time during their growth or production cycle. This review focuses on the past, current and future development of various experimental protocols in the rapid developing area of metabolomics in the ongoing quest to reliably quantify microbial metabolites formed under defined physiological conditions. These developments range from rapid sample collection, instant quenching of microbial metabolic activity, extraction of the relevant intracellular metabolites as well as quantification of these metabolites using enzyme based and or modern high tech hyphenated analytical protocols, mainly chromatographic techniques coupled to mass spectrometry (LC-MSn, GC-MSn, CE-MSn), where n indicates the number of tandem mass spectrometry, and nuclear magnetic resonance spectroscopy (NMR).  相似文献   

12.
The contamination of dental unit water lines (DUWL) is an emerging concern in dentistry. The aim of this study was to use an in vitro DUWL to model microbial contamination and evaluate the decontamination efficacy of tetraacetylethylenediamine (TAED) solutions. A DUWL biofilm model used to simulate clinical conditions was used to generate a range of biofilms in DUWL. Three distinct biofilms were generated: (1) biofilm from water, (2) biofilm from a mix of water + contaminating human commensal bacteria, (3) biofilm from water with contaminating oral bacteria added after biofilm formed. The contaminating oral species used were Streptococcus oralis, Enterococcus faecalis and Staphylococcus aureus. Decontamination by simple water flushing or flushing with TAED was evaluated (2, 5 and 10 min intervals). The DUWL tubes were split and samples were plated onto a range of media, incubated and bacteria enumerated. Water flushing did not reduce the number of microorganisms detected. Bacteria were not detected from any of the TAED sampling points for any of the biofilm types tested. Interestingly, if contamination was introduced to new DUWL along with the waterborne species a biofilm was formed containing only the waterborne species. If however, an existing biofilm was present before the introduction of "contaminating" bacteria then these could be detected in the biofilm. This implies that if the DUWL are new or satisfactorily cleaned on a regular basis then the associated cross-contamination aspects are reduced. In conclusion, TAED provides effective control for DUWL biofilms.  相似文献   

13.
Online sensitive monitoring of gene expression is essential for understanding microbial life and microbial communities, especially under stress-inducing conditions, such as the presence of environmental pollutants. We describe here a novel use of promoter-based electrochemical biosensing for online and in situ monitoring of gene expression in response to pollutants. As a model system, we used a cadmium-responsive promoter from Escherichia coli fused to a promoterless lacZ gene, which was monitored using an electrochemical assay of β-galactosidase activity. This whole-cell biosensor could detect, within minutes, nanomolar concentrations of cadmium in water, sea water and soil samples, and it can be used for continuous online and in situ monitoring.  相似文献   

14.
Fatty acid analysis and spoilage potential of biofilms from two breweries   总被引:2,自引:0,他引:2  
AIM: The microbial composition of biofilms from different locations of beer bottling plants were compared based on fatty acid profiles and correlated with the product-spoiling potential of these biofilms. METHODS AND RESULTS: The whole cell fatty acid profiles of 78 biofilms from bottling plants of two breweries were analysed. About half of the lipid profiles were dominated by oleic and linoleic acid, which refer to a high proportion of yeasts. In addition, more than half of all samples contained dimethylacetals indicating the presence of strictly anaerobic bacteria. Typical fatty acids for potentially beer-spoiling genera were detected in three biofilms. The majority of the biofilms contained no beer-spoiling organisms, as shown by inoculation experiments in beer. CONCLUSIONS: Biofilms from different locations of bottling plants were different with respect to their microbial composition. Potentially product-spoiling populations could be detected in a small number of samples. SIGNIFICANCE AND IMPACT OF THE STUDY: Biofilms on industrial plants can be characterized by a fast and cultivation-independent method with respect to overall microbial composition and presence of potentially product-spoiling micro-organisms.  相似文献   

15.
Formation of microbial biofilms and slimes is a general and serious problem in the operation of paper machines. Studies of microbial populations in paper machine-derived biofilms have been conducted using standard microbiological procedures; however, the bacterial genera present in this type of samples as well as their diversity are quite poorly known. Here, the bacterial diversity of 38 process water and 22 biofilm samples from four different Finnish paper machines were analyzed by length heterogeneity analysis of PCR-amplified 16S ribosomal DNA (LH-PCR). In addition, sequencing of the amplified 16S rRNA gene from 69 clones was conducted for characterization of the bacterial genera present in biofilm and slime samples. The LH-PCR profiles of both the free-living (process waters) and immobilized (biofilms) bacteria were diverse at all stages of the papermaking process. Out of the 69 sequenced clones, 44 belonged to alpha-Proteobacteria, most of which were close to the nitrogen-fixing root nodule genera Sinorhizobium, Rhizobium and Azorhizobium. Other clones were assigned to beta- and gamma-Proteobacteria and the phylum Bacteroidetes. In addition, eight of the clones were assigned to a yet uncultivated phylum, TM7. Finally, epifluorescence microscopy revealed that Gram-negative bacteria were predominant in both the biofilm (65%) and process water (54%) samples and a small coccoid cell morphology was most common in all samples. Together, our results show that the analysis of microbial samples from paper machines using modern molecular biology techniques adds valuable information and should, therefore, be useful as a more specific and sensitive microbiological method for the paper industry. This information could further be applied, e.g., in the development of more specific and environmental friendly antimicrobial agents for paper mills.  相似文献   

16.
Environmental metabolomics is increasingly used to investigate organismal responses to complex chemical mixtures, including waste water effluent (WWE). In parallel, increasingly sensitive analytical methods are being used in metabolomics studies, particularly mass spectrometry. This introduces a considerable, yet overlooked, challenge that high analytical sensitivity will not only improve the detection of endogenous metabolites in biological specimens but also exogenous chemicals. If these often unknown xenobiotic features are not removed from the “biological” dataset, they will bias the interpretation and could lead to incorrect conclusions about the biotic response. Here we illustrate and validate a novel workflow classifying the origin of peaks detected in biological samples as: endogenous, xenobiotics, or metabolised xenobiotics. The workflow is demonstrated using direct infusion mass spectrometry-based metabolomic analysis of testes from roach exposed to different concentrations of a complex WWE. We show that xenobiotics and their metabolic products can be detected in roach testes (including triclosan, chloroxylenol and chlorophene), and that these compounds have a disproportionately high level of statistical significance within the total (bio)chemical changes induced by the WWE. Overall we have demonstrated that this workflow extracts more information from an environmental metabolomics study of complex mixture exposures than was possible previously.  相似文献   

17.
With the rapid progress in metabolomics and sequencing technologies, more data on the metabolome of single microbes and their communities become available, revealing the potential of microorganisms to metabolize a broad range of chemical compounds. The analysis of microbial metabolomics datasets remains challenging since it inherits the technical challenges of metabolomics analysis, such as compound identification and annotation, while harboring challenges in data interpretation, such as distinguishing metabolite sources in mixed samples. This review outlines the recent advances in computational methods to analyze primary microbial metabolism: knowledge-based approaches that take advantage of metabolic and molecular networks and data-driven approaches that employ machine/deep learning algorithms in combination with large-scale datasets. These methods aim at improving metabolite identification and disentangling reciprocal interactions between microbes and metabolites. We also discuss the perspective of combining these approaches and further developments required to advance the investigation of primary metabolism in mixed microbial samples.  相似文献   

18.
All over the world, Microbial systems are used to clean soils, waters and air streams that have been contaminated with volatile organic compounds (VOC). Information about the structure and function of the microbes that metabolize these contaminants can be gained by studying these microbial systems. Here we describe the spatial patterns of respiratory activity in Pseudomonas putida 54G aerobic biofilms degrading two VOC, toluene and ethanol. Oxygen concentration profiles within the biofilm were measured using microsensors. These profiles are thought to be most accurate reflection of the structure and function of aerobic microbial biofilms. The degrading process certainly imposed a structural and functional patterns on the microbial biofilm community growing at the expense of the VOC substrate. Cryosectioning coupled with the staining of biofilm samples confirmed a high respiratory activity near the substratum, that decreased towards the biofilm/fluid interface. The accumulation of inactive cells in the outer biofilm layer protects the inner biofilm from high concentrations of toxic compounds and also limits the degradation rate. This stratification phenomenon appeared to be a general pattern for P. putida 54G biofilms degrading VOC. Received: 25 June 1998 / Accepted: 7 November 1998  相似文献   

19.
Microbiological studies of spent nuclear fuel pools at the Cofrentes Nuclear Power Plant (Valencia, Spain) were initiated to determine the microbial populations in the pools' water. Biofilm formation at the nuclear power plant facilities and the potential use of those microbial populations in the bioremediation of radioactive water were also studied. Biofilm formation was analyzed by immersing different austenitic stainless steel coupons (UNS S30400, UNS S30466, UNS S31600), as well as balls of stainless steel (UNS S44200) and titanium (99.9%) in a spent nuclear fuel pool (under static and dynamic conditions) for 34 months. Epifluorescence microscopy and scanning electron microscopy revealed that biofilm formed on the samples, in spite of the radioactive and oligotrophic conditions of the water. Based on standard culture methods and sequencing of 16S rDNA fragments, 57 bacteria belonging to alpha-, beta-, and gamma-Proteobacteria, Firmicutes and Actinobacteridae were identified in the biofilms. The radioactivity of the biofilm was measured using gamma-ray spectrometry, which revealed that biofilms were able to retain radionuclides, especially (60)Co. Using metallic materials to decontaminate radioactive water could become a new approach for bioremediation.  相似文献   

20.
Molecular analysis of shower curtain biofilm microbes   总被引:3,自引:0,他引:3  
Households provide environments that encourage the formation of microbial communities, often as biofilms. Such biofilms constitute potential reservoirs for pathogens, particularly for immune-compromised individuals. One household environment that potentially accumulates microbial biofilms is that provided by vinyl shower curtains. Over time, vinyl shower curtains accumulate films, commonly referred to as "soap scum," which microscopy reveals are constituted of lush microbial biofilms. To determine the kinds of microbes that constitute shower curtain biofilms and thereby to identify potential opportunistic pathogens, we conducted an analysis of rRNA genes obtained by PCR from four vinyl shower curtains from different households. Each of the shower curtain communities was highly complex. No sequence was identical to one in the databases, and no identical sequences were encountered in the different communities. However, the sequences generally represented similar phylogenetic kinds of organisms. Particularly abundant sequences represented members of the alpha-group of proteobacteria, mainly Sphingomonas spp. and Methylobacterium spp. Both of these genera are known to include opportunistic pathogens, and several of the sequences obtained from the environmental DNA samples were closely related to known pathogens. Such organisms have also been linked to biofilm formation associated with water reservoirs and conduits. In addition, the study detected many other kinds of organisms at lower abundances. These results show that shower curtains are a potential source of opportunistic pathogens associated with biofilms. Frequent cleaning or disposal of shower curtains is indicated, particularly in households with immune-compromised individuals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号