首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Zhang X  Tan D  Li J  Tan H  Fu Q 《Biofouling》2011,27(8):919-930
To improve the hemocompatibility of polyurethanes, an amine monomer containing a long fluorine tail and phosphatidylcholine polar headgroups, 2-amino-3-oxo-3-(2-(2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-pentadecafluorooctan amido) ethyl amino) propyl phosphorylcholine (FASPC) was firstly synthesized and characterized. Then four kinds of fluorinated phosphatidylcholine end-capped polyurethanes with different chemical structures were prepared. The surface properties of these prepared polyurethanes were characterized using X-ray photoelectron spectroscopic analysis (XPS) and water contact angle measurements. The results indicated that the phosphatidylcholine (PC) polar headgroups along with the fluorine tail could be easily enriched on the top surfaces, and the PC groups could be highly oriented on the outmost surface when the polymer film was in contact with water for only 30?s at room temperature. The evaluation of hemocompatibity was carried out via fibrinogen adsorption and platelet adhesion. Fibrinogen adsorption (37°C for 90 min) decreased by 98% to 87% compared to that on ordinary polyurethane surfaces, and almost no platelet adhesion and activation was observed at 37°C for 2?h.  相似文献   

2.
Tan H  Liu J  Li J  Jiang X  Xie X  Zhong Y  Fu Q 《Biomacromolecules》2006,7(9):2591-2599
In this article, we designed and synthesized biomembrane mimicing segmented poly(carbonate urethane)s containing fluorinated alkyl phosphatidylcholine (PC) side groups. To obtain these novel poly(carbonate urethane)s, a new diol with a long side chain fluorinated alkyl phosphatidylcholine polar headgroup (2-[2-2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9-hexadecafluoro-10-ethoxy-decyloxy-N-(2-hydroxy-1-hydroxymethyl-1-methyl-ethyl)-acetamide] phosphatidylcholine, HFDAPC) was first synthesized and characterized. Then a series of poly(carbonate urethane)s containing fluorinated alkyl phosphatidylcholine side groups were synthesized using methylenebis(phenylene isocyanate) (MDI), poly(1,6-hexyl-1,5-pentyl carbonate) diol (PHPCD), 1,4-butandiol (BDO), and HFDAPC. The obtained fluorinated phosphatidylcholine poly(carbonate urethane)s (FPCPCU) possessed high molecular weight, narrower molecular weight distribution, and good mechanical properties as characterized by GPC and Instron, showing an increased hydrophilicity and a possible arrangement of surface structure as characterized by water contact angle. XPS results indicated that the phosphatidylcholine polar headgroups have been indeed pulled out to the surface with the help of the migration of the fluorinated side chain that was directly connected with the phosphatidylcholine polar headgroup. A preliminary result by protein adsorption and platelet adhesion experiments suggested that only 5 approximately 12.5 mol % phosphatidylcholine could be enough for good hemocompatibility. The current work demonstrates a new synthetic approach that can be used to bring the bioactive PC groups to the surface of the PC-containing polyurethanes more effectively.  相似文献   

3.
General adhesion behavior of phospholipid vesicles was examined in a wide range of potentials at the mercury electrode by recording time-resolved adhesion signals. It was demonstrated that adhesion-based detection is sensitive to polar headgroups in phospholipid vesicles. We identified a narrow potential window around the point of zero charge of the electrode where the interaction of polar headgroups of phosphatidylcholine vesicles with the substrate is manifested in the form of bidirectional signals. The bidirectional signal is composed of the charge flow due to the nonspecific interaction of vesicle adhesion and spreading and of the charge flow due to a specific interaction of the negatively charged electrode and the most exposed positively charged choline headgroups. These signals are expected to appear only when the electrode surface charge density is less than the surface charge density of the choline groups at the contact interface. In comparison, for the negatively charged phosphatidylserine vesicles, we identified the potential window at the mercury electrode where charge compensation takes place, and bidirectional signals were not detected.  相似文献   

4.
Fluorine-free mixed amphiphilic block copolymers with mixtures of short side groups of polydimethyl siloxane (PDMS) and polyethylene glycol (PEG) were synthesized and studied for their ability to influence the surface properties and control the adhesion of marine organisms to coated surfaces. The settlement (attachment) and strength of adhesion of two different marine algae, the green seaweed Ulva and the diatom Navicula, were evaluated against the surfaces. It is known that hydrophobic coatings based on polydimethyl siloxane elastomers (PDMSe) are prone to protein adsorption and accumulation of strongly adherent diatom slimes, in contrast to PEG-based hydrophilic surfaces that inhibit protein adsorption and moderate only weak adhesion of diatoms. By incorporating both PDMS and PEG side chains into the polymers, the effect of incorporating both polar and non-polar groups on fouling-release could be studied. The dry surfaces were characterized by X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine structure spectroscopy (NEXAFS). The ability of these mixed amphiphilic polymers to reconstruct in water was examined using underwater bubble contact angle and dynamic water contact angle experiments. To understand more about surface reconstruction behavior, protein adsorption experiments were carried out with fluorescein isothiocyanate-labeled bovine serum albumin (BSA-FITC) on both dry and pre-soaked surfaces.  相似文献   

5.
Fluorine-free mixed amphiphilic block copolymers with mixtures of short side groups of polydimethyl siloxane (PDMS) and polyethylene glycol (PEG) were synthesized and studied for their ability to influence the surface properties and control the adhesion of marine organisms to coated surfaces. The settlement (attachment) and strength of adhesion of two different marine algae, the green seaweed Ulva and the diatom Navicula, were evaluated against the surfaces. It is known that hydrophobic coatings based on polydimethyl siloxane elastomers (PDMSe) are prone to protein adsorption and accumulation of strongly adherent diatom slimes, in contrast to PEG-based hydrophilic surfaces that inhibit protein adsorption and moderate only weak adhesion of diatoms. By incorporating both PDMS and PEG side chains into the polymers, the effect of incorporating both polar and non-polar groups on fouling-release could be studied. The dry surfaces were characterized by X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine structure spectroscopy (NEXAFS). The ability of these mixed amphiphilic polymers to reconstruct in water was examined using underwater bubble contact angle and dynamic water contact angle experiments. To understand more about surface reconstruction behavior, protein adsorption experiments were carried out with fluorescein isothiocyanate-labeled bovine serum albumin (BSA-FITC) on both dry and pre-soaked surfaces.  相似文献   

6.
K. Song  T. Min  J.-Y. Jung  D. Shin 《Biofouling》2016,32(5):535-545
This work reports on a nitinol (NiTi) surface modification scheme based on a chemical oxidation method, and characterizes its effects on wetting, biofouling and corrosion. The scheme developed is also compared with selected previous oxidation methods. The proposed method turns NiTi into superhydrophilic in ~5 min, and the static contact angle and contact angle hysteresis were measured to be ~7° and ~12°, respectively. In the PRP (platelet rich plasma) test, platelet adhesion was reduced by ~89% and ~77% respectively, compared with the original NiTi and the NiTi treated with the previous chemical oxidation scheme. The method developed provides a high (~1.1 V) breakdown voltage, which surpasses the ASTM standard for intervascular medical devices. It also provides higher superhydrophilicity, hemo-compatibility and anti-corrosion resistance than previous oxidation schemes, with a significantly reduced process time (~5 min), and will help the development of high performance NiTi devices.  相似文献   

7.
The wettability of poly(methyl methacrylate) and polyethylene by water and aqueous mucin solutions have been studied by sessile drop and under-water captive air bubble contact angles, respectively. From the sessile drop and octane under-water contact angles the polymer-water interfaces have been characterized in terms of works of adhesion and acid-base (polar) interactions. A large water-air contact angle hysteresis observed with poly(methyl methacrylate) surfaces has been attributed to side-chain beta relaxations of polymer ester methyl groups. The wettabilities of the polymers by mucin aqueous solutions have been studied as a function of protein concentration and related to the surface tensions. A positive slope of adhesion tension vs surface tension line, characteristic of polar surfaces, was found with poly(methyl methacrylate). By contrast, a change in the slope, explained as a change in mucin relative adsorption densities at solid/liquid and solid/vapour interfaces, was observed with polyethylene. This adhesion tension behavior appeared to be in agreement with previous data we have published concerning the quantity and state of mucin which are adsorbed to polymers characterized by different surface properties.  相似文献   

8.
The polar headgroup structure of phosphatidylcholine (PC), phosphatidylethanolamine (PE) and phosphatidylserine (PS) in inverted micelles in chloroform or benzene was investigated by the selective 31P(H) nuclear Overhauser effect (NOE). In the frequency dependence of the 31P(1H) NOE, PC micelles in CDCl3 showed two maxima. The larger maximum was located at the resonance of the glycerol-CH2OP protons and the smaller at the resonance of the N-methyl protons. In PC/PE mixed micelles in C6D6, both PC and PE showed three maxima which were located at the resonance of the CH2OP protons, the N-methyl protons and the amino protons in the frequency dependence of the 31P-NOE. The N-methyl protons of PC and the amino protons of PE were closely spaced to the phosphate groups of neighboring lipid molecules. The polar headgroups of PC and PE in the mixed micelles were concluded to lie in the plane perpendicular to the molecular axes. The frequency dependence of the 31P(H) NOE for PS micelles in C6D6 showed the maxima at the resonances of the amino protons and the CH2OP protons. The polar headgroups of PS molecules were not extended parallel to the molecular axes in the inverted micelles.  相似文献   

9.
Superhydrophobic surfaces are often found in nature,such as plant leaves and insect wings.Inspired by superhydrophobic phenomenon of the rose petals and the lotus leaves,biomimetic hydrophobic surfaces with high or low adhesion were prepared with a facile drop-coating approach in this paper.Poly(vinyl alcohol) (PVA) was used as adhesive and SiO2 nanoparticles were used to fabricate surface micro-structure.Stearic acid or dodecafluoroheptyl-propyl-trimethoxysilane (DFTMS) were used as low surface energy materials to modify the prepared PVA/SiO2 coating surfaces.The effects of size of SiO2 nanoparticles,concentration of SiO2 nanoparticle suspensions and the modifications on the wettability of the surface were investigated.The morphology of the PVA/SiO2 coating surfaces was observed by using scanning electron microscope.Water contact angle of the obtained superhydrophilic surface could reach to 3°.Stearic acid modified PVA/SiO2 coating surfaces showed hydrophobicity with high adhesion.By mixing the SiO2 nanoparticles with sizes of 40 nm and 200 nm and modifying with DFTMS,water contact angle of the obtained coating surface could be up to 155° and slide angle was only 5°.This work provides a facile and useful method to control surface wettability through changing the roughness and chemical composition of a surface.  相似文献   

10.
Robert Hitzemann 《Life sciences》1982,30(15):1297-1303
Phospholipid methylation was studied in cortical synaptosomes prepared from 7 and 14 day and adult rat brain. Using varying concentrations of [3H] S-adenosylmethionine, Km and Vmax values were determined for the formation of [3H] phosphatidylmonomethylethanolamine (PME), [3H] phosphatidyl-dimethylethanolamine and [3H] phosphatidylcholine (PC). At 25°C, the Km values for the formation of all three products, significantly decreased with development. Increasing the temperature to 37°C increased the Km values in the 14 day and adult but not the 7 day preparation. The Vmax values at 25°C were highest at 7 and 14 days, depending on the product and then decreased in the adult. At 37°C, the Vmax values were highest in the 14 day preparation. The overall results are discussed in terms of the developmentally regulated decrease in both synaptic membrane PC and membrane fluidity.  相似文献   

11.
Homogeneous solutions of poly(3-hydroxyoctanoate) (PHO) and the monoacrylate-poly(ethylene glycol) (PEGMA) monomer in chloroform were irradiated with UV light to obtain PEGMA-grafted PHO (PEGMA-g-PHO) copolymers. Variables affecting the degree of grafting (DG), such as the time of UV irradiation and the concentrations of the PEGMA monomer and initiator, were investigated. The PEGMA-g-PHO copolymers were characterized by measuring the water contact angle, molecular weight, thermal transition temperatures and mechanical properties, as well as by nuclear magnetic resonance spectroscopy. The results from all of these measurements indicate that PEGMA groups were present on the PHO polymer. The protein adsorption and platelet adhesion on the PEGMA-g-PHO surfaces were examined using poly(L-lactide) (PLLA) surfaces as the control. The proteins and platelets had a significantly lower tendency to adhere to the PEGMA-g-PHO copolymers than to PLLA. The graft copolymer with a high DG of PEGMA was very effective in reducing the protein adsorption and platelet adhesion and did not activate the platelets. The results obtained in this study suggest that PEGMA-g-PHO copolymers have the potential to be used as blood-contacting devices in a broad range of biomedical applications.  相似文献   

12.
Nisin is an antimicrobial polypeptide inhibitory toward Gram-positive bacterial pathogens, including Listeria monocytogenes. Encapsulating nisin in lipid nanocapsules (i.e., liposomes) has been shown to protect antimicrobial functionality in complex food matrices. The capacity of liposomes to encapsulate a fluorescent reporter was determined via spectroscopy. Survival and growth of L. monocytogenes incubated in fluid milk containing 50 IU/ml free or liposome-entrapped nisin was assayed via periodic enumeration of survivors. Liposomes were formulated from phosphatidylcholine (PC) and phosphatidyl-DL-glycerol (PG) and prepared as PC, PC/PG 7/3 or PC/PG 6/4 (mol. fraction). Antilisterial activity of nisin-loaded liposomes was determined in ultra-high temperature processed fluid milk containing approximately 4.0 log10 CFU/ml L. monocytogenes Scott A plus liposomal or free nisin at 50 IU/mL. Samples were aerobically held at 5 or 20°C; L. monocytogenes were enumerated via plating after 0, 1, 3, 6, 12, 24, 48, and 72 incubation hours. Liposome entrapment did not enhance pathogen inhibition when compared to free nisin as a function of storage temperature or incubation duration.  相似文献   

13.
Hydroxy and hydroperoxy fatty acids were labeled with 9-bromomethylacridine at room temperature. They were separated from the degradation products and less polar fatty acid derivatives on an octyl silicagel column, and put on an octadecyl silicagel column by on-line column switching. By this method, picomolar levels of the derivatives were measured with good reproducibility. The detection limit of 16-hydroxy-hexadecanoic acid as a representative was 0.9 pmol (S/N =3) and the relative standard deviation of its peak areas was 2.5% (18.5 pmol, n = 7). The method was used for the measurement of hydroxy fatty acids derived from hydroperoxy fatty acids and phosphatidylcholine (PC) hydroperoxides spiked in human plasma. By incubation at 37°C for 4h with human plasma, the hydroperoxy fatty acid was reduced to the corresponding hydroxy fatty acid. In this condition, the PC hydroperoxides showed a considerable decrease, however, a small portion (2.5–3%) of PC hydroperoxides decomposed gave the corresponding hydroxy fatty acids.  相似文献   

14.
The major lipids of Tetrahymena membranes have been purified by thin-layer and high pressure liquid chromatography and the phosphatidylethanolamine and aminoethylphosphonate lipids were examined in detail. 31P-NMR, X-ray diffraction and freeze-fracture electron microscopy were employed to describe the phase behavior of these lipids. The phosphatidylethanolamine was found to form a hexagonal phase above 10°C. The aminoethylphosphonate formed a lamellar phase up to 20°C, but converted to a hexagonal phase structure at 40°C. Small amounts of phosphatidylcholine stabilized the lamellar phase for the aminoethylphosphonate. 31P-NMR spectra of the intact ciliary membranes were consistent with a phospholipid bilayer at 30°C, suggesting that phosphatidylcholine in the membrane stabilized the lamellar form, even though most of the lipid of that membrane prefers a hexagonal phase in pure form at 30°C. 31P-NMR spectra also showed a distinctive difference in the chemical shift tensor of the aminoethylphosphonolipid, when compared to that of phosphatidylethanolamine, due to the difference in chemical structure of the polar headgroups of the two lipids.  相似文献   

15.
To improve the antifouling (AF) properties of photobioreactors (PBR) for microalgal cultivation, using trihydroxymethyl aminomethane (tris) as the linking agent, a series of polyethylene (PE) films grafted with sulfobetaine (PE-SBMA) with grafting density ranging from 23.11 to 112 μg cm?2 were prepared through surface-initiated atom transfer radical polymerization (SI-ATRP). It was found that the contact angle of PE-SBMA films decreased with the increase in the grafting density. When the grafting density was 101.33 μg cm?2, it reached 67.27°. Compared with the PE film, the adsorption of protein on the PE-SBMA film decreased by 79.84% and the total weight of solid and absorbed microalgae decreased by 54.58 and 81.69%, respectively. Moreover, the transmittance of PE-SBMA film recovered to 86.03% of the initial value after cleaning, while that of the PE film recovered to only 47.27%. The results demonstrate that the AF properties of PE films were greatly improved on polySBMA-grafted surfaces.  相似文献   

16.
DHA/EPA-rich phosphatidylcholine (PC) was successfully synthesized by immobilized phospholipase A1 (PLA1)-catalyzed transesterification of PC and DHA/EPA-rich ethyl esters in a solvent-free system. Effects of reaction temperature, water addition and substrate mass ratio on the incorporation of DHA/EPA were evaluated using response surface methods (RSM). Water addition had most significant effect on the incorporation. Reaction temperature and substrate mass ratio, however, had no significant effect on the incorporation. The maximal incorporation was 19.09 % (24 h) under the following conditions: temperature 55.7 °C, water addition 1.1 wt % and substrate mass ratio (ethyl esters/PC) 6.8:1. Furthermore, effects of water addition (from 0 to 1.25 wt %) on DHA/EPA incorporation and the composition of products were further investigated. The immobilized PLA1 was more active when water addition was above 0.5 wt %. By monitoring the reaction processes with different water addition, a possible reaction scheme was proposed for transesterification of PC with DHA/EPA-rich ethyl esters. In summary, PC and sn2-lysophosphatidylocholine (LPC) were predominant in the mixtures at early stages of reaction, whereas sn1-LPC and glycerophosphocholine (GPC) predominant at later stages. The vacuum employed after 24 h significantly increased the incorporation of DHA/EPA and the composition of PC, and the highest incorporation (30.31 %) of DHA/EPA was obtained at 72 h and the yield of PC was 47.2 %.  相似文献   

17.
Microfluidic devices allow for the controlled perfusion of human or mouse blood over defined prothrombotic surfaces at venous and arterial shear rates. To mimic in vivo injuries such a plaque rupture, the need exists to link lipidated tissue factor (TF) to surface-bound collagen fibers. Recombinant TF was relipidated in liposomes of phosphatidylserine/phosphatidylcholine/biotin-linked phosphatidylethanolamine (20:79:1 PS/PC/bPE molar ratio). Collagen was patterned in a 250-μm-wide stripe and labeled with biotinylated anticollagen antibody which was then bound with streptavidin, allowing the subsequent capture of the TF liposomes. To verify and detect the TF liposome-collagen assembly, individual molecular complexes of TF-factor VIIa on collagen were visualized using the proximity ligation assay (PLA) to produce discretely localized fluorescent events that were strictly dependent on the presence of factor VIIa and primary antibodies against TF or factor VIIa. Perfusion for 450 s (wall shear rate, 200 s(-1)) of corn trypsin inhibitor (CTI, a factor XIIa inhibitor) treated whole blood over the stripe of TF-collagen enhanced platelet adhesion by 30 ± 8% (p < 0.001) and produced measurable fibrin (>50-fold increase) as compared to surfaces lacking TF. PS/PC/bPE liposomes lacking TF resulted in no enhancement of platelet deposition. Essentially no fibrin was formed during perfusion over collagen surfaces or collagen surfaces with liposomes lacking TF despite the robust platelet deposition, indicating a lack of kinetically significant platelet-borne tissue factor in healthy donor blood. This study demonstrates a reliable approach to link functionally active TF to collagen for microfluidic thrombosis studies.  相似文献   

18.
Poly(methyl methacrylate)–grafted Hyparrhenia hirta (PMMA-g-Hh) biopolymer was prepared through radical polymerization using potassium persulfate (KPS) and applied in adsorption of methyl red from colored solutions. Solvent amount, initiator concentration, monomer concentration, temperature, and reaction time were the reaction parameters investigated for grafting. The biopolymer was characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and x-ray diffraction spectroscopy (XRD). The adsorption process was investigated with respect to pH, contact time, initial concentration, adsorbent dosage, and temperature. The optimum adsorption parameters were pH 6, contact time 90 min, adsorbent dosage 0.6 g, and initial concentration 50 mg/L. The Langmuir adsorption model best fitted the adsorption process, with maximum adsorption capacities of 19.95, 6.89, and 4.02 mg/g at adsorbent dosages of 0.2, 0.6, and 1.0 g, respectively. The pseudo-second-order model described the kinetics data better. The adsorption process was physical, spontaneous, and endothermic. The adsorbent was still active after 10 adsorption-desorption cycles, showing its suitability for use in colored solutions treatment.  相似文献   

19.
Abstract

The adhesion of Klebsormidium flaccidum, Stichococcus bacillaris and Chlorella cf. mirabilis, three strains of green microalgae isolated from biofilms on façade coatings were investigated in a parallel plate flow chamber. The model surfaces tested were glass slides, and ?CH3 (mediated by octadecyltrichlorosilane [OTS] and hexamethyldisilazane [HMDZ] modification) and -NH2 (aminopropyltriethoxysilane [APS] modification) terminated self-assembled monolayers. Algal physicochemical properties were evaluated by the microbial adhesion to solvents (MATS) assay and by contact angle measurements. The model surfaces were characterised by X-ray photoelectron spectroscopy analysis and by contact angle measurements. Predicted adhesion trends were then compared to in vitro measurements. The adhesion strength of the three algal strains followed the trend: APS > OTS > HMDZ > glass. The adhesion process thus seemed to be mediated by hydrophobic and electrostatic interactions, and was shown to be influenced by the algal culture age and the initial contact time.  相似文献   

20.
Infection associated with implanted biomaterials is common and costly and such infections are extremely resistant to antibiotics and host defenses. Consequently, there is a need to develop surfaces which resist bacterial adhesion and colonization. The broad spectrum synthetic cationic peptide melimine has been covalently linked to a surface via two azide linkers, 4-azidobenzoic acid (ABA) or 4-fluoro-3-nitrophenyl azide (FNA), and the resulting surfaces characterized by X-ray photoelectron spectroscopy and contact angle measurements. The quantity of bound peptide was estimated by a modified Bradford assay. The antimicrobial efficacy of the two melimine-modified surfaces against Pseudomonas aeruginosa and Staphylococcus aureus was compared by scanning electron microscopy (SEM) and fluorescence microscopy. Attachment of melimine via ABA gave an approximately 4-fold greater quantity of melimine bound to the surface than attachment via FNA. Surfaces melimine-modified by either attachment strategy showed significantly reduced bacterial adhesion for both strains of bacteria. P. aeruginosa exposed to ABA–melimine and FNA–melimine surfaces showed marked changes in cell morphology when observed by SEM and a reduction of approximately 15-fold (p < 0.001) in the numbers of adherent bacteria compared to controls. For the ABA–melimine surface there was a 33% increase in cells showing damaged membranes (p = 0.0016) while for FNA–melimine there was no significant difference. For S. aureus there were reductions in bacterial adhesion of approximately 40-fold (p < 0.0001) and 5-fold (p = 0.008) for surfaces modified with melimine via ABA or FNA, respectively. There was an increase in cells showing damaged membranes on ABA–melimine surfaces of approximately 87% (p = 0.001) compared to controls, while for FNA–melimine there was no significant difference observed. The data presented in this study show that melimine has excellent potential for development as a broad spectrum antimicrobial coating for biomaterial surfaces. Further, it was observed that the efficacy of antimicrobial activity is related to the method of attachment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号