首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A mathematical modeling of tight junction (TJ) dynamics was elaborated in a previous study (Kassab, F., Marques, R.P., Lacaz-Vieira, F. 2002. Modeling tight junction dynamics and oscillations. J. Gen. Physiol. 120:237–247) to better understand the dynamics of TJ opening and closing, as well as oscillations of TJ permeability that are observed in response to changes of extracellular Ca2+ levels. In this model, TJs were assumed to be specifically controlled by the Ca2+ concentration levels at the extracellular Ca2+ binding sites of zonula adhaerens. Despite the fact that the model predicts all aspects of TJ dynamics, we cannot rule out the likelihood that changes of intracellular Ca2+ concentration (Ca2+ cell), which might result from changes \ of extracellular Ca2+ concentration (Ca2+ extl), contribute to the observed results. In order to address this aspect of TJ regulation, fast Ca2+-switch experiments were performed in which changes of Ca2+ cell were induced using the Ca2+ ionophore A23187 or thapsigargin, a specific inhibitor of the sarco-endoplasmic reticulum Ca2+-ATPase. The results indicate that the ionophore or thapsigargin per se do not affect basal tissue electrical conductance (G), showing that the sealing of TJs is not affected by a rise in Ca2+ cell. When TJs were kept in a dynamic state, as partially open structures or in oscillation, conditions in which the junctions are very sensitive to disturbances that affect their regulation, a rise of Ca2+ cell never led to a decline of G, indicating that a rise of Ca2+ cell does not trigger per se TJ closure. On the contrary, always the first response to a rise of Ca2+ cell is an increase of G that, in most cases, is a transient response. Despite these observations we cannot assure that a rise of Ca2+ cell is without effect on the TJs, since an increase of Ca2+ cell not only causes a transient increase of G but, in addition, during oscillations a rise of Ca2+ cell induced by the Ca2+ ionophore transiently halted the oscillatory pattern of TJs. The main conclusion of this study is that TJ closure that is observed when basolateral Ca2+ concentration (Ca2+ bl) is increased after TJs were opened by Ca2+ bl removal cannot be ascribed to a rise of Ca2+ cell and might be a consequence of Ca2+ binding to extracellular Ca2+ sites.  相似文献   

2.
Summary Intracellular calcium [Ca2+] i measurements in cell suspension of gastrointestinal myocytes have suggested a single [Ca2+] i transient followed by a steady-state increase as the characteristic [Ca2+] i response of these cells. In the present study, we used digital video imaging techniques in freshly dispersed myocytes from the rabbit colon, to characterize the spatiotemporal pattern of the [Ca2+] i signal in single cells. The distribution of [Ca2+] i in resting and stimulated cells was nonhomogeneous, with gradients of high [Ca2+] i present in the subplasmalemmal space and in one cell pole. [Ca2+] i gradients within these regions were not constant but showed temporal changes in the form of [Ca2+] i oscillations and spatial changes in the form of [Ca2+] i waves. [Ca2+] i oscillations in unstimulated cells (n = 60) were independent of extracellular [Ca2+] and had a mean frequency of 12.6 +1.1 oscillations per min. The baseline [Ca2+], was 171 ± 13 nm and the mean oscillation amplitude was 194 ± 12 nm. Generation of [Ca2+] i waves was also independent of influx of extracellular Ca2+. [Ca2+] i waves originated in one cell pole and were visualized as propagation mostly along the subplasmalemmal space or occasionally throughout the cytoplasm. The mean velocity was 23 +3 m per sec (n = 6). Increases of [Ca2+] i induced by different agonists were encoded into changes of baseline [Ca2+] i and the amplitude of oscillations, but not into their frequency. The observed spatiotemporal pattern of [Ca2+] i regulation may be the underlying mechanism for slow wave generation and propagation in this tissue. These findings are consistent with a [Ca2+] i regulation whereby cell regulators modulate the spatiotemporal pattern of intracellularly generated [Ca2+] i oscillations.The authors thank Debbie Anderson for excellent technical assistance with the electron microscopy and Dr. M. Regoli for providing the NK-1 agonist [Sar9,Met(O2)11]-SP. This work was supported by National Institutes of Health Grants DK 40919 and DK 40675 and Veterans Administration Grant SMI.  相似文献   

3.
In order to contribute to the structural basis for rational design of calmodulin (CaM) inhibitors, we analyzed the interaction of CaM with 14 classic antagonists and two compounds that do not affect CaM, using docking and molecular dynamics (MD) simulations, and the data were compared to available experimental data. The Ca2+-CaM-Ligands complexes were simulated 20 ns, with CaM starting in the “open” and “closed” conformations. The analysis of the MD simulations provided insight into the conformational changes undergone by CaM during its interaction with these ligands. These simulations were used to predict the binding free energies (ΔG) from contributions ΔH and ΔS, giving useful information about CaM ligand binding thermodynamics. The ΔG predicted for the CaM’s inhibitors correlated well with available experimental data as the r2 obtained was 0.76 and 0.82 for the group of xanthones. Additionally, valuable information is presented here: I) CaM has two preferred ligand binding sites in the open conformation known as site 1 and 4, II) CaM can bind ligands of diverse structural nature, III) the flexibility of CaM is reduced by the union of its ligands, leading to a reduction in the Ca2+-CaM entropy, IV) enthalpy dominates the molecular recognition process in the system Ca2+-CaM-Ligand, and V) the ligands making more extensive contact with the protein have higher affinity for Ca2+-CaM. Despite their limitations, docking and MD simulations in combination with experimental data continue to be excellent tools for research in pharmacology, toward a rational design of new drugs.  相似文献   

4.
The human platelet integrin GPIIb/IIIa (228 kDa), a Ca-dependent heterodimer formed by the IIb subunit (GPIIb, 136 kDa) and the 3 subunit (GPIIIa, 92 kDa), serves as the fibrinogen receptor at the surface of activated platelets. The degree of dissociation of the GPIIb/IIIa heterodimer (s°20 *, 8.9 S) into its constituent glycoproteins (GPIIb, 5.8 S; and GPIIIa, 3.9 S) has been assessed by analytical ultracentrifugation in Triton X100 buffers, and its Ca2+- and temperature-dependence correlated with Ca2+-binding to GPIIb/IIIa and its temperature dependence. At 21°C half-maximal dissociation of GPIIb/IIIa occurs at 5.5 ± 2.5 × 10–8 M Ca2+, very close to the dissociation constant of the high affinity Ca-binding site of GPIIb/IIIa (Kd1 8 ± 3 × 10–8 M) (Rivas and González-Rodríguez, 1991) and much lower than the Kd of the 3.4 medium affinity Ca-binding sites (Kd2 4 ± 1.5 × 10–5 M), which seems to demonstrate that the stability of the heterodimer in solution at room temperature is regulated by the degree of saturation of the high-affinity Ca-binding site. At 4°C, the stability of the heterodimer is apparently Ca2+-independent, while at room and physiological temperatures (15–37°C) the degree of dissociation of the heterodimer is regulated by the degree of dissociation of the high- and medium-affinity Ca-binding sites, respectively. On increasing the Ca2+ concentration up to 1 × 10–4 M after dissociation in Triton X100 solutions, the reconstitution of the GPIIb/IIIa heterodimer depends on the time and temperature at which the dissociated heterodimer was maintained, being almost complete within the first 5–10 min at 37°C and within the first 1–2 h at 21°C. After this time, a time- and temperature-dependent irreversible autoassociation of GPIIb (covalent) and GPIIIa (non-covalent) occurs, which hinders both the isolation of permanently stable monoamers of GPIIb and GPIIIa and the reconstitution of the GPIIb/IIIa heterodimer in Triton X100 solutions. Abbreviations: GPIIb, GPIIIa, and GPIIb/IIIa, glycoprotein IIb, IIIa, and the heterodimer formed by them, respectively; s°20 *, the sedimentation coefficient of the glycoprotein-detergent complexes determined at 20°C, after extrapolation to zero-glycoprotein concentration Offprint requests to: J. González-Rodríguez  相似文献   

5.
Two membrane fractions, one enriched in sarcoplasmic reticulum and the other enriched in sarcolemma, were isolated from the myocardium of young (3–4-months-old) and aged (24–25-months old) rats. ATP-supported Ca2+ binding and accumulating activities as well as (Mg2+ + Ca2+)-ATPase activities of these membrane fractions were studied in an effort to determine the influence of age on the Ca2+ pump function of the two myocardial membrane systems. Sarcoplasmic reticulum from aged hearts showed significantly reduced (approx. 50%) rates of ATP-supported (oxalate-facilitated) Ca2+ accumulation compared to sarcoplasmic reticulum from young hearts; the amount of Ca2+ accumulated by this membrane of aged heart at steady state was also lower. On the other hand, sarcolemma from aged hearts displayed 2-fold higher rates of ATP-supported Ca2+ accumulation compared to sarcolemma from young hearts; at steady state, sarcolemma from aged hearts accumulated significantly higher amounts of Ca2+ than did sarcolemma from young hearts. Similar age-related differences were also observed in the ATP-dependent Ca2+ binding activities of the two membranes, determined in the absence of oxalate. The divergent age-associated changes in Ca2+ binding and accumulating activities of sarcoplasmic reticulum and sarcolemma were seen at varying Ca2+ concentrations (0.24–39.1 μM).With either membrane, kinetic analysis showed 2-fold age-related differences in the V values for ATP-supported Ca2+ accumulation (V (nmol Ca2+/mg protein per min): sarcoplasmic reticulum — young, 119 ± 8; aged, 59 ± 5; sarcolemma — young, 11 ± 2; aged, 21 ± 3); the concentrations of Ca2+ required for half-maximal velocities did not differ significantly with age (K0.5 for Ca2+ (μM): sarcoplasmic reticulum — young, 2.5 ± 0.20; aged, 2.9 ± 0.25; sarcolemma — yount, 2.7 ± 0.25; aged, 3.2 ± 0.30). Kinetic parameters of ATP-dependent Ca2+ binding also indicated that the velocity of Ca2+ binding but not the concentration of Ca2+ required for half-maximal binding was altered due to aging. At identical Ca2+ concentrations, the combined Ca2+ accumulating activity of sarcoplasmic reticulum and sarcolemma from aged hearts was significantly lower (38–47%) than the combined Ca2+ accumulating activity of the two membranes from young hearts. No significant age-related differences were observed in the ATP-independent (passive) Ca2+ binding (or accumulation) by sarcoplasmic reticulum and sarcolemma, the (Mg2+ + Ca2+)-ATPase activities of these membranes, their polypeptide composition or relative purity. These results indicate that differential alterations occur in the ATP-supported Ca2+ pump activities of sarcoplasmic reticulum and sarcolemma in aging myocardium and such alterations may be due to age-associated changes in the efficacy of coupling ATP hydrolysis to Ca2+ transport. Further, the age-related increment in the Ca2+ pump activity of sarcolemma is inadequate to fully compensate for the diminished Ca2+ pump activity of sarcoplasmic reticulum. It is, therefore, suggested that deterioration of the Ca2+ pump function of sarcoplasmic reticulum may contribute to the increased relaxation time observed in aging heart.  相似文献   

6.
The enzymatic basis for the Ca2+ pump in human red cells is an ATPase with hysteretic properties. The Ca2+-ATPase shifts slowly between a ground state deficient in calmodulin and an active state saturated with calmodulin, and rate constants for the reversible shifts of state were recently determined at different Ca2+ concentrations (Scharff, O. and Foder, B. (1982) Biochim. Biophys. Acta 691, 133–143). In order to study whether the Ca2+ pump in intact red cells also exhibits hysteretic properties we have analysed transient increases of intracellular calcium concentrations (Cai), induced by the divalent cation ionophore A23187. The time-dependent changes of Cai were measured by use of radioactive calcium (45Ca2+) and analysed with the aid of a mathematical model, based partly on the Ca2+-dependent parameters obtained from Ca2+-ATPase experiments, partly on the A23187-induced Ca2+ fluxes determined in experiments with intact red cells. According to the model a delay in the activation of the Ca2+ pump is a prerequisite for the occurrence of A23187-induced calcium transients in the red cells, and we conclude that the Ca2+ pump in human red cells responds hysteretically. It is suggested that Ca2+ pumps in other types of cell also have hysteretic properties.  相似文献   

7.
Ligand binding to transport sites constitutes the initial step in the catalytic cycle of transport ATPases. Here, we consider the well characterized Ca2+ ATPase of sarcoplasmic reticulum (SERCA) and describe a series of Ca2+ binding isotherms obtained by equilibrium measurements in the presence of various H+ and Mg2+ concentrations. We subject the isotherms to statistical mechanics analysis, using a model based on a minimal number of mechanistic steps. The analysis allows satisfactory fits and yields information on occupancy of the specific Ca2+ sites under various conditions. It also provides a fundamental method for analysis of binding specificity to transport sites under equilibrium conditions that lead to tightly coupled catalytic activation.  相似文献   

8.
《Autophagy》2013,9(12):1472-1489
The role of intracellular Ca2+ signaling in starvation-induced autophagy remains unclear. Here, we examined Ca2+ dynamics during starvation-induced autophagy and the underlying molecular mechanisms. Tightly correlating with autophagy stimulation, we observed a remodeling of the Ca2+ signalosome. First, short periods of starvation (1 to 3 h) caused a prominent increase of the ER Ca2+-store content and enhanced agonist-induced Ca2+ release. The mechanism involved the upregulation of intralumenal ER Ca2+-binding proteins, calreticulin and Grp78/BiP, which increased the ER Ca2+-buffering capacity and reduced the ER Ca2+ leak. Second, starvation led to Ins(1,4,5)P3R sensitization. Immunoprecipitation experiments showed that during starvation Beclin 1, released from Bcl-2, first bound with increasing efficiency to Ins(1,4,5)P3Rs; after reaching a maximal binding after 3 h, binding, however, decreased again. The interaction site of Beclin 1 was determined to be present in the N-terminal Ins(1,4,5)P3-binding domain of the Ins(1,4,5)P3R. The starvation-induced Ins(1,4,5)P3R sensitization was abolished in cells treated with BECN1 siRNA, but not with ATG5 siRNA, pointing toward an essential role of Beclin 1 in this process. Moreover, recombinant Beclin 1 sensitized Ins(1,4,5)P3Rs in 45Ca2+-flux assays, indicating a direct regulation of Ins(1,4,5)P3R activity by Beclin 1. Finally, we found that Ins(1,4,5)P3R-mediated Ca2+ signaling was critical for starvation-induced autophagy stimulation, since the Ca2+ chelator BAPTA-AM as well as the Ins(1,4,5)P3R inhibitor xestospongin B abolished the increase in LC3 lipidation and GFP-LC3-puncta formation. Hence, our results indicate a tight and essential interrelation between intracellular Ca2+ signaling and autophagy stimulation as a proximal event in response to starvation.  相似文献   

9.
A model with which to elucidate the mechanism of Ca2+ release from, and Ca2+ loading in the sarcoplasmic reticulum (SR) by Ca2+ current (I Ca) in cardiac cells is proposed. The SR is assumed to be comprised of three functional subcompartments: (1) the main calcium store (MCS), which contains most of the calcium (both free and bound); (2) the releasable terminal (RT), which contains the calcium readily available for release; and (3) the longitudinal network of the SR (LSR), which sequesters and the transfers the sarcoplasmic calcium to the RT. A rapid increase of the Ca2+ concentration at the outer surface of the SR (Cae) due to the fast component ofI Ca activates and inactivates this surface, inducing the release of Ca2+ from the RT to the sarcoplasmic space. The RT in turn is further activated and inactivated by a increase in the concentration of sarcoplasmic Ca2+. The Ca2+ in the sarcoplasmic space is then sequestered by the LSR, leading to the reactivation of the RT. Further increase of Cae due to the slow component ofI Ca enhances the entry of Ca2+ into the MCS to be bound by the binding substance. The free Ca2+ released from the Ca-binding substance complex is transferred to the RT for subsequent release. The activation, inactivation and reactivation are Ca2+-mediated and time-dependent. The proposed model yields simulation of the many events qualitatively similar to those observed experimentally in skinned cardiac cells.  相似文献   

10.
The cytoplasmic Ca2+ concentration ([Ca2+]cyt) in resting cells in an equilibrium between several influx and efflux mechanisms. Here we address the question of whether capacitative Ca2+ entry to some extent is active at resting conditions and therefore is part of processes that guarantee a constant [Ca2+]cyt. We measured changes of [Ca2+]cyt in RBL-1 cells with fluorometric techniques. An increase of the extracellular [Ca2+] from 1.3 mM to 5 mM induced an incrase in [Ca2+]cyt from 105±10 nM to 145±8.5 nM. This increase could be inhibited by 10 μM Gd3+, 10 μM La3+ or 50 μM 2-aminoethoxydiphenyl borate, blockers of capacitative Ca2+ entry. Application of those blockers to a resting cell in a standard extracellular solution (1.3 mM Ca2+) resulted in a decrease of [Ca2+]cyt from 105±10 nM to 88.5±10 nM with La3+, from 103±12 to 89±12 nM with Gd3+ and from 102±12 nM to 89.5±5 nM with 2-aminoethoxydiphenyl borate. From these data, we conclude that capacitative Ca2+ entry beside its function in Ca2+ signaling contributes to the regulation of resting [Ca2+]cyt.  相似文献   

11.
Calcium ions (Ca2+) play key roles in various fundamental biological processes such as cell signaling and brain function. Molecular dynamics (MD) simulations have been used to study such interactions, however, the accuracy of the Ca2+ models provided by the standard MD force fields has not been rigorously tested. Here, we assess the performance of the Ca2+ models from the most popular classical force fields AMBER and CHARMM by computing the osmotic pressure of model compounds and the free energy of DNA–DNA interactions. In the simulations performed using the two standard models, Ca2+ ions are seen to form artificial clusters with chloride, acetate, and phosphate species; the osmotic pressure of CaAc2 and CaCl2 solutions is a small fraction of the experimental values for both force fields. Using the standard parameterization of Ca2+ ions in the simulations of Ca2+‐mediated DNA–DNA interactions leads to qualitatively wrong outcomes: both AMBER and CHARMM simulations suggest strong inter‐DNA attraction whereas, in experiment, DNA molecules repel one another. The artificial attraction of Ca2+ to DNA phosphate is strong enough to affect the direction of the electric field‐driven translocation of DNA through a solid‐state nanopore. To address these shortcomings of the standard Ca2+ model, we introduce a custom model of a hydrated Ca2+ ion and show that using our model brings the results of the above MD simulations in quantitative agreement with experiment. Our improved model of Ca2+ can be readily applied to MD simulations of various biomolecular systems, including nucleic acids, proteins and lipid bilayer membranes. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 752–763, 2016.  相似文献   

12.
Summary The objectives of the title were accomplished by a four-step experimental procedure followed by a simple graphical and mathematical analysis. Platelets are (i) overloaded with the indicator quin2 to cytoplasmic concentrations of 2.9mm and (ii) are exposed to 2mm external Ca2+ and 1.0 m ionomycin to rapidly achieve cytoplasmic Ca2+ ([Ca2+]cyt) of ca. 1.5 m. (iii) The external Ca2+ is removed by EGTA addition, and (iv) the active Ca2+ extrusion process is then monitored as a function of time. Control experiments show that the ionophore shunts dense tubular uptake and does not contribute to the Ca2+ efflux process during phases iii–iv and that the extrusion process is sensitive to metabolic inhibitors.The progress curves for the decline of quin2 fluorescence (resulting from active Ca2+ extrusion) were analyzed as a function of [Ca2+]cyt using a mathematical model involving the probability that an exported Ca2+ was removed from a quin2 complex (vs. a cytoplasmic binding element). The observed rates of decline of quin2 fluorescence at a particular [Ca2+]cyt are dependent upon (i) the absolute rate of the extrusion system (a function of itsK m, Vm and Hill coefficient (n)), (ii) the intrinsic Ca2+ buffer capacity of the cytoplasm (a function of the total site concentration ([B] T ) and itsK d) and (iii) the buffer capacity of the intracytoplasmic quin2 (a function of its concentration andK d). The contribution of (iii) was known and varied and was used to determine (ii) and (i) as a function of [Ca2+]cyt.The Ca2+ binding data were verified by45Ca2+ experimentation. The data fit a single binding site ([B] T =730±200 m) with an averageK d of 140±10n m. This can be accounted for by platelet-associated calmodulin. The rate of the Ca2+ extrusionvs. [Ca2+]cyt curve can be described by two components: A saturable one withV m=2.3±0.3 nmol min–1 mg-membrane–1,K m=80±10 andn=1.7±0.3 (probably identified with a Ca2+-ATPase pump) and a linear one (probably identified with a Na+/Ca2+ exchanger).  相似文献   

13.
The roles of Ca2+ mobilization in development of tension induced by acetylcholine (ACh, 0.1–100 µM) in swine tracheal smooth muscle strips were studied. Under control conditions, ACh induced a transient increase in free cytosolic calcium concentration ([Ca2+]i) that declined to a steady-state level. The peak increase in [Ca2+]i correlated with the magnitude of tension at each [ACh] after a single exposure to ACh, while the steady-state [Ca2+]i did not. Removal of extracellular Ca2+ had little effect on peak [Ca2+]i but greatly reduced steady-state increases in [Ca2+]i and tension. Verapamil inhibited steady-state [Ca2+]i only at [ACh]<1 µM. After depletion of internal Ca2+ stores by 10 min exposure to ACh in Ca2+-free solution and then washout of ACh for 5 min in Ca2+-free solution, simultaneous re-exposure to ACh in the presence of 2.5 mM Ca2+ increased [Ca2+]i to the control steady-state level without overshoot. The tension attained was the same as control for each [ACh] used. Continuous exposure to successively increasing [ACh] (0.1–100 µM) also reduced the overshoot of [Ca2+]i at 10 and 100 µM ACh, yet tension reached control levels at each [ACh] used. We conclude that the steady-state increase in [Ca2+]i is necessary for tension maintenance and is dependent on Ca2+ influx through voltage-gated calcium channels at 0.1 µM ACh and through a verapamil-insensitive pathway at 10 and 100 µM. The initial transient increase in calcium arises from intracellular stores and is correlated with the magnitude of tension only in muscles that have completely recovered from previous exposure to agonists.  相似文献   

14.
We studied the peculiarities of permeability with respect to the main extracellular cations, Na+ and Ca2+, of cloned low-threshold calcium channels (LTCCs) of three subtypes, Cav3.1 (α1G), Cav3.2 (α 1H), and Cav3.3 (α1I), functionally expressed in Xenopus oocytes. In a calcium-free solution containing 100 mM Na+ and 5 mM calcium-chelating EGTA buffer (to eliminate residual concentrations of Ca2+) we observed considerable integral currents possessing the kinetics of inactivation typical of LTCCs and characterized by reversion potentials of −10 ± 1, −12 ± 1, and −18 ± 2 mV, respectively, for Cav3.1, Cav3.2, and Cav3.3 channels. The presence of Ca2+ in the extracellular solution exerted an ambiguous effect on the examined currents. On the one hand, Ca2+ effectively blocked the current of monovalent cations through cloned LTCCs (K d = 2, 10, and 18 μM for currents through channels Cav3.1, Cav3.2, and Cav3.3, respectively). On the other hand, at the concentration of 1 to 100 mM, Ca2+ itself functioned as a carrier of the inward current. Despite the fact that the calcium current reached the level of saturation in the presence of 5 mM Ca2+ in the external solution, extracellular Na+ influenced the permeability of these channels even in the presence of 10 mM Ca2+. The Cav3.3 channels were more permeable with respect to Na+ (P Ca/P Na ∼ 21) than Cav3.1 and Cav3.2 (P Ca/P Na ∼ 66). As a whole, our data indicate that cloned LTCCs form multi-ion Ca2+-selective pores, as these ions possess a high affinity for certain binding sites. Monovalent cations present together with Ca2+ in the external solution modulate the calcium permeability of these channels. Among the above-mentioned subtypes, Cav3.3 channels show the minimum selectivity with respect to Ca2+ and are most permeable for monovalent cations. Neirofiziologiya/Neurophysiology, Vol. 38, No. 3, pp. 183–192, May–June, 2006.  相似文献   

15.
Vacuoles of radish (Raphanus sativus) contained a Ca2+-binding protein (RVCaB) of 43 kDa. We investigated the Ca2+-binding properties of the protein. RVCaB was expressed in Escherichia coli and was purified from an extract by ion-exchange chromatography, nitrocellulose membrane filtration, and gel-filtration column chromatography. Ca2+-binding properties of the recombinant protein were examined by equilibrium dialysis with 45Ca2+ and small dialysis buttons. The protein was estimated to bind 19Ca2+ ions per molecule with a K d for Ca2+ of 3.4 mM. Ca2+ was bound to the protein even in the presence of high concentrations of Mg2+ or K+. The results suggested that the protein bound Ca2+ with high ion selectivity, high capacity, and low affinity.  相似文献   

16.
The effect of Hg2+ and Ch3-Hg+ on the passive and active transport properties of the Ca2+-Mg2+-ATPase-rich fraction of skeletal sarcoplasmic reticulum (SR) is reported. The agents abolish active transport, at 10–5 and 10–4 M concentrations, respectively. Addition of the mercurials was also shown to release actively accumulated Ca2+. The mercurials increase the passive Ca2+ and Mg2+ permeability in the absence of ATP at the same concentrations at which they inhibit transport. It is proposed that both effects are the result of direct binding of the mercurials to the SH groups of the Ca2+-Mg2+-ATPase pump, altering the conformational equilibria of the pump. The agents were also shown to increase the passive KCl permeability. The SR preparation consists of two vesicle populations with respect to K+ permeability, one with rapid KCl equilibration faciliated by a monovalent cation channel function and one with slow KCl equilibration. The mercurials increase the rates of KCl equilibration in both fractions, but produce higher rates in the fraction containing the channel function. The results are discussed in terms of pump and channel function and are compared with results for the electrical behavior of the Ca2+-Mg2+-ATPase and other SR proteins in black lipid membranes, as presented by others.  相似文献   

17.
Cadmium inhibits plasma membrane calcium transport   总被引:6,自引:0,他引:6  
Summary The interaction of Cd2+ with the plasma membrane Ca2+-transporting ATPase of fish gills was studied. ATP-driven Ca2+-transport in basolateral membrane (BLM) vesicles was inhibited by Cd2+ with anI 50 value of 3.0nm at 0.25 m free Ca2+ using EGTA, HEEDTA and NTA to buffer Ca2+ and Cd2+ concentrations. The inhibition was competitive in nature since theK 0.5 value for Ca2+ increased linearly with increasing Cd2+ concentrations while theV max remained unchanged. The Ca2+ pump appeared to be calmodulin dependent, but we conclude that the inhibition by Cd2+ occurs directly on the Ca2+ binding site of the Ca2+-transporting ATPase and not via the Ca2+-binding sites of calmodulin. It is suggested that Cd2+-induced inhibition of Ca2+-transporting enzymes is the primary effect in the Cd2+ toxicity towards cells followed by several secondary effects due to a disturbed cellular Ca2+ metabolism. Our data illustrate that apparent stimulatory effects of low concentrations of Cd2+ on Ca2+-dependent enzymes may derive from increased free-Ca2+ levels when Cd2+ supersedes Ca2+ on the ligands.  相似文献   

18.
Summary The influence of the asymmetric addition of various divalent cations and protons on the properties of active Ca2+ transport have been examined in intact human red blood cells. Active Ca2+ efflux was determined from the initial rate of45Ca2+ loss after CoCl2 was added to block Ca2+ loading via the ionophore A23187. Ca2+-ATPase activity was measured as phosphate production over 5 min in cells equilibrated with EGTA-buffered free Ca2+ in the presence of A23187. The apparent Ca affinity of active Ca2+ efflux (K 0.5=30–40 mol/liter cells) was significantly lower than that measured by the Ca2+-ATPase assay (K 0.5=0.4 m). Possible reasons for this apparent difference are considered. Both active Ca2+ efflux and Ca2+-ATPase activity were reduced to less than 5% of maximal levels (20 mmol/liter cells · hr) in Mg2+-depleted cells, and completely restored by reintroduction of intracellular Mg2+. Active Ca2+ efflux was inhibited almost completely by raising external CaCl2 (but not MgCl2) to 20mm, probably by interaction of Ca2+ at the externally oriented E2P conformation of the pump. Cd2+ was more potent than Ca2+ in this inhibition, while Mn2+ was less potent and 10mm Ba2+ was without effect. A Ca2+: proton exchange mechanism for active Ca2+ efflux was supported by the results, as external protons (pH 6–6.5) stimulated active Ca2+ efflux at least twofold above the efflux rate at pH 7.8 Ca2+ transport was not affected by decreasing the membrane potential across the red cell.  相似文献   

19.
The effect of carvedilol on cytosolic free Ca2+ concentrations ([Ca2+]i) in OC2 human oral cancer cells is unknown. This study examined if carvedilol altered basal [Ca2+]i levels in suspended OC2 cells by using fura-2 as a Ca2+-sensitive fluorescent probe. Carvedilol at concentrations between 10 and 40 µM increased [Ca2+]i in a concentration-dependent fashion. The Ca2+ signal was decreased by 50% by removing extracellular Ca2+. Carvedilol-induced Ca2+ entry was not affected by the store-operated Ca2+ channel blockers nifedipine, econazole, and SK&F96365, but was enhanced by activation or inhibition of protein kinase C. In Ca2+-free medium, incubation with the endoplasmic reticulum Ca2+ pump inhibitor thapsigargin did not change carvedilol-induced [Ca2+]i rise; conversely, incubation with carvedilol did not reduce thapsigargin-induced Ca2+ release. Pretreatment with the mitochondrial uncoupler carbonylcyanide m-chlorophenylhydrazone (CCCP) inhibited carvedilol-induced [Ca2+]i release. Inhibition of phospholipase C with U73122 did not alter carvedilol-induced [Ca2+]i rise. Carvedilol at 5–50 µM induced cell death in a concentration-dependent manner. The death was not reversed when cytosolic Ca2+ was chelated with 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid acetoxymethyl ester (BAPTA/AM). Annexin V/propidium iodide staining assay suggests that apoptosis played a role in the death. Collectively, in OC2 cells, carvedilol induced [Ca2+]i rise by causing phospholipase C-independent Ca2+ release from mitochondria and non-endoplasmic reticulum stores, and Ca2+ influx via protein kinase C-regulated channels. Carvedilol (up to 50 μM) induced cell death in a Ca2+-independent manner that involved apoptosis.  相似文献   

20.
Abstract

Clotrimazole is an antimycotic imidazole derivative that interferes with cellular Ca2+ homeostasis. This study examined the effect of clotrimazole on cytosolic Ca2+ concentrations ([Ca2+]i) and viability in HA59T human hepatoma cells. The Ca2+-sensitive fluorescent dye fura-2 was applied to measure [Ca2+]i. Clotrimazole induced [Ca2+]i rises in a concentration-dependent manner. The response was reduced by removing extracellular Ca2+. Clotrimazole-evoked Ca2+ entry was suppressed by store-operated channel inhibitors (nifedipine, econazole and SK&F96365) and protein kinase C modulators (GF109203X and phorbol, 12-myristate, 13-acetate). In Ca2+-free medium, incubation with the endoplasmic reticulum Ca2+ pump inhibitor 2,5-di-tert-butylhydroquinone abolished clotrimazole-induced [Ca2+]i rise. Inhibition of phospholipase C with U73122 abolished clotrimazole-induced [Ca2+]i rise. At 10–40?µM, clotrimazole inhibited cell viability, which was not reversed by chelating cytosolic Ca2+. Clotrimazole at 10 and 30?µM also induced apoptosis. Collectively, in HA59T cells, clotrimazole-induced [Ca2+]i rises by evoking phospholipase C-dependent Ca2+ release from the endoplasmic reticulum and Ca2+ entry via store-operated Ca2+ channels. Clotrimazole also caused apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号