首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biofouling is one of the most serious problems facing numerous industrial processes. In the case of a heat exchanger unit, biological deposits adhering to the inside surface of its tubes reduce heat transfer and, thus, the thermal performance of the cycle. Control of this phenomenon is proving fundamental for both land and marine equipment to operate in optimum working conditions. Hence, it is necessary to apply antifouling methods capable of keeping surfaces free of any kind of biofouling. This paper reports on the behaviour resulting from use of the flow inversion method vs that obtained by using various chemical treatments. The study compares the effectiveness of certain chemical treatments (Na hypochlorite, peracetic acid and a compound formed by Na bromide + Na hypochlorite) for removing a biofouling film that has already formed on the inside surfaces of tubes in a heat exchanger pilot plant. The paper also addresses the issue of optimising the concentration of biocide dose as a function of the residual biocide in order minimise the environmental impact caused by effluent from industrial plants. The results indicate that it is possible to eliminate a biofilm formed on the inside surfaces of tubes by the use of intermittent doses of chemical treatments at low concentrations and over long application times. Furthermore, once the stabilisation phase is reached 6 d after starting the treatment, it is possible to maintain the conditions achieved using only 20% of the initial dosage.  相似文献   

2.
Abstract

A CUSUM chart method is presented as an alternative tool for continuous monitoring of an electromagnetic field-based (EMF) antifouling (AF) treatment of a heat exchanger cooled by seawater. During an initial experimental phase, biofilm growth was allowed in a heat exchanger formed of four tubes until sufficient growth had been established. In two of the tubes, continuous EMF treatment was then applied. The heat transfer resistance and heat duty (heat transfer per unit time) results showed that biofilm adhesion was reduced by the EMF treatment. EMF treatments resulted in a 35% improvement in the heat transfer resistance values. The proposed CUSUM chart method showed that the EMF treatment increased the useful life of the heat exchanger by ~20?days. Thus, CUSUM charts proved to be an efficient tool for continuous monitoring of an AF treatment using data collected online and can also be used to reduce operation and maintenance costs.  相似文献   

3.
Biofouling is one of the most important problems associated with heat exchangers, leading to a loss of thermal performance in their cycle. To maintain them in optimum working condition, biofouling must be kept under control and, to do so, instrumentation is required for its monitoring. The development of the biofouling layer can be qualitatively followed, but only during maintenance shutdown periods is it possible to attain a quantitative assessment. The CMDIMB [Combined Monitor for Direct and Indirect Measurement of Biofouling] was conceived as a means of discovering the evolution of the frictional resistance (f) and the heat transfer resistance (R f) of a fluid because these are variables that indirectly define the biofouling deposited in the tubes of a seawater-cooled heat exchanger. They likewise serve to directly indicate its mass and thickness according to the total solid matter adhered over time. The results obtained allowed the values of the variables taken by the CMDIMB to be extrapolated to the heat exchanger that was set up in parallel. The CMDIMB is proposed as a highly useful tool for directly and indirectly monitoring biofouling growth in heat exchangers that do not possess the necessary instrumentation to monitor this phenomenon.  相似文献   

4.
Biofouling is one of the most important problems associated with heat exchangers, leading to a loss of thermal performance in their cycle. To maintain them in optimum working condition, biofouling must be kept under control and, to do so, instrumentation is required for its monitoring. The development of the biofouling layer can be qualitatively followed, but only during maintenance shutdown periods is it possible to attain a quantitative assessment. The CMDIMB [Combined Monitor for Direct and Indirect Measurement of Biofouling] was conceived as a means of discovering the evolution of the frictional resistance (f) and the heat transfer resistance (R(f)) of a fluid because these are variables that indirectly define the biofouling deposited in the tubes of a seawater-cooled heat exchanger. They likewise serve to directly indicate its mass and thickness according to the total solid matter adhered over time. The results obtained allowed the values of the variables taken by the CMDIMB to be extrapolated to the heat exchanger that was set up in parallel. The CMDIMB is proposed as a highly useful tool for directly and indirectly monitoring biofouling growth in heat exchangers that do not possess the necessary instrumentation to monitor this phenomenon.  相似文献   

5.
Microbiologically influenced corrosion (MIC) is a major problem in various industries such as oil and gas, and water utilities. Billions of dollars are lost to microbiologically influenced corrosion (MIC) each year in the US. The key to MIC control is biofilm mitigation. Sulfate-reducing bacteria (SRB) are often the culprits. They are also involved in souring and biofouling. SRB biofilms are notoriously difficult to eradicate. Due to environmental concerns and increasing costs, better biocide treatment strategies are desired. Recent studies suggested that D: -tyrosine and some other D: -amino acids may signal biofilm dispersal. Experimental results in this work indicated that D: -tyrosine is an effective biocide enhancer for tetrakis hydroxymethyl phosphonium sulfate (THPS) that is a green biocide. Desulfovibrio vulgaris (ATCC 7757) was used in biofilm prevention and biofilm removal tests. It was found that 100?ppm D: -tyrosine alone and 50?ppm THPS alone were both ineffective against the SRB biofilm. However, when 1?ppm D: -tyrosine was combined with 50?ppm THPS, the synergy between the two chemicals successfully prevented the establishment of the SRB biofilm on C1018 mild steel coupon surfaces in batch treatment tests. It also eradicated established SRB biofilms from coupon surfaces in both 1 and 3-h shock treatment tests.  相似文献   

6.
In this article we describe a field study of biofouling and microbiologically influenced corrosion (MIC) of admiralty brass heat exchanger tubes in contact with running fresh water on the river Tagus close to Almaraz nuclear power plant in Spain. Dezincification originated by biofouling and MIC was studied using impedance, polarization resistance, gravimetric, scanning electron microscopy (SEM), and X-ray diffraction (XRD) measurements. Close correlation was observed between the biofilms formed and the corrosion process (dezincification) using the different experimental techniques. Impedance data showed a capacitive behavior including two time constants. Kramers-Kronig (KK) transforms were used to validate impedance data. The admiralty tubes' impedance data satisfied the KK relations.  相似文献   

7.
Biofilm formation on surfaces has serious economic and environmental implications. Growth of biofilm within a water distribution system can lead to problems such as biocorrosion and biofouling accumulation. To prevent and control these occurrences, it is necessary to use suitable biocides to remove the biofilm and kill biofilm cells. In this study, the genera Actinobacillus, Branhamella, Bacillus, Micrococcus and Acinetobacter were isolated from biofilms formed on brass coupons exposed to a cooling water system. It was shown by the microtiter plate test that a mixed culture of the isolates and a single culture of Acinetobacter sp(2) produced high levels of biofilm formation. A microwell plate technique was applied for assessment of the ability of various biocides to remove and kill mixed-culture biofilm cells and Acinetobacter sp(2), the latter as a single-species biofilm with a high rate of biofilm production. The results showed that the mixed-culture biofilm cells had more resistance to removal and killing by some biocides, such as hydrogen peroxide and sulfathiazole, than the single-species biofilm cells (Acinetobacter sp(2)). Oxidising biocides, such as sodium hypochlorite and hydrogen peroxide, demonstrated a higher potential for biofilm removal and killing compared with non-oxidising biocides (sulfathiazole and glutaraldehyde).  相似文献   

8.
In nature, microorganisms tend to form biofilms that consist of extracellular polymeric substances with embedded sessile cells. Biofilms, especially mixed-culture synergistic biofilm consortia, are notoriously difficult to treat. They employ various defense mechanisms against attacks from antimicrobial agents. Problematic industrial biofilms cause biofouling as well as biocorrosion, also known as microbiologically influenced corrosion. Biocides are often used to treat biofilms together with scrubbing or pigging. Unfortunately, chemical treatments suppress vulnerable microbial species while allowing resistant species to take over. Repeated treatment cycles are typically needed in biofilm mitigation. This leads to biocide dosage escalation, causing environmental problems, higher costs and sometimes operational problems such as scale formation. New treatment methods are being developed such as enhanced biocide treatment and bacteriophage treatment. Special materials such as antibacterial stainless steels are also being created to combat biofilms. This review discussed some of the advances made in the fight against problematic industrial biofilms.  相似文献   

9.
The effectiveness of two quaternary ammonium compounds (QACs) (non-oxidising biocides) to reduce the growth of biofilm adhering to the tubes of a heat exchanger-condenser cooled by seawater was evaluated. Their effectiveness was compared to that of a conventional oxidising biocide (sodium hypochlorite [NaOCl]) under the same testing conditions. Each biocide was applied intermittently (6?h on, 6?h off) in a first shock stage (1.5?ppm over 8?days) and a second stabilising stage (0.5?ppm over 20?days). The results showed that the antifouling effectiveness of the first of the QACs (fifth generation) was comparable to that shown by the oxidising power of NaOCl. Although the reaction time was longer than that of NaOCl, both the compounds removed the biofilm, and the tube was practically restored to its clean condition. Treatment with the second of the QACs (fourth generation) allowed for the stabilisation of biofilm growth, but not for its removal. Ecotoxicology studies classified the QACs as environmentally harmless under the testing conditions.  相似文献   

10.
P.L. Cahill  J.M. Kuhajek 《Biofouling》2014,30(9):1035-1043
Ongoing investigation of the candidate antifouling (AF) biocide polygodial (PG) has revealed that this compound may be contact active, whereby it can confer effect while remaining bound within a stable matrix. To test this hypothesis, the AF activity of PG-laced coatings was compared to that of seawater in which PG-laced coatings had been soaked. Four coating types spanning high to low affinity for PG were examined and AF activity was assessed based on inhibition of settlement and metamorphosis of larvae of three fouling organisms: Ciona savignyi Herdman, Mytilus galloprovincialis Lamarck and Spirobranchus caraniferus Gray. Direct exposure to the coatings had a significantly greater impact on larval metamorphosis than indirect exposure to seawater in which the coatings had been soaked. In particular, metamorphosis was almost completely inhibited by high-affinity coatings containing ≥ 200 ng of PG per replicate, while corresponding soaking waters had no detectable effect. These findings support the assertion that PG is contact active.  相似文献   

11.
Electromagnetic field (EMF) treatment is presented as an alternative physical treatment for the mitigation of biofouling adhered to the tubes of a heat exchanger–condenser cooled by seawater. During an experimental phase, a fouling biofilm was allowed to grow until experimental variables indicated that its growth had stabilised. Subsequently, EMF treatment was applied to seawater to eliminate the biofilm and to maintain the achieved cleanliness. The results showed that EMFs precipitated ions dissolved in the seawater. As a consequence of the application of EMFs, erosion altered the intermolecular bonding of extracellular polymers, causing the destruction of the biofilm matrix and its detachment from the inner surface of the heat exchanger–condenser tubes. This detachment led to the partial removal of a mature biofilm and a partial recovery of the efficiency lost in the heat transfer process by using a physical treatment that is harmless to the marine environment.  相似文献   

12.
Biocides are currently the primary mitigation method to control sulfate-reducing bacteria (SRB) in biofouling, reservoir souring and microbiologically influenced corrosion. Increasingly restrictive environmental regulations and safety concerns on biocide uses demand more efficient dosing of biocides. Chelators have been known to enhance antibiotics because of their properties such as increasing the permeability of the outer cell membrane of Gram-negative bacteria. Two readily biodegradable chelators, ethylenediaminedisuccinate (EDDS) and N-(2-hydroxyethyl)iminodiacetic acid (HEIDA) disodium salts that are touted as potential replacements of ethylenediaminetetraacetic acid (EDTA), were evaluated as potential biocide enhancers for glutaraldehyde and tetrakis hydroxymethyl phosphonium sulfate (THPS) in their inhibition of planktonic SRB growth. Desulfovibrio vulgaris ATCC 7757 and Desulfovibrio desulfuricans ATCC 14563 were grown in modified ATCC 1249 medium and in enriched artificial seawater, respectively. Laboratory tests in 100 ml anaerobic vials showed that EDDS or HEIDA alone did not inhibit SRB growth. However, when EDDS or HEIDA was combined with glutaraldehyde or THPS, each of them enhanced the biocide inhibition of planktonic SRB growth.  相似文献   

13.
Abstract

Biofouling accumulation on ships’ submerged surfaces typically occurs during stationary periods that render surfaces more susceptible to colonization than when underway. As a result, stationary periods longer than typical port residence times (hours to days), often referred to as lay-ups, can have deleterious effects on hull maintenance strategies, which aim to minimize biofouling impacts on ship operations and the likelihood of invasive species transfers. This experimental study tested the effects of different lay-up durations on the magnitude of biofouling, before and after exposure to flow, using fouling panels with three coating treatments (antifouling, foul-release, and controls), at two sites, and a portable field flume to simulate voyage sheer forces. Control panels subjected to extended stationary durations (28-, 45- and 60-days) had significantly higher biofouling cover and there was a 13- to 25-fold difference in biofouling accumulation between 10-days and 28-days of static immersion. Prior to flume exposure, the antifouling coating prevented biofouling accumulation almost entirely at one site and kept it below 20% at the other. Foul-release coatings also proved effective, especially after flume exposure, which reduced biofouling at one site from >52% to <6% cover (on average). The experimental approach was beneficial for co-locating panel deployments and flume processing using a consistent (standardized) flow regime on large panels across sites of differing conditions and biofouling assemblages. While lay-ups of commercial vessels are relatively common, inevitable, and unavoidable, it is important to develop a better understanding of the magnitude of their effects on biofouling of ships’ submerged surfaces and to develop workable post-lay-up approaches to manage and respond to elevated biofouling accumulation that may result.  相似文献   

14.
Generally speaking, a much higher concentration of biocide is needed to treat biofilms compared to the dosage used to for planktonic bacteria. With increasing restrictions of environmental regulations and safety concerns on large-scale biocide uses such as oil field applications, it is highly desirable to make more effective use of biocides. In this paper a green biocide enhancer ethylenediaminedisuccinate (EDDS) that is a biodegradable chelator, was found to enhance the efficacy of glutaraldehyde in its treatment of sulfate-reducing bacteria (SRB) biofilms. Experiments were carried out in 100 ml anaerobic vials with carbon steel coupons. The ATCC 14563 strain of Desulfovibrio desulfuricans was used. Biofilms on coupon surfaces were visualized using scanning electron microscopy (SEM). Experimental results showed that EDDS reduced the glutaraldehyde dosages considerably in the inhibition of SRB biofilm establishment and the treatment of established biofilms on carbon steel coupon surfaces.  相似文献   

15.
Abstract

The aim of this study was to assess the respective impacts of the surface energy and surface roughness of bare and coated steels on biofouling and sanitisation. Bioadhesion of Staphylococcus aureus CIP 53.154 was studied on two stainless steel surfaces with smooth or specific micro-topography. Two coatings were also studied: silicon oxide (hydrophilic) and polysiloxane (hydrophobic). On smooth surfaces, adhesion was reduced on an apolar coating and cell viability increased with the surface polarity. A specific micro-topography decreased the level of bacterial adhesion on bare surfaces by a factor ten. On this surface, only single adherent cells were observed, contrasting with cells in clusters on smoother surfaces. As a consequence, cell repartition influenced bacterial viability. Most isolated adherent cells were dead whereas cells in clusters were still alive. In addition, the quaternary ammonium chloride used in sanitisation, acted at once both as a tensio-active molecule and a biocide. It only displaced adherent cells but did not remove them.  相似文献   

16.
The efficient use of biocides to control microbial contamination is dependent upon selecting the most potent agent at the anticipated end-use concentration. This is based upon an accurate determination of two basic parameters:
  • 1.(1) The time taken by the biocide to achieve a total kill (death rate or decimal reduction time).
  • 2.(2) The effect of biocide concentration on the death rate or decimal reduction time.
The time taken to achieve a total kill can be calculated from the death rate. In the simplest case a plot of the natural logarithm of survivors declines linearly when plotted against time and the slope of that line is the death rate. However, the plot of the line of survivors against time is frequently non-linear. Concave curves may result from attempts to control a mixed population with different degrees of tolerance to the biocide; the shape of the curve being a combination of two or more different linear declines. Convex curves, or curves with a shoulder, may be due to one of three phenomena. The target organisms may adhere together in clumps of two or more; the nature of the reaction of biocide with the target organism is one where the organism first changes from a resistant to a susceptible state; or the nature of the biocide molecule is such that uptake is relatively slow and death only commences when a critical concentration has accumulated within the cell. With all such convex curves the decline eventually becomes linear and again the slope is the death rate.The relationship between death rate and biocide concentration is rarely proportional and usually exponential. Thus halving the concentration may cause a disproportionate increase in the decimal reduction time. This relationship is controlled by the concentration coefficient or concentration exponent. When the logarithm of concentration is plotted against the log of death rate or log of decimal reduction time, a linear relationship is obtained whose slope is the concentration coefficient. Thus if the death rates at two or more concentrations are known, the concentration coefficient can be determined and the effect of dilution predicted.The mathematical interpretation of these phenomena and their influence on biocide treatment are discussed.  相似文献   

17.
Sulfate-reducing bacteria (SRB) cause souring and their biofilms are often the culprit in Microbiologically Influenced Corrosion (MIC). The two most common green biocides for SRB treatment are tetrakis-hydroxymethylphosphonium sulfate (THPS) and glutaraldehyde. It is unlikely that there will be another equally effective green biocide in the market any time soon. This means more effective biocide treatment probably will rely on biocide cocktails. In this work a triple biocide cocktail consisting of glutaraldehyde or THPS, ethylenediaminedisuccinate (EDDS) and methanol was used to treat planktonic SRB and to remove established SRB biofilms. Desulfovibrio vulgaris (ATCC 7757), a corrosive SRB was used as an example in the tests. Laboratory results indicated that with the addition of 10–15% (v/v) methanol to the glutaraldehyde and EDDS double combination, mitigation of planktonic SRB growth in ATCC 1249 medium and a diluted medium turned from inhibition to a kill effect while the chelator dosage was cut from 2,000 to 1,000 ppm. Biofilm removal was achieved when 50 ppm glutaraldehyde combined with 15% methanol and 1,000 ppm EDDS was used. THPS showed similar effects when it was used to replace glutaraldehyde in the triple biocide cocktail to treat planktonic SRB.  相似文献   

18.
Modeling biocide action against biofilms   总被引:1,自引:0,他引:1  
A phenomenological model of biocide action against microbial biofilms was derived. Processes incorporated in the model include bulk flow in and out of a well-mixed reactor, transport of dissolved species into the biofilm, substrate consumption by bacterial metabolism, bacterial growth, advection of cell mass within the biofilm, cell detachment from the biofilm, cell death, and biocide concentration-dependent disinfection. Simulations were performed to analyze the general behavior of the model and to perform preliminary sensitivity analysis to identify key input parameters. The model captured several general features of antimicrobial agent action against biofilms that have been observed widely by experimenters and practitioners. These included (1) rapid disinfection followed by biofilm regrowth, (2) slower detachment than disinfection, and (3) reduced susceptibility of microorganisms in biofilms. The results support the plausibility of a mechanism of biofilm resistance in which the biocide is neutralized by reaction with biofilm constituents, leading to a reduction in the bulk biocide concentration and, more significantly, biocide concentration gradients within the biofilm. Sensitivity experiments and analyses identified which input parameters influence key response variables. Each of three response variables was sensitive to each of the five input parameters, but they were most sensitive to the initial biofilm thickness and next most sensitive to the biocide disinfection rate coefficient. Statistical regression modeling produced simple equations for approximating the response variables for situations within the range of conditions covered by the sensitivity experiment. The model should be useful as a tool for studying alternative biocide control strategies. For example, the simulations suggested that a good interval between pulses of biocide is the time to minimum thickness. (c) 1996 John Wiley & Sons, Inc.  相似文献   

19.
In an industrial seawater cooling system, the effects of three different antifouling treatments, viz. sodium hypochlorite (NaClO), aliphatic amines (Mexel?432) and UV radiation, on the characteristics of the fouling formed were evaluated. For this study a portable pilot plant, as a side-stream monitoring system and seawater cooling system, was employed. The pilot plant simulated a power plant steam condenser, having four titanium tubes under different treatment patterns, where fouling progression could be monitored. The nature of the fouling obtained was chiefly inorganic, showing a clear dependence on the antifouling treatment employed. After 72 days the tubes under treatment showed a reduction in the heat transfer resistance (R) of around 70% for NaClO, 48% for aliphatic amines and 55% for UV, with respect to the untreated tube. The use of a logistic model was very useful for predicting the fouling progression and the maximum asymptotic value of the increment in the heat transfer resistance (ΔR(max)). The apparent thermal conductivity (λ) of the fouling layer showed a direct relationship with the percentage of organic matter in the collected fouling. The characteristics and mode of action of the different treatments used led to fouling with diverse physicochemical properties.  相似文献   

20.
The paper presents and discusses a novel on-line real-time non-destructive continuous-flow system for biocide testing on industrial biofilms. This laboratory system is capable of monitoring changes in growth, accumulation and respiratory activity of biofilms in response to biocidal treatment. The system incorporates a fouling monitor for continuous measuring of the rate of biofilm accumulation (heat transfer resistance), a sensor for monitoring of microbial activity (oxygen meter for monitoring the rate of biofilm respiratory activity), and subsystems necessary for microbial life support and control of operation parameters. Examples of system operation and testing of oxidizing and non-oxidizing biocides are presented. Received 25 May 1997/ Accepted in revised form 25 November 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号