首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
Fibril formation from amyloidogenic peptides is a hallmark of a wide range of diseases, including Alzheimer's disease and type II diabetes. Characterization of the aggregation process should include intrinsic factors, such as sequence variation, and extrinsic factors, such as crowding effects. To this end, we examined the interactions of dimers composed of residues 20-29 of human islet amyloid polypeptide (hIAPP), which form fibrils in vitro, and the nonamyloidogenic rat IAPP (rIAPP) using molecular dynamics simulations modeled at different peptide concentrations. There is a substantial free energy barrier to unbind the hIAPP dimer whereas no barrier exists for separating the rIAPP dimer. The profound differences in the free energy landscapes of the rIAPP and hIAPP dimers explains the lack of fibril formation in hIAPP upon substitution of the C-terminal residues by proline. Enhancing the extent of crowding has a substantial effect on both the barrier for separating a hIAPP β-sheet dimer and the formation of potential β-sheet nucleation sites. Our results show that the propensity for forming nucleation sites is dependent not only on the amino-acid sequence but also on the context in which it is found.  相似文献   

2.
The role played by Ca2+ ions in the interaction of the human islet amyloid polypeptide (hIAPP) with model membranes has been investigated by differential scanning calorimetry (DSC) and circular dichroism (CD) experiments. In particular, the interaction of hIAPP and its rat isoform (rIAPP) with zwitterionic dipalmitoyl-phosphatidylcholine (DPPC), negatively charged dipalmitoyl-phosphatidylserine (DPPS) vesicles and with a 3:1 mixtures of them, has been studied in the presence of Ca2+ ions. The experiments have evidenced that amorphous, soluble hIAPP assemblies interact with the hydrophobic core of DPPC bilayers. Conversely, the presence of Ca2+ ions is necessary to activate a preferential interaction of hIAPP with the hydrophobic core of DPPS membranes. These findings support the hypothesis that an impaired cellular homeostasis of Ca2+ ions may promote the insertion of hIAPP into the hydrophobic core of carrier vesicles which is thought to contribute to an eventual intracellular accumulation of β-sheet rich hIAPP aggregates.  相似文献   

3.
Human islet amyloid polypeptides (hIAPP) aggregate into amyloid deposits in the pancreatic islets of Langerhans, contributing to the loss of β-cells of patients with type 2 diabetes. Despite extensive studies of membrane disruption associated with hIAPP aggregates, the molecular details regarding the complex interplay between hIAPP aggregates and raft-containing membranes are still very limited. Using all-atom molecular dynamics simulations, we investigate the impact of hIAPP aggregate insertion on lipid segregation. We have found that the domain separation of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) is enhanced upon hIAPP membrane permeabilization in the absence of cholesterol, while within our simulation timescale, we cannot provide definitive evidence regarding the impact of hIAPP insertion on domain segregation in the ternary mixture (DOPC/DPPC/cholesterol). When the lipid domains are perturbed, their restoration occurs rapidly and spontaneously in the presence of hIAPP aggregates. hIAPP insertion affects membrane thickness in its immediate surroundings. On average, hIAPP causes the fluidity of lipids to increase and even cholesterol shows enhanced diffusivity. The acyl chain packing of the lipids near hIAPP is disrupted as compared to that further away from it. Cholesterol not only modulates membrane mobility and ordering but also hIAPP aggregates' structure and relative orientation to the membrane. Our investigations on the interaction between hIAPP aggregates and raft-containing membranes could lead to a better understanding of the mechanisms of amyloid cytotoxicity.  相似文献   

4.
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that is characterized by loss of intellectual functioning of brain and memory loss. According to amyloid cascade hypothesis, aggregation of amyloid-β42 (Aβ42) peptide can generate toxic oligomers and their accumulation in the brain is responsible for the onset of AD. In spite of carrying out a large number of experimental studies on inhibition of Aβ42 aggregation by small molecules, the detailed inhibitory mechanism remains elusive. In the present study, comparable molecular dynamics (MD) simulations were performed to elucidate the inhibitory mechanism of a sulfonamide inhibitor C1 (2,5-dichloro-N-(4-piperidinophenyl)-3-thiophenesulfonamide), reported for its in vitro and in vivo anti-aggregation activity against Aβ42. MD simulations reveal that C1 stabilizes native α-helix conformation of Aβ42 by interacting with key residues in the central helix region (13–26) with hydrogen bonds and ππ interactions. C1 lowers the solvent-accessible surface area of the central hydrophobic core (CHC), KLVFF (16–20), that confirms burial of hydrophobic residues leading to the dominance of helical conformation in the CHC region. The binding free energy analysis with MM–PBSA demonstrates that Ala2, Phe4, Tyr10, Gln15, Lys16, Leu17, Val18, Phe19, Phe20, Glu22, and Met35 contribute maximum to binding free energy (?43.1 kcal/mol) between C1 and Aβ42 monomer. Overall, MD simulations reveal that C1 inhibits Aβ42 aggregation by stabilizing native helical conformation and inhibiting the formation of aggregation-prone β-sheet conformation. The present results will shed light on the underlying inhibitory mechanism of small molecules that show potential in vitro anti-aggregation activity against Aβ42.  相似文献   

5.
Amylin (hIAPP) amyloid formation plays an important role in the pathogenesis of type 2 diabetes (T2D), which makes it a promising therapeutic target for T2D. In this study, we established a screening tool for identifying chemicals affecting hIAPP amyloid formation based on a reported genetic tool, which constantly tracks protein aggregates in Saccharomyces cerevisiae. In order to obtain the hIAPP with better aggregation ability, the gene of hIAPP was tandemly ligated to create 1×, 2×, 4× or 6×-hIAPP expressing strains. By measuring the cell density and fluorescence intensity of green fluorescent protein (GFP) regulated by the aggregation status of hIAPP, it was found that four intramolecular ligated hIAPP (4×hIAPP) could form obvious amyloids with mild toxicity. The validity and reliability of the screening tool were verified by testing six reported hIAPP inhibitors, including curcumin, epigallocatechin gallate and so on. Combined with surface plasmon resonance (SPR) and the screening tool, which could be a screening system for hIAPP inhibitors, we found that crocin specifically binds to hIAPP and acts inhibit amyloid formation of hIAPP. The effect of crocin was further confirmed by Thioflavin T (ThT) fluorescence and transmission electron microscopy (TEM) analysis. Thus, a screening system for hIAPP amyloid inhibitors and a new mechanism of crocin on anti-T2D were obtained as a result of this study.  相似文献   

6.
Zhang X  Cheng B  Gong H  Li C  Chen H  Zheng L  Huang K 《FEBS letters》2011,585(1):1634-77
Of 10 variation sites between sequences of amyloid-resistant porcine islet amyloid polypeptide (pIAPP) and amyloid-prone human IAPP (hIAPP), seven locate within residues 17–29, the most amyloidogenic fragment within hIAPP. To investigate how these variations affect amyloidogenicity, 26 IAPP(17–29) or IAPP(20–29) variants were synthesized and their secondary structures, amyloidogenicity, oligomerization and cytotoxicity were studied. Our results indicated that pIAPP fragments are refractory to amyloid formation and significantly less cytotoxic compared with hIAPP fragments. A novel stable dimer was observed in pIAPP(20–29) solution, whereas hIAPP(20–29) exists mostly as monomers and trimers. Among all human to porcine substitutions, S20R caused the most prolonged lag time and significantly attenuated cytotoxicity. The different oligomerization and amyloidogenic properties of hIAPP and pIAPP fragments are discussed.

Structured summary

pIAPP and pIAPPbind: shown by molecular sieving (view interactions 1, 2)hIAPP and hIAPPbind: shown by molecular sieving (view interactions 1, 2)  相似文献   

7.
Human islet amyloid polypeptide (hIAPP) is a highly amyloidogenic protein co-secreted with insulin in response to glucose levels. The formation of hIAPP amyloid plaques near islet cells has been linked to the death of insulin-secreting β-cells in humans and the progression of type II diabetes. Since both healthy individuals and those with type II diabetes produce and secrete hIAPP, it is reasonable to look for factors involved in storing hIAPP and preventing amyloidosis. We have previously shown that zinc inhibits the formation of insoluble amyloid plaques of hIAPP; however, there remains significant ambiguity in the underlying mechanisms. In this study, we show that zinc binds unaggregated hIAPP at micromolar concentrations similar to those found in the extracellular environment. By contrast, the fibrillar amyloid form of hIAPP has low affinity for zinc. The binding stoichiometry obtained from isothermal titration calorimetry experiments indicates that zinc favors the formation of hIAPP hexamers. High-resolution NMR structures of hIAPP bound to zinc reveal changes in the electron environment along residues that would be located along one face of the amphipathic hIAPP α-helix proposed as an intermediate for amyloid formation. Results from electrospray ionization mass spectroscopy investigations showed that a single zinc atom is predominantly bound to hIAPP and revealed that zinc inhibits the formation of the dimer. At higher concentrations of zinc, a second zinc atom binds to hIAPP, suggesting the presence of a low-affinity secondary binding site. Combined, these results suggest that zinc promotes the formation of oligomers while creating an energetic barrier for the formation of amyloid fibers.  相似文献   

8.
BackgroundPrevious studies suggested that fibrillar human IAPP (hIAPP) is more likely to deposit in β-cells, resulting in β-cell injury. However, the changes in the conformation of hIAPP in lipid environment and the mechanism involved in β-cell damage are unclear.MethodsSynthetic hIAPP was incubated with five types of free fatty acids and phospholipids 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-l-serine (POPS), which constitute the cell membrane. Thioflavin-T fluorescence assay was conducted to analyze the degree of hIAPP fibrosis, and circular dichroism spectroscopy was performed to detect the β-fold formation of hIAPP. Furthermore, INS-1 cells were infected with human IAPP delivered by a GV230-EGFP plasmid. The effects of endogenous hIAPP overexpression induced by sodium palmitate on the survival, endoplasmic reticulum (ER) stress, and apoptosis of INS-1 cells were evaluated.ResultsThe five types of free fatty acids can accelerate the fibrosis of hIAPP. Sodium palmitate also maintained the stability of fibrillar hIAPP. POPS, not POPC, accelerated hIAPP fibrosis. Treatment of INS-1 cells with sodium palmitate increased the expression of hIAPP, activated ER stress and ER stress-dependent apoptosis signaling pathways, and increased the apoptotic rate.ConclusionFree fatty acids and anionic phospholipid can promote β-fold formation and fibrosis in hIAPP. High lipid induced the overexpression of hIAPP and aggravated ER stress and apoptosis in INS-1 cells, which caused β-cell death in high lipid environment.General significanceOur study reveals free fatty acids and hIAPP synergistically implicated in endoplasmic reticulum stress and apoptosis of islet β-cells.  相似文献   

9.
This work deals with the commonly studied cyclic oligosaccharide and gains importance as it is entered on a drug delivering carbohydrate and provides insight into the oligosaccharide complex–biomolecular interaction. The binding of a flavone, baicalein, to β-cyclodextrin and calf thymus DNA is studied. The binding of baicalein to calf thymus DNA in the presence of β-cyclodextrin is analysed using the UV–vis absorption and fluorescence spectroscopy. The mode of binding and structure of the baicalein–β-cyclodextrin complex are reported. The role of the structure and the stoichiometry of the inclusion complex of baicalein–β-cyclodextrin in its influence on DNA binding are analysed.

Highlights

? This paper deals with the binding of a flavone, baicalein to β-cyclodextrin and/or DNA.

? The inclusion complexation between baicalein and β-cyclodextrin is analysed.

? The stoichiometry and the binding strength of the inclusion complex is reported.

? The role of β-cyclodextrin in tuning the binding of baicalein to DNA is emphasized.

? Spectroscopic and docking analysis are used to articulate the results.  相似文献   

10.
Several neurodegenerative diseases such as Alzheimer’s and Parkinson’s diseases as well as nonneuropathic diseases such as type II diabetes and atrial amyloidosis are associated with aggregation of amyloid polypeptides into fibrillar structures, or plaques. In this study, we use molecular dynamics simulations to test the stability and orientation of membrane-embedded aggregates of the human islet amyloid polypeptide (hIAPP) implicated in type II diabetes. We find that in both monolayers and bilayers of dipalmitoylphosphatidylglycerol (DPPG) hIAPP trimers and tetramers remain inside the membranes and preserve their β-sheet secondary structure. Lipid bilayer-inserted hIAPP trimers and tetramers orient inside DPPG at 60° relative to the membrane/water interface and lead to water permeation and Na+ intrusion, consistent with ion-toxicity in islet β-cells. In particular, hIAPP trimers form a water-filled β-sandwich that induce water permeability comparable with channel-forming proteins, such as aquaporins and gramicidin-A. The predicted disruptive orientation is consistent with the amphiphilic properties of the hIAPP aggregates and could be probed by chiral sum frequency generation (SFG) spectroscopy, as predicted by the simulated SFG spectra.  相似文献   

11.
Several neurodegenerative diseases such as Alzheimer’s and Parkinson’s diseases as well as nonneuropathic diseases such as type II diabetes and atrial amyloidosis are associated with aggregation of amyloid polypeptides into fibrillar structures, or plaques. In this study, we use molecular dynamics simulations to test the stability and orientation of membrane-embedded aggregates of the human islet amyloid polypeptide (hIAPP) implicated in type II diabetes. We find that in both monolayers and bilayers of dipalmitoylphosphatidylglycerol (DPPG) hIAPP trimers and tetramers remain inside the membranes and preserve their β-sheet secondary structure. Lipid bilayer-inserted hIAPP trimers and tetramers orient inside DPPG at 60° relative to the membrane/water interface and lead to water permeation and Na+ intrusion, consistent with ion-toxicity in islet β-cells. In particular, hIAPP trimers form a water-filled β-sandwich that induce water permeability comparable with channel-forming proteins, such as aquaporins and gramicidin-A. The predicted disruptive orientation is consistent with the amphiphilic properties of the hIAPP aggregates and could be probed by chiral sum frequency generation (SFG) spectroscopy, as predicted by the simulated SFG spectra.  相似文献   

12.
BackgroundThe misfolding of human islet amyloid polypeptide (hIAPP) is an important pathological factor on the onset of type 2 diabetes. A number of studies have been focused on His18, the only histidine of hIAPP, whose imidazole ring and the protonation state might impact hIAPP amyloid formation, but the exact mechanism remains unclear.MethodsWe used diethylpyrocarbonate (DEPC) to specifically modify His18 and obtained mono-ethyloxyformylated hIAPP (DMI). Thioflavin T based fluorescence, transmission electronic microscopy, circular dichroism spectroscopy, fluorescence dye leakage, Fourier transform infrared spectroscopy and replica-exchange molecular dynamics (REMD) simulation were applied to study the impact of DEPC-modification on hIAPP amyloid formation.ResultsAfter an ethyl-acetate group was introduced to the His18 of hIAPP by diethylpyrocarbonate (DEPC) modification, the pH dependent hIAPP fibrillation went to the opposite order and the number of intra-molecular hydrogen bonds decreased, while the possibility of His18 participating in the formation of α-helical structures increased. Furthermore, the membrane–peptide interaction and ion–peptide interaction were both impaired.ConclusionsThe intramolecular hydrogen bond formation by His18 and the possibility of His18 participating in the formation of α-helical structures greatly modulated the manner of hIAPP amyloid formation. The imidazole ring directly participates in the hIAPP–membrane/ion interaction.General significanceDEPC modification is an alternative approach to investigate the role of the imidazole ring during amyloid formation.  相似文献   

13.

Background  

In contrast to many other organisms, the malarial parasite Plasmodium falciparum possesses only one typical glutathione S-transferase. This enzyme, PfGST, cannot be assigned to any of the known GST classes and represents a most interesting target for antimalarial drug development. The PfGST under native conditions forms non-covalently linked higher aggregates with major population (~98%) being tetramer. However, in the presence of 2 mM GSH, a dimer of PfGST is observed. Recently reported study on binding and catalytic properties of PfGST indicated a GSH dependent low-high affinity transition with simultaneous binding of two GSH molecules to PfGST dimer suggesting that GSH binds to low affinity inactive enzyme dimer converting it to high affinity functionally active dimer. In order to understand the role of GSH in tetramer-dimer transition of PfGST as well as in modulation of functional activity of the enzyme, detailed structural, functional and stability studies on recombinant PfGST in the presence and absence of GSH were carried out.  相似文献   

14.
Amylin (hIAPP) aggregation leads to the formation of insoluble deposits and is one of the factors in the development of type II diabetes. The aim of this research was to find N-methylated analogs of the aggregating amylin fragments 18–22, 23–27, and 33–37, which would not themselves be susceptible to aggregation and would inhibit the aggregation of the amyloidogenic cores of the hormone. None of the analogs of fragment 18–22 containing one or two N-methylated amino acid residues showed any tendency to aggregate. Only the peptide H−F(N−Me)GA(N−Me) IL−OH ( 6 ) derived from the 23–27 hIAPP hot spot did not form fibrous structures. All analogs of the 33–37 amylin fragment were characterized by the ability to form aggregates, despite the presence of N-methylated amino acids in their structures. N-Methylated peptides 1 – 5 demonstrated inhibitory properties against the aggregation of fragment 18–22. Aggregation of the amyloidogenic core of 23–27 was significantly inhibited by N-methylated peptides 1 – 3 derived from the (18–22) H−HSSNN−OH fragment and by the H−F(N-Me)GA(N−Me)IL−OH ( 6 ) fragment derived from the 23–27 amylin hot spot. Fragment (33–37) H−GSNTY−NH2 was found to be inhibited in the presence of N-methylated peptides 1 – 3 derived from the 18–22 fragment and by the double methylated peptide H−F(N−Me)GA(N−Me)IL−OH ( 6 ). Research on the possibility of using N-methylated analogs of amyloidogenic amylin cores as inhibitors of hormone aggregation is ongoing, with a focus on finding the minimum concentration of N-methylated peptides capable of inhibiting the aggregation of hIAPP hot spots.  相似文献   

15.
A few naturally occurring N6-substituted adenosine derivatives (cytokinin ribosides) were investigated as inhibitors of platelet aggregation induced in vitro by collagen and their activity range was demonstrated (IC50: 6.77–141 μM). A docking study suggests that anti-aggregation activity of these compounds could involve an interaction with the P2Y12 receptor binding site.  相似文献   

16.
A key factor in the development of Type II diabetes is the loss of insulin producing pancreatic β-cells. The amyloidogenic human Islet Amyloid Polypeptide (hIAPP also known as human amylin) is believed to play a crucial role in this biological process. Previous studies have shown that hIAPP forms small aggregates that kill β-cells by disrupting the cellular membrane. In this study, we report membrane fragmentation by hIAPP using solid-state NMR experiments on nanotube arrays of anodic aluminum oxide containing aligned phospholipid membranes. In a narrow concentration range of hIAPP, an isotropic 31P chemical shift signal indicative of the peptide-induced membrane fragmentation was detected. Solid-state NMR results suggest that membrane fragmentation is related to peptide aggregation as the presence of Congo Red, an inhibitor of amyloid formation, prevented membrane fragmentation and the non-amyloidogenic rat-IAPP did not cause membrane fragmentation. The disappearance of membrane fragmentation at higher concentrations of hIAPP suggests an alternate kinetic pathway to fibril formation in which membrane fragmentation is inhibited.  相似文献   

17.
Lipopolysaccharide (LPS, endotoxin) is the major component of the outer leaflet of the outer membrane of Gram‐negative bacteria such as Escherichia coli and Salmonella typhimurium. LPS is a large lipid containing several acyl chains as its hydrophobic base and numerous sugars as its hydrophilic core and O‐antigen domains, and is an essential element of the organisms' natural defenses in adverse environmental conditions. LptC is one of seven members of the lipopolysaccharide transport (Lpt) protein family that functions to transport LPS from the inner membrane (IM) to the outer leaflet of the outer membrane of the bacterium. LptC is anchored to the IM and associated with the IM LptFGB2 complex. It is hypothesized that LPS binds to LptC at the IM, transfers to LptA to cross the periplasm, and is inserted by LptDE into the outer leaflet of the outer membrane. The studies described here comprehensively characterize and quantitate the binding of LPS to LptC. Site‐directed spin labeling electron paramagnetic resonance spectroscopy was utilized to characterize the LptC dimer in solution and monitor spin label mobility changes at 10 sites across the protein upon addition of exogenous LPS. The results indicate that soluble LptC forms concentration‐independent N‐terminal dimers in solution, LptA binding does not change the conformation of the LptC dimer nor appreciably disrupt the LptC dimer in vitro, and LPS binding affects the entire LptC protein, with the center and C‐terminal regions showing a greater affinity for LPS than the N‐terminal domain, which has similar dissociation constants to LptA.  相似文献   

18.
Abstract

We have determined solution structure of r(GGAGGUUUUGGAGG) (R14) by NMR; the RNA 14-mer forms an intra-strand parallel quadruplex with a G-tetrad and a hexad, in which a G-tetrad core is augmented by association of two A residues. The quadruplex further forms a dimer through stacking interaction between the hexads. In order to obtain insight into the difference between RNA and DNA quadruplexes, we synthesized the corresponding DNA 14-mer, d(GGAGGTTTTGGAGG) (D14), and examined its properties and structure by CD, gel electrophoresis, and NMR. K+ ions increased the thermal stability of both R14 and D14 structures. The binding affinity of K+ ions to R14 was much higher than that to D14. The CD and gel electrophoretic studies suggest that D14 forms a quadruplex entirely different from that of R14 in the presence of K+ ions; two molecules of D14 form a quadruplex with both antiparallel and parallel strand alignments and with diagonal loops at both ends of the stacked G-tetrads. The NMR study also gave results that are consistent with such structure: alternate glycosidic conformation, 5′G(syn)-G(anti)3′, and characteristic chemical shift data observed for many quadruplexes containing diagonal TTTT loops.  相似文献   

19.
Human synthetic islet amyloid polypeptide (hIAPP) is rapidly converted to beta-sheet conformation and fibrils in aqueous media. Optimal solubility conditions for hIAPP were determined by circular dichroism spectroscopy and transmission electron microscopy. hIAPP in trifluoroethanol or hexafluoro-2-isopropanol (HFIP) diluted in water or phosphate buffer (PB) exhibited random structure which was converted to beta-sheet and fibrils with time. hIAPP, solubilised in HFIP, filtered and lyophilised remained in stable random structure for up to 7 days in water; in PB, insoluble aggregates precipitated from which protofilaments and fibrils formed with time. This suggests that amorphous aggregates of hIAPP could initiate islet amyloidosis in vivo.  相似文献   

20.

Background

Recent research supports that aggregation of islet amyloid polypeptide (IAPP) leads to cell death and this makes islet amyloid a plausible cause for the reduction of beta cell mass, demonstrated in patients with type 2 diabetes. IAPP is produced by the beta cells as a prohormone, and proIAPP is processed into IAPP by the prohormone convertases PC1/3 and PC2 in the secretory granules. Little is known about the pathogenesis for islet amyloid and which intracellular mechanisms are involved in amyloidogenesis and induction of cell death.

Methodology/Principal Findings

We have established expression of human proIAPP (hproIAPP), human IAPP (hIAPP) and the non-amyloidogenic mouse IAPP (mIAPP) in Drosophila melanogaster, and compared survival of flies with the expression driven to different cell populations. Only flies expressing hproIAPP in neurons driven by the Gal4 driver elavC155,Gal4 showed a reduction in lifespan whereas neither expression of hIAPP or mIAPP influenced survival. Both hIAPP and hproIAPP expression caused formation of aggregates in CNS and fat body region, and these aggregates were both stained by the dyes Congo red and pFTAA, both known to detect amyloid. Also, the morphology of the highly organized protein granules that developed in the fat body of the head in hIAPP and hproIAPP expressing flies was characterized, and determined to consist of 15.8 nm thick pentagonal rod-like structures.

Conclusions/Significance

These findings point to a potential for Drosophila melanogaster to serve as a model system for studies of hproIAPP and hIAPP expression with subsequent aggregation and developed pathology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号