首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The efficiency of removing unwanted biofilm from surfaces in industrial water systems was examined by fluorescence microscopy and image analysis. A quantitative assay for in situ determination of biofilm components was developed and tested on thin biofilms grown in reactors as well as real biofilms sampled from a fish processing factory. Different fluorescent dyes for in situ detection of protein, lipid and total organic matter were tested. It was possible to determine the approximate amounts, concentrations and coverage of the different components by correlating the fluorescent intensity of the biofilm components to standard solutions immobilised as a biofilm. The quantification methods were evaluated as a strategy for determining the efficiency of different disinfection/cleaning procedures, showing that quantification of these biofilm components was fast and reliable for optimisation of cleaning in place procedures. However, the approach also showed that bacterial cells, as investigated by culture-independent procedures, were killed but not removed by most disinfection procedures tested, potentially leading to surfaces which are easily recolonised.  相似文献   

2.

Background

Combating dental biofilm formation is the most effective means for the prevention of caries, one of the most widespread human diseases. Among the chemical supplements to mechanical tooth cleaning procedures, non-bactericidal adjuncts that target the mechanisms of bacterial biofilm formation have gained increasing interest in recent years. Milk proteins, such as lactoferrin, have been shown to interfere with bacterial colonization of saliva-coated surfaces. We here study the effect of bovine milk osteopontin (OPN), a highly phosphorylated whey glycoprotein, on a multispecies in vitro model of dental biofilm. While considerable research effort focuses on the interaction of OPN with mammalian cells, there are no data investigating the influence of OPN on bacterial biofilms.

Methodology/Principal Findings

Biofilms consisting of Streptococcus oralis, Actinomyces naeslundii, Streptococcus mitis, Streptococcus downei and Streptococcus sanguinis were grown in a flow cell system that permitted in situ microscopic analysis. Crystal violet staining showed significantly less biofilm formation in the presence of OPN, as compared to biofilms grown without OPN or biofilms grown in the presence of caseinoglycomacropeptide, another phosphorylated milk protein. Confocal microscopy revealed that OPN bound to the surface of bacterial cells and reduced mechanical stability of the biofilms without affecting cell viability. The bacterial composition of the biofilms, determined by fluorescence in situ hybridization, changed considerably in the presence of OPN. In particular, colonization of S. mitis, the best biofilm former in the model, was reduced dramatically.

Conclusions/Significance

OPN strongly reduces the amount of biofilm formed in a well-defined laboratory model of acidogenic dental biofilm. If a similar effect can be observed in vivo, OPN might serve as a valuable adjunct to mechanical tooth cleaning procedures.  相似文献   

3.
The aim of this study was to analyze the cleaning efficiency of polysaccharidases and proteolytic enzymes against biofilms of bacterial species found in food industry processing lines and to study enzyme effects on the composition of extracellular polymeric substances (EPS) and biofilm removal in a Clean-in-Place (CIP) procedure. The screening of 7 proteases and polysaccharidases for removal of biofilms of 16 bacterial species was first evaluated using a microtiter plate assay. The alkaline pH buffer removed more biofilm biomass as well as affecting a larger range of bacterial species. The two serine proteases and α-amylase were the most efficient enzymes. Proteolytic enzymes promoted biofilm removal of a larger range of bacterial species than polysaccharidases. Using three isolates derived from two bacterial species widely found in food processing lines (Pseudomonas fluorescens and the Bacillus cereus group), biofilms were developed on stainless steel slides and enzymatic solutions were used to remove the biofilms using CIP procedure. Serine proteases were more efficient in removing cells of Bacillus biofilms than polysaccharidases. However, polysaccharidases were more efficient in removing P. fluorescens biofilms than serine proteases. Solubilization of enzymes with a buffer containing surfactants, and dispersing and chelating agents enhanced the efficiency of polysaccharidases and proteases respectively in removing biofilms of Bacillus and P. fluorescens. A combination of enzymes targeting several components of EPS, surfactants, dispersing and chelating agents would be an efficient alternative to chemical cleaning agents.  相似文献   

4.
The ability of Aeribacillus pallidus E334 to produce pellicle and form a biofilm was studied. Optimal biofilm formation occurred at 60 °C, pH 7.5 and 1.5% NaCl. Extra polymeric substances (EPS) were composed of proteins and eDNA (21.4 kb). E334 formed biofilm on many surfaces, but mostly preferred polypropylene and glass. Using CLSM analysis, the network-like structure of the EPS was observed. The A. pallidus biofilm had a novel eDNA content. DNaseI susceptibility (86.8% removal) of eDNA revealed its importance in mature biofilms, but the purified eDNA was resistant to DNaseI, probably due to its extended folding outside the matrix. Among 15 cleaning agents, biofilms could be removed with alkaline protease and sodium dodecyl sulphate (SDS). The removal of cells from polypropylene and biomass on glass was achieved with combined SDS/alkaline protease treatment. Strong A. pallidus biofilms could cause risks for industrial processes and abiotic surfaces must be taken into consideration in terms of sanitation procedures.  相似文献   

5.
Aims: To assess the antimicrobial action of three natural‐derived products (essential oil, decoction and hydrosol of Satureja thymbra) against biofilms, composed of useful, spoilage and pathogenic bacteria (formed as monoculture or/and mixed‐culture), and to compare their efficiency with three standard acid and alkaline chemical disinfectants. Methods and Results: Two acids (hydrochloric and lactic, pH 3), one alkali (sodium hydroxide, pH 11), the essential oil of S. thymbra (1% v/v) and the two by‐products of the essential oil purification procedure (the decoction and the hydrosol fraction of essential oil, 100%), were tested against biofilms formed by five bacterial species, either as monospecies, or as mixed‐culture of all species. The tested bacterial species were Staphylococcus simulans and Lactobacillus fermentum (useful technological bacteria), Pseudomonas putida (spoilage bacterium), Salmonella enterica and Listeria monocytogenes (pathogenic bacteria). Biofilms were left to be formed on stainless steel coupons for 5 days at 16°C, before the application of disinfection treatments, for 60 and 180 min. The disinfection efficiency was evaluated by detaching the remaining viable biofilm cells and enumerating them by agar plating, as well as by automated conductance measurements (using Rapid Automated Bacterial Impedance Technique). Both these methods revealed that the essential oil and the hydrosol of S. thymbra exhibited a strong antimicrobial action against both monospecies and mixed‐culture biofilms. Surprisingly, the efficiency of the other three acid–base disinfectants was not adequate, although a long antimicrobial treatment was applied (180 min). Conclusions: The essential oil of S. thymbra (1%), as well as its hydrosol fraction (100%), presents sufficient bactericidal effect on bacterial biofilms formed on stainless steel. Significance and Impact of the Study: Use of natural antimicrobial agents could provide alternative or supplemented ways for the disinfection of microbial‐contaminated industrial surfaces.  相似文献   

6.
The key to effective cleaning and disinfection of food plants is the understanding of the type of the soil to be removed from the surfaces. An efficient cleaning and disinfection procedure consists of a sequence of rinses using good quality water with application of detergents and disinfectants. Disinfection is required in food plant operations, where wet surfaces provide favourable conditions for the growth of microbes. The efficacy of disinfectants is usually determined in suspensions, which do not mimic the growth conditions on surfaces where the agents are required to inactivate the microbes. Therefore, the suspension tests do not give adequate information and reliable carrier tests, which mimic surface growth, are needed. In developing a proposal for the testing of disinfectants on surfaces to an analytical standard, it is important to identify the major sources of variation in the procedure. In response to the need for a relatively realistic, simple and reliable test for disinfectant efficacy a method for culturing laboratory model biofilms has developed. The use of artificial biofilms i.e. biofilm-constructs inoculated with process contaminants in disinfectant testing can also be used for screening the activity of various disinfectants on biofilm cells. Both biofilm carrier tests showed clearly that the biofilm protects the microbes against the disinfectants. The chemical cleanliness is also essential in food plants. The total cleanliness of the process lines is mainly based on measuring the microbial load using culturing techniques. These results can give an incorrect picture of the total cleanliness, because the viable microbes do not grow when disinfectants are left on the surface. The luminescent bacteria light inhibition method offers a useful alternative for testing chemical residue left on surfaces after cleaning and disinfection operations.  相似文献   

7.
Bacterial infections are serious complications after orthopaedic implant surgery. Staphylococci, with Staphylococcus epidermidis as a leading species, are the prevalent and most important species involved in orthopaedic implant-related infections. The biofilm mode of growth of these bacteria on an implant surface protects the organisms from the host’s immune system and from antibiotic therapy. Therapeutic agents that disintegrate the biofilm matrix would release planktonic cells into the environment and therefore allow antibiotics to eliminate the bacteria. An addition of a biofilm-degrading agent to a solution used for washing–draining procedures of infected orthopaedic implants would greatly improve the efficiency of the procedure and thus help to avoid the removal of the implant. We have previously shown that the extracellular staphylococcal matrix consists of a poly-N-acetylglucosamine (PNAG), extracellular teichoic acids (TAs) and protein components. In this study, we accessed the sensitivity of pre-formed biofilms of five clinical staphylococcal strains associated with orthopaedic prosthesis infections and with known compositions of the biofilm matrix to periodate, Pectinex Ultra SP, proteinase K, trypsin, pancreatin and dispersin B, an enzyme with a PNAG-hydrolysing activity. We also tested the effect of these agents on the purified carbohydrate components of staphylococcal biofilms, PNAG and TA. We found that the enzymatic detachment of staphylococcal biofilms depends on the nature of their constituents and varies between the clinical isolates. We suggest that a treatment with dispersin B followed by a protease (proteinase K or trypsin) could be capable to eradicate biofilms of a variety of staphylococcal strains on inert surfaces.  相似文献   

8.
A microscopic method for noninvasively monitoring oral biofilms at the macroscale was developed to describe the spatial distribution of biofilms of different bacterial composition on bovine enamel surfaces (BES). For this purpose, oral biofilm was grown in situ on BES that were fixed at approximal sites of individual upper jaw acrylic devices worn by a volunteer for 3 or 5 days. Eubacteria, Streptococcus spp., and Fusobacterium nucleatum were stained using specific fluorescence in situ hybridization (FISH) probes. The resulting fluorescence signals were subsequently tested by confocal laser scanning microscopy (CLSM) and monitored by an automated wide-field microscope-based imaging platform (Scan∧R). Automated image processing and data analysis were conducted by microscope-associated software and followed by statistical evaluation of the results. The full segmentation of biofilm images revealed a random distribution of bacteria across the entire area of the enamel surfaces examined. Significant differences in the composition of the microflora were recorded across individual as well as between different enamel surfaces varying from sparsely colonized (47.26%) after 3 days to almost full surface coverage (84.45%) after 5 days. The enamel plates that were positioned at the back or in the middle of the oral cavity were found to be more suitable for the examination of biofilms up to 3 days old. In conclusion, automated microscopy combined with the use of FISH can enable the efficient visualization and meaningful quantification of bacterial composition over the entire sample surface. Due to the possibility of automation, Scan∧R overcomes the technical limitations of conventional CLSM.  相似文献   

9.
The discovery that biofilms are ubiquitous among the epiphytic microflora of leaves has prompted research about the impact of biofilms on the ecology of epiphytic microorganisms and on the efficiency of strategies to manage these populations for disease control and to ensure food safety. Biofilms are likely to influence the microenvironment and phenotype of the microorganisms they harbor. However, it is also important to determine whether there are differences in the types of bacteria within biofilms compared to those outside of biofilms so as to better target microorganisms via disease control strategies. Broad-leaved endive (Cichorium endivia var. latifolia) harbors biofilms containing fluorescent pseudomonads. These bacteria can cause considerable post-harvest losses when this plant is used for manufacturing minimally processed salads. To determine whether the population structure of the fluorescent pseudomonads in biofilms is different from that outside of biofilms on the same leaves, bacteria were isolated quantitatively from the biofilm and solitary components of the epiphytic population on leaves of field-grown broad-leaved endive. Population structure was determined in terms of taxonomic identities of the bacteria isolated, in terms of genotypic profiles, and in terms of phenotypic traits related to surface colonization and biofilm formation. The results illustrate that there are no systematic differences in the composition and structure of biofilm and solitary populations of fluorescent pseudomonads, in terms of either genotypic profiles or phenotypic profiles of the strains. However, Gram-positive bacteria tended to occur more frequently within biofilms than outside of biofilms. We suggest that leaf colonization by fluorescent pseudomonads involves a flux of cells between biofilm and solitary states. This would allow bacteria to exploit the advantages of these two types of existence; biofilms would favor resistance to stressful conditions, whereas solitary cells could foster spread of bacteria to newly colonizable sites on leaves as environmental conditions fluctuate.  相似文献   

10.
The effectiveness of cleaning was investigated through food factory trials and laboratory experiments using a naturally occurring biofilm from a food factory environment and generated biofilms. The efficacy of factory cleaning and disinfection programmes was assessed by swabbing and total viable count (TVC) analysis of surfaces before cleaning, after cleaning and after disinfection. Cleaning produced a 0.91 log reduction in the attached population. Investigation of the effectiveness of a variety of cleaning methods in the removal of a naturally occurring food factory biofilm showed that the high pressure spray and the mechanical floor scrubber, which use a high degree of mechanical action, were most effective. Cleaning trials with biofilms of Pseudomonas aeruginosa or Staphylococcus aureus showed that spraying with water at pressures of 34.5, 51.7 and 68.9 bar did not significantly increase the removal, as assessed by direct epifluorescent microscopy (DEM) and swabbing and TVC analysis, beyond the three log reduction observed at 17.2 bar. The effect of spray time at 17.2 bar showed that increasing spray time from 1 to 10 s did not significantly increase removal of Ps. aeruginosa biofilm. Investigation of the optimum distance of the spray lance from the surface at 17.2 bar was found to be between 125 and 250 mm. The use of an alkaline, acidic or neutral detergent prior to spraying with water at 17.2 bar did not significantly increase the removal of Ps. aeruginosa or Staph. aureus. However, the acidic and alkaline products significantly (P = 0.05) affected the viability of Staph. aureus and Ps. aeruginosa, respectively, thereby minimizing the potential for the spread of contamination.  相似文献   

11.
The penetration ability of 12 antimicrobial agents, including antibiotics and biocides, was determined against biofilms of B. cereus and P. fluorescens using a colony biofilm assay. The surfactants benzalkonium chloride (BAC) and cetyltrimethyl ammonium bromide (CTAB), and the antibiotics ciprofloxacin and streptomycin were of interest due to their distinct activities. Erythromycin and CTAB were retarded by the presence of biofilms, whereas ciprofloxacin and BAC were not. The removal and killing efficacies of these four agents was additionally evaluated against biofilms formed in microtiter plates. The most efficient biocide was CTAB for both bacterial biofilms. Ciprofloxacin was the best antibiotic although none of the selected antimicrobial agents led to total biofilm removal and/or killing. Comparative analysis of the results obtained with colony biofilms and microtiter plate biofilms show that although extracellular polymeric substances and the biofilm structure are considered a determining factor in biofilm resistance, the ability of an antimicrobial agent to penetrate a biofilm is not correlated with its killing or removal efficiency. Also, the results reinforce the role of an appropriate antimicrobial selection as a key step in the design of disinfection processes for biofilm control.  相似文献   

12.
This study examined bacterial community structure of biofilms on stainless steel and polycarbonate in seawater from the Delaware Bay. Free-living bacteria in the surrounding seawater were compared to the attached bacteria during the first few weeks of biofilm growth. Surfaces exposed to seawater were analyzed by using 16S rDNA libraries, fluorescence in situ hybridization (FISH), and denaturing gradient gel electrophoresis (DGGE). Community structure of the free-living bacterial community was different from that of the attached bacteria according to FISH and DGGE. In particular, alpha-proteobacteria dominated the attached communities. Libraries of 16S rRNA genes revealed that representatives of the Rhodobacterales clade were the most abundant members of biofilm communities. Changes in community structure during biofilm growth were also examined by DGGE analysis. We hypothesized that bacterial communities on dissimilar surfaces would initially differ and become more similar over time. In contrast, the compositions of stainless steel and polycarbonate biofilms were initially the same, but differed after about 1 week of biofilm growth. These data suggest that the relationship between surface properties and biofilm community structure changes as biofilms grow on surfaces such as stainless steel and polycarbonate in estuarine water.  相似文献   

13.
This report reviews the development of a rapidin situ approach to study the physiological responses of bacteria within biofilms to disinfectants. One method utilized direct viable counts (DVC) to assess the disinfection efficacy when thin biofilms were exposed to chlorine or monochloramine. Results obtained using the DVC method were one log higher than plate count (PC) estimates of the surviving population after disinfection. Other methods incorporated the use of fluorogenic stains, a cryotomy technique to yield thin (5-m) sections of biofilm communities and examination by fluorescence microscopy. The fluorogenic stains used in this approach included 5-cyano-2,3-ditolyl tetrazolium chloride (CTC), which indicates cellular electron transport activity and Rhodamine 123, which responds specifically to proton motive force. The use of these stains allowed the microscopic discrimination of physiologically active bacteria as well as heterogeneities of active cells within thicker biofilms. The results of experiments using these techniques with pure culture and binary population biofilms on stainless steel coupons indicated biocidal activity of chlorine-based disinfectants occurred initially at the bulk-fluid interface of the communities and progressed toward the substratum. This approach provided a unique opportunity to describe the spatial response of bacteria within biofilms to antimicrobial agents and address mechanisms explaining their comparative resistance to disinfection in a way that has not been possible using traditional approaches. Results obtained using this alternative approach were also consistently higher than PC data following disinfection. These observations suggest that traditional methods involving biofilm removal and bacterial enumeration by colony formation overestimate biocide efficacy. Hence the alternative approach described here more accurately indicates the ability of bacteria surviving disinfection to recover and grow as well as demonstrate spatial heterogeneities in cellular physiological activities within biofilms.  相似文献   

14.
AIMS: The influence of two disinfection techniques on natural biofilm development during drinking water treatment and subsequent distribution is compared with regard to the supply of a high-quality drinking water. METHODS AND RESULTS: The growth of biofilms was studied using the biofilm device technique in a real public technical drinking water asset. Different pipe materials which are commonly used in drinking water facilities (hardened polyethylene, polyvinyl chloride, steel and copper) were used as substrates for biofilm formation. Apart from young biofilms, several months old biofilms were compared in terms of material dependence, biomass and physiological state. Vital staining of biofilms with 5-cyano-2,3-ditolyl tetrazolium chloride (CTC) and the DNA-specific 4',6-diamidino-2-phenylindole (DAPI) staining resulted in a significant difference in physiological behaviour of biofilm populations depending on the disinfection technique. Compared with chlorine dioxide disinfection (0.12-0.16 mg l-1), the respiratory activities of the micro-organisms were increased on all materials during u.v. disinfection (u.v.254; 400 J m-2). The biofilm biocoenosis was analysed by in situ hybridization with labelled oligonucleotides specific for some subclasses of Proteobacteria. Using PCR and additional hybridization techniques, the biofilms were also tested for the presence of Legionella spp., atypical mycobacteria and enterococci. The results of the molecular-biological experiments in combination with cultivation tests showed that enterococci were able to pass the u.v. disinfection barrier and persist in biofilms of the distribution system, but not after chlorine dioxide disinfection. CONCLUSIONS: The results indicated that bacteria are able to regenerate and proliferate more effectively after u.v. irradiation at the waterworks, and chlorine dioxide disinfection appears to be more applicative to maintain a biological stable drinking water. SIGNIFICANCE AND IMPACT OF THE STUDY: As far as the application of u.v. disinfection is used for conditioning of critical water sources for drinking water, the efficiency of u.v. irradiation in natural systems should reach a high standard to avoid adverse impacts on human health.  相似文献   

15.
Protistan grazing on biofilms is potentially an important conduit enabling energy flow between microbial trophic levels. Contrary to the widely held assumption that protistan feeding primarily involves ingestion of biofilm cells, with negative consequences for the biofilm, this study demonstrated preferential grazing on the noncellular biofilm matrix by a ciliate, with selective ingestion of yeast and bacterial cells of planktonic origin over attached and biofilm-derived planktonic cells. Introducing a ciliate to two biofilm-forming Cryptococcus species, as well as two bacterial species in a model biofilm system, fluorescent probes were applied to determine ingestion of cellular and noncellular biofilm fractions. Fluoromicroscopy, as well as photometric quantification, confirmed that protistan grazing enhanced yeast biofilm metabolism, and an increase in biofilm biomass and viability. We propose that the extracellular polymeric matrix of biofilms may act as an interface regulating interaction between predator and prey, while serving as source of nutrients and energy for protists.  相似文献   

16.
The decontamination of implant surfaces represents the basic procedure in the management of peri-implant diseases, but it is still a challenge. The study aimed to evaluate the degradation of oral biofilms grown in situ on machined titanium (Ti) discs by cold atmospheric plasma (CAP). ~ 200 Ti discs were exposed to the oral cavities of five healthy human volunteers for 72?h. The resulting biofilms were divided randomly between the following treatments: CAP (which varied in mean power, treatment duration, and/or the gas mixture), and untreated and treated controls (diode laser, air-abrasion, chlorhexidine). The viability, quantity, and morphology of the biofilms were determined by live/dead staining, inoculation onto blood agar, quantification of the total protein content, and scanning electron microscopy. Exposure to CAP significantly reduced the viability and quantity of biofilms compared with the positive control treatments. The efficacy of treatment with CAP correlated with the treatment duration and plasma power. No single method achieved complete biofilm removal; however, CAP may provide an effective support to established decontamination techniques for treatment of peri-implant diseases.  相似文献   

17.
Abstract

Although disinfection procedures are widely implemented in food environments, bacteria can survive and present increased virulence/resistance. Since little is known about these phenomena regarding biofilms, this study aimed to investigate the effect of chemical disinfection on biofilm-derived cells of Salmonella Enteritidis. Using a reference strain (NCTC 13349) and a food isolate (350), biofilm susceptibility to benzalkonium chloride (BAC), sodium hypochlorite (SH) and hydrogen peroxide (HP) was evaluated and biofilms were exposed to sub-lethal concentrations of each disinfectant. Biofilm-derived cells were characterized for their biofilm forming ability, antibiotic resistance and expression of virulence-associated genes. Except for a few instances, disinfectant exposure did not alter antibiotic susceptibility. However, SH and HP exposure enhanced the biofilm forming ability of Salmonella Enteritidis NCTC 13349. After BAC and HP exposure, biofilm-derived cells presented a down-regulation of rpoS. Exposure to BAC also revealed an up-regulation of invA, avrA and csgD on Salmonella Enteritidis NCTC 13349. The results obtained suggest that biofilm-derived cells that survive disinfection may represent an increased health risk.  相似文献   

18.
Abstract The phylogenetic composition, three-dimensional structure and dynamics of bacterial communities in river biofilms generated in a rotating annular reactor system were studied by fluorescent in situ hybridization (FISH) and confocal laser scanning microscopy (CLSM). Biofilms grew on independently removable polycarbonate slides exposed in the reactor system with natural river water as inoculum and sole nutrient and carbon source. The microbial biofilm community developed from attached single cells and distinct microcolonies via a more confluent structure characterized by various filamentous bacteria to a mature biofilm rich in polymeric material with fewer cells on a per-area basis after 56 days. During the different stages of biofilm development, characteristic microcolonies and cell morphotypes could be identified as typical features of the investigated lotic biofilms. In situ analysis using a comprehensive suite of rRNA-targeted probes visualized individual cells within the alpha-, beta-, and gamma-Proteobacteria as well as the Cytophaga–Flavobacterium group as major parts of the attached community. The relative abundance of these major groups was determined by using digital image analysis to measure specific cell numbers as well as specific cell area after in situ probing. Within the lotic biofilm community, 87% of the whole bacterial cell area and 79% of the total cell counts hybridized with a Bacteria specific probe. During initial biofilm development, beta-Proteobacteria dominated the bacterial population. This was followed by a rapid increase of alpha-Proteobacteria and bacteria affiliated to the Cytophaga–Flavobacterium group. In mature biofilms, alpha-Proteobacteria and Cytophaga–Flavobacteria continued to be the prevalent bacterial groups. Beta-Proteobacteria constituted the morphologically most diverse group within the biofilm communities, and more narrow phylogenetic staining revealed the importance of distinct phylotypes within the beta1-Proteobacteria for the composition of the microbial community. The presence of sulfate-reducing bacteria affiliated to the Desulfovibrionaceae and Desulfobacteriaceae confirmed the range of metabolic potential within the lotic biofilms. Received: 24 September 1998; Accepted: 17 February 1999  相似文献   

19.
Abstract

The persistence of microorganisms as biofilms on dry surfaces resistant to the usual terminal cleaning methods may pose an additional risk of transmission of infections. In this study, the Centre for Disease Control (CDC) dry biofilm model (DBM) was adapted into a microtiter plate format (Model 1) and replicated to create a novel in vitro model that replicates conditions commonly encountered in the healthcare environment (Model 2). Biofilms of Staphylococcus aureus grown in the two models were comparable to the biofilms of the CDC DBM in terms of recovered log10 CFU well?1. Assessment of the antimicrobial tolerance of biofilms grown in the two models showed Model 2 a better model for biofilm formation. Confirmation of the biofilms’ phenotype with an extracellular matrix deficient S. aureus suggested stress tolerance through a non-matrix defined mechanism in microorganisms. This study highlights the importance of conditions maintained in bacterial growth as they affect biofilm phenotype and behaviour.  相似文献   

20.
Microbial biofilms contribute to biofouling in a wide range of processes from medical implants to processed food. The extracellular polymeric substances (EPS) are implicated in imparting biofilms with structural stability and resistance to cleaning products. Still, very little is known about the structural role of the EPS in Gram-positive systems. Here, we have compared the cell surface and EPS of surface-attached (biofilm) and free-floating (planktonic) cells of Bacillus cereus, an organism routinely isolated from within biofilms on different surfaces. Our results indicate that the surface properties of cells change during biofilm formation and that the EPS proteins function as non-specific adhesions during biofilm formation. The physicochemical traits of the cell surface and the EPS proteins give us an insight into the forces that drive biofilm formation and maintenance in B. cereus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号