首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
M Dwidar  S Hong  M Cha  J Jang  RJ Mitchell 《Biofouling》2012,28(7):671-680
This study evaluated predation with Bdellovibrio bacteriovorous and CO(2) aerosol spraying to remove fluorescent Escherichia coli biofilms from silicon chips. Initial tests found that 7.5×10(5) viable E. coli cells were dispersed into the surrounding environment during aerosol treatment. The total number dispersed per test decreased to only 16 for predated biofilms. This is nearly 50,000-fold lower compared to untreated chips and 1000-fold lower compared to chips soaked in HEPES buffer only. Both scanning electron microscopy (SEM) and fluorescent microscopy analyses confirmed that predation alone did not completely eradicate the biofilm population. When used in conjunction with CO(2) aerosols, however, no fluorescent signals remained and the SEM pictures showed a pristine surface devoid of bacteria. Consequently, this study demonstrates these two methods can be used with each other to significantly remove biofilms from surfaces while also significantly reducing the likelihood of human exposure to potential pathogens during their removal.  相似文献   

2.
The present study evaluated the removal of Escherichia coli XL1-blue biofilms using periodic jets of carbon dioxide aerosols (a mixture of solid and gaseous CO2) with nitrogen gas. The aerosols were generated by the adiabatic expansion of high-pressure CO2 gas through a nozzle and used to remove air-dried biofilms. The areas of the biofilms were measured from scanning electron micrographs before and after applying the aerosols. The removal efficiency of the aerosol treatment was measured with various air-drying times of the biofilms before the treatment, surface materials, and durations of CO2 aerosols in each 8-s aerosol–nitrogen cleaning cycle. Nearly 100% of the fresh biofilms were removed from the various surfaces very reliably within 90 s. This technique can be useful for removing unsaturated biofilms on solid surfaces and has potential applications for cleaning bio-contaminated surfaces.  相似文献   

3.
Many techniques to inactivate or remove biofilms in a wide variety of applications have been developed. Most of these techniques have been applied to biofilms at their initial stage of growth, since they are generally difficult to eradicate once established. The removal of established biofilms has received relatively little attention. In this paper, we report the effectiveness of periodic jets of carbon dioxide aerosols (a mixture of solid and gaseous CO2) to remove Escherichia coli (XL1-blue) biofilms of different ages (up to 3 weeks) on silicon surfaces. The biofilms were not immersed in liquids after growth/rinsing and were treated with the CO2 aerosols. The CO2 aerosols were generated by the adiabatic expansion of high-pressure CO2 gas through a nozzle. The surface area of the biofilms was measured from fluorescent images before and after applying the aerosols for 11, 20, and 30 cycles (each cycle: 8 sec), to compute the removal efficiency. The removal efficiencies decreased with increasing growth time and for the 3-week-old biofilms, they ranged from 91.5 to 99.6% within 4 min. This technique was highly effective for removing both fresh and old biofilms, but some of the biofilm debris such as growth media remained. Further, this CO2 aerosol technique was compared with other removal techniques.  相似文献   

4.
Eun-Ho Kim  Mohammed Dwidar 《Biofouling》2014,30(10):1225-1233
This study evaluated the co-application of bacterial predation by Bdellovibrio bacteriovorus and either alum coagulation or powdered activated carbon adsorption to reduce fouling caused by Escherichia coli rich feed solutions in dead-end microfiltration tests. The flux increased when the samples were predated upon or treated with 100 ppm alum or PAC, but co-treatment with alum and predation gave the best flux results. The total membrane resistance caused by the predated sample was reduced six-fold when treated with 100 ppm PAC, from 11.8 to 1.98 × 1011 m?1, while irreversible fouling (Rp) was 2.7-fold lower. Treatment with 100 ppm alum reduced the total resistance 14.9-fold (11.8 to 0.79 × 1011 m?1) while the Rp decreased 4.25-fold. SEM imaging confirmed this, with less obvious fouling of the membrane after the combined process. This study illustrates that the combination of bacterial predation and the subsequent removal of debris using coagulation or adsorption mitigates membrane biofouling and improves membrane performance.  相似文献   

5.
Mitigation of increased concentrations of CO2 in the atmosphere by plants may be more efficient in saline systems with soils lower in organic matter than in other freshwater systems. In saline systems, decomposition rates may be lower and potential soil carbon storage higher than in fresh water systems. The effects of salinity, plant species and time on CO2 surface flux and dissolved organic carbon (DOC) leached during irrigation were determined in the laboratory in microcosms containing sand amended with residues of two halophytes, Atriplex nummularia and Salicornia bigelovii, and one glycophyte, Triticum aestivum. Surface flux of CO2 and DOC leached during decomposition were monitored for 133 days at 24 °C in microcosms containing different plant residue (5% w/w). Microcosms were irrigated every 14 days with distilled water or seawater adjusted to 10, 20, or 40 g L-1 salts. CO2 flux and DOC leached were significantly higher from microcosms amended with A. nummularia residue compared to S. bigelovii or T. aestivum at all salinities and decreased significantly over time for all plant species. Irrigating with water of high salinity, 40 g L-1, compared to distilled water resulted in a decrease in CO2 surface flux and DOC in leachate, but differences were not significant at all sampling dates. Results indicate that plant residue composition, as well as increased salinity, affect CO2 surface flux and DOC in leachate during plant residue decomposition and may be an important consideration for C storage in saline systems.  相似文献   

6.
We studied the responses of an aquatic microcosm in two different eutrophic conditions to elevated atmospheric CO2concentration. We used microcosms, consisting of Escherichia coli(bacteria), Tetrahymena thermophila(protozoa) and Euglena gracilis(algae), in salt solution with 50 and 500 mg l–1of proteose peptone (eutrophic and hypereutrophic conditions, respectively) under ambient and elevated CO2(1550±100 l l–1) conditions. The density of E. gracilisincreased significantly under elevated CO2in both eutrophic and hypereutrophic microcosms. In the eutrophic microcosm, the other elements were not affected by elevated CO2. In the hypereutrophic microcosm, however, the concentrations of ammonium and phosphate decreased significantly under elevated CO2. Furthermore, the density of T. thermophilawas maintained in higher level than that in the microcosm with ambient CO2and the density of E. coliwas decreased by CO2enrichment. Calculating the carbon biomasses of T. thermophilaand E. colifrom their densities, the changes in their biomasses by CO2enrichment were little as compared with large increase of E. graciliscarbon biomass converted from chlorophyll a. From the responses to elevated CO2in the subsystems of the hypereutrophic microcosm consisting of either one or two species, the increase of E. graciliswas a direct effect of elevated CO2, whereas the changes in the density of E. coliand T. thermophilaand the decreases in the concentration of ammonium and phosphate are considered to be indirect effects rather than direct effects of elevated CO2. The indirect effects of elevated CO2were prominent in the hypereutrophic microcosm.  相似文献   

7.
We measured F420-dependent N5,N10-methylenetetrahydro-methanopterin dehydrogenase, N5, N10-methenyltetrahydro-methanopterin cyclohydrolase, and F420-reducing hydrogenase levels in Methanosarcina barkeri grown on various substrates. Variation in dehydrogenase levels during growth on a specific substrate was usually <3-fold, and much less for cyclohydrolase. H2–CO2-, methanol-, and H2–CO2+ methanol-grown cells had roughly equivalent levels of dehydrogenase and cyclohydrolase. In acetate-grown cells cyclohydrolase level was lowered 2 to 3-fold and dehydrogenase 10 to 80-fold; this was not due to repression by acetate, since, if cultures growing on acetate were supplemented with methanol or H2–CO2, dehydrogenase levels increased 14 to 19-fold, and cyclohydrolase levels by 3 to 4-fold. Compared to H2–CO2- or methanol-grown cells, acetate-or H2–CO2 + methanol-grown cells had lower levels of and less growth phase-dependent variation in hydrogenase activity. Our data are consistent with the following hypotheses: 1. M. barkeri oxidizes methanol via a portion of the CO2-reduction pathway operated in the reverse direction. 2. When steps from CO2 to CH3-S-CoM in the CO2-reduction pathway (in either direction) are not used for methanogenesis, hydrogenase activity is lowered.Abbreviations MF methanofuran - H4MPT 5,6,7,8-tetrahydromethanopterin - HS-HTP 7-mercaptoheptanoylthreonine phosphate - CoM-S-S-HTP heterodisulfide of HS-CoM and HS-HTP - F420 coenzyme F420 (a 7,8-didemethyl-8-hydroxy-5-deaza-riboflavin derivative) - H2F420 reduced coenzyme F420 - HC+=H4MPT N5,N10-methenyl-H4MPT - H2C=H4MPT N5,N10-methylene-H4MPT - H3C=H4MPT N5-methyl-H4MPT - BES 2-bromoethanesulfonic acid  相似文献   

8.
CO2exchange in the leafy and skeletal parts of attached shoots of Pinus sylvestrisL. was measured with an infrared gas-analyzer in an open differential system during daylight hours. The 14CO2assimilation rates in the leafy parts of shoots and 14CO2evolution from current photosynthetic products in the lower skeletal part of shoots were measured in afternoons. Chlorophyll content was measured in the needles of the same shoot. The carbon of exported assimilates contributed only about 4% to CO2exchange in the heterotrophic tree tissues. Only this component of CO2evolution from the surface of the skeletal part of the tree was related to the losses of the net primary photosynthetic production (NPP) in the aboveground part of the pine stand during the current growth period.  相似文献   

9.
The assimilation of 14CO2 into the C4 acids malate and aspartate by leaves of C3, C4 and C3–C4 intermediate Flaveria species was investigated near the CO2 compensation concentration * in order to determine the potential role of phosphoenolpyruvate (PEP) carboxylase (EC 4.1.1.31) in reducing photorespiration in the intermediates. Relative to air concentrations of CO2, the proportion of CO2 fixed by PEP carboxylase at * increased in all six C3–C4 intermediate species examined. However, F. floridana J.R. Johnston and F. ramosissima Klatt were shown to be markedly less responsive to reduced external CO2, with only about a 1.6-fold enhancement of CO2 assimilation by PEP carboxylase, as compared to a 3.0- to 3.7-fold increase for the other C3–C4 species examined, namely, F. linearis Lag., F. anomala B.L. Robinson, F. chloraefolia A. Gray and F. pubescens Rydb. The C3 species F. pringlei Gandoger and F. cronquistii A.M. Powell exhibited a 1.5- and 2.9-fold increase in labeled malate and aspartate, respectively, at *. Assimilation of CO2 by PEP carboxylase in the C4 species F. trinervia (Spreng.) C. Mohr, F. australasica Hook., and the C4-like species F. brownii A.M. Powell was relatively insensitive to subatmospheric levels of CO2. The interspecific variation among the intermediate Flaverias may signify that F. floridana and F. ramosissima possess a more C4-like compartmentation of PEP carboxylase and ribulose-1,5-bisphosphate carboxylase/oxygenase (EC 4.1.1.39) between the mesophyll and bundle-sheath cells. Chasing recently labeled malate and aspartate with 12CO2 for 5 min at * resulted in an apparent turnover of 25% and 30% of the radiocarbon in these C4 acids for F. ramosissima and F. floridana, respectively. No substantial turnover was detected for F. linearis, F. anomala, F. chloraefolia or F. pubescens. With the exception of F. floridana and F. ramosissima, it is unlikely that enhanced CO2 fixation by PEP carboxylase at the CO2 compensation concentration is a major mechanism for reducing photorespiration in the intermediate Flaveria species. Moreover, these findings support previous related 14CO2-labeling studies at air-levels of CO2 which indicated that F. floridana and F. ramosissima were more C4-like intermediate species. This is further substantiated by the demonstration that F. floridana PEP carboxylase, like the enzyme in C4 plants, undergoes a substantial activation (2.2-fold) upon illuminating dark-adapted green leaves. In contrast, light activation was not observed for the enzyme in F. linearis or F. chloraefolia.Abbreviations and symbols PEP phosphoenolpyruvate - Rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase - CO2 compensation concentration - * a subatmospheric level of CO2 approximating Published as Paper No. 8832, Journal Series, Nebraska Agricultural Research Division  相似文献   

10.
Summary The growth and photosynethetic responses to atmospheric CO2 enrichment of 4 species of C4 grasses grown at two levels of irradiance were studied. We sought to determine whether CO2 enrichment would yield proportionally greater growth enhancement in the C4 grasses when they were grown at low irradiance than when grown at high irradiance. The species studied were Echinochloa crusgalli, Digitaria sanguinalis, Eleusine indica, and Setaria faberi. Plants were grown in controlled environment chambers at 350, 675 and 1,000 l 1-1 CO2 and 1,000 or 150 mol m-2 s-1 photosynthetic photon flux density (PPFD). An increase in CO2 concentration and PPFD significantly affected net photosynthesis and total biomass production of all plants. Plants grown at low PPFD had significantly lower rates of photosynthesis, produced less biomass, and had reduced responses to increases in CO2. Plants grown in CO2-enriched atmosphere had lower photosynthetic capacity relative to the low CO2 grown plants when exposed to lower CO2 concentration at the time of measurement, but had greater rate of photosynthesis when exposed to increasing PPFD. The light level under which the plants were growing did not influence the CO2 compensation point for photosynthesis.  相似文献   

11.
In an open-top chamber experiment located in a mountain stand of 14-years-old Norway spruce (Picea abies [L.] Karst.), trees were continuously exposed to either ambient CO2 concentration (A), or ambient + 350 µmol mol–1 (E) over four growing seasons. Respiration rates of different woody parts (stem, branches, coarse roots) were measured during the last growing season. The calculated increase in the respiration rate related to a 10 °C temperature change (Q10) was different in stem compared to branches and roots. Differences between the E and A variants were statistically significant only for roots in the autumn. Stem maintenance respiration (RMs) measured in April and November (periods of no growth activity) were not different. The stem respiration values (Rs) were recalculated to a standard temperature of 15 °C to estimate the seasonal course. The obtained Rs differed significantly between used variants during July and August. At the end of the season, Rs in E decreased slower than in A, indicating some prolongation of the physiological activity under the elevated CO2 concentration. The total stem respiration carbon losses for the investigated growing season (May – September) were higher for A (2.32 kg(C) m–2 season–1) compared to E (2.12 kg(C) m–2 season–1). The respiration rates of the whorl branches (Rb) were lower compared with the stem respiration but not significantly different between the used variants. The root respiration rate was increased in E variant.  相似文献   

12.
Soybean plants (Glycine max (L.) Merr. c.v. Williams) were grown in CO2 controlled, natural-light growth chambers under one of four atmospheric CO2 concentrations ([CO2]): (1) 250 μmol mol–1 24 h d–1[250/250]; (2) 1000 μmol mol–1 24 h d–1[1000/1000]; (3) 250 μmol mol–1 during daylight hours and 1000 μmol mol–1 during night-time hours [250/1000] or (4) 1000 μmol mol–1 during daylight hours and 250 μmol mol–1 during night-time hours [1000/250]. During the vegetative growth phase few physiological differences were observed between plants exposed to a constant 24 h [CO2] (250/250 and 1000/1000) and those that were switched to a higher or lower [CO2] at night (250/1000 and 1000/250), suggesting that the primary physiological responses of plants to growth in elevated [CO2] is apparently a response to daytime [CO2] only. However, by the end of the reproductive growth phase, major differences were observed. Plants grown in the 1000/250 regime, when compared with those in the 1000/1000 regime, had significantly more leaf area and leaf mass, 27% more total plant dry mass, but only 18% of the fruit mass. After 12 weeks of growth these plants also had 19% higher respiration rates and 32% lower photosynthetic rates than the 1000/1000 plants. As a result the ratio of carbon gain to carbon loss was reduced significantly in the plants exposed to the reduced night-time [CO2]. Plants grown in the opposite switching environment, 250/1000 versus 250/250, showed no major differences in biomass accumulation or allocation with the exception of a significant increase in the amount of leaf mass per unit area. Physiologically, those plants exposed to elevated night-time [CO2] had 21% lower respiration rates, 14% lower photosynthetic rates and a significant increase in the ratio of carbon gain to carbon loss, again when compared with the 250/250 plants. Biochemical differences also were found. Ribulose-1,5-bisphosphate carboxylase/ oxygenase concentrations decreased in the 250/ 1000 treatment compared with the 250/250 plants, and phosphoenolpyruvate carboxylase activity decreased in the 1000/250 compared with the 1000/1000 plants. Glucose, fructose and to a lesser extent sucrose concentrations also were reduced in the 1000/250 treatment compared with the 1000/1000 plants. These results indicate that experimental protocols that do not maintain elevated CO2 levels 24 h d–1 can have significant effects on plant biomass, carbon allocation and physiology, at least for fast-growing annual crop plants. Furthermore, the results suggest some plant processes other than photosynthesis are sensitive to [CO2] and under ecologically relevant conditions, such as high night-time [CO2], whole plant carbon balance can be affected.  相似文献   

13.
Manure slurries (n = 3) prepared from the feces and urine of lactating dairy cattle (1 part urine, 2.2 parts feces, and 6.8 parts distilled water) had an initial pH of 8.6 ± 0.1; dissolved carbonate concentrations of 48 ± 4 mm, and Escherichia coli counts of 5.9 ± 0.7 logs per ml slurry. The pH of untreated slurries declined to pH 7.0 ± 0.1 by the 10th day of incubation, and the E. coli count increased approximately 10-fold (P < 0.05). When slurries were treated with Na2CO3, K2CO3, NaHCO3 or Na2CO3·NaHCO3 (0 to 16 g/kg slurry), the dissolved carbonates increased in a linear fashion, but only Na2CO3 and K2CO3 (8 g/kg or greater) or Na2CO3·NaHCO3 (16 g/kg) ensured an alkaline pH. Even relatively low concentrations of Na2CO3 or K2CO3 (8 or 12 g/kg) caused a decrease in E. coli viability (P < 0.05), and E. coli could not be detected if 16 g/kg was added (day 5 or 10 of incubation). Na2CO3·NaHCO3 also caused a decrease in E. coli viability, (P < 0.05), but some E. coli (approximately 104 cells per g) were detected on day 10 even if the concentration was 16 g/kg. NaHCO3 did not prevent the decrease in pH or cause a decrease in E. coli numbers (P > 0.05). Calculations based on the Henderson-Hasselbalch equation (pH and dissolved carbonates) indicated that little E. coli killing was noted until the dissolved carbonate anion concentrations (CO3 −2) were greater than 1 mm, but bicarbonate anion (HCO3 ) concentrations as high as 180 mm did not affect E. coli viability. These results are consistent with the idea that carbonate anion has antimicrobial properties and can kill E. coli in dairy cattle manure. Received: 20 December 2000 / Accepted: 7 February 2001  相似文献   

14.
该研究2011年1月开始在鼎湖山针阔叶混交林(混交林)进行模拟酸雨实验,设置4个不同处理水平,即对照(CK)(pH为4.5左右的天然湖水)、T_1(pH=4.0)、T_2(pH=3.25)和T_3(pH=2.5)。2013年1—12月对不同酸雨强度处理下的森林凋落物CO_2释放速率进行为期1 a的连续观测,探讨酸雨对混交林凋落物C排放的影响。结果表明:凋落物CO2释放通量在对照样方为(1 507.41±155.19) g CO_2·m~(-2)·a~(-1),其中湿季和旱季分别占年通量的68.7%和31.3%。模拟酸雨抑制了森林凋落物CO_2释放,与CK相比,T_2和T_3处理下的CO_2释放通量分别显著降低15.4%和42.7%(P0.05);且这种抑制作用具有季节差异性,处理间的显著差异只出现在湿季。凋落物CO_2释放速率与土壤温度和土壤湿度分别呈显著指数相关和显著直线相关,同时,酸雨处理降低了凋落物CO_2释放的温度敏感性。混交林凋落物CO_2释放在模拟酸雨下的抑制效应与土壤累积酸化而导致的土壤微生物活性变化有关,表现为模拟酸雨作用下土壤pH值和微生物量碳显著下降。上述结果说明酸雨是影响混交林土壤碳循环的重要因子之一。  相似文献   

15.
Response of Aphanizomenon ovalisporum to certain environmental parameters was studied to gain a better understanding of the conditions which may have stimulated its autumnal bloom in Lake Kinneret. Optimal temperature for A. ovalisporum growth was 26–30?°C, resulting in growth rates of 0.2–0.3?day?1, similar to those observed in the lake. Maximal rate of CO2 fixation (assimilation numbers of 6–8?μg?C?μg?1?Chl?h?1) was obtained at low irradiances (I k of 40–100?μmol?photons?m?2?s?1), 200?μM Pi and low N:Pi ratios. Growth was strongly affected by phosphorus availability, reaching a maximum at Pi concentrations above 40?μM. The high demand for phosphorus was indicated by an increase in alkaline phosphatase activity. The relative abundance of Pi in the cells increased by 4-fold in Pi-rich compared with Pi-limited cultures. Uptake of Pi was faster in Pi-depleted compared with Pi-sufficient cells. Maximal photosynthetic rates and K1/2(HCO3 ?) were 140–220?μmol?O2?mg?1?Chl?h?1 and 10–24?μM, respectively. At pH 7.0 the K 1/2(CO2) was 2.2 and fell to 0.04?μM at pH 9.0. These data indicated that A. ovalisporum is a HCO3 ? user, and can explain its high photosynthetic rates during the bloom, under high pH and low dissolved CO2 conditions. Na+ concentrations of about 5?mM were essential for A. ovalisporum growth at high pH approaching values in the lake.  相似文献   

16.
Bunce  J.A. 《Photosynthetica》2000,38(1):83-89
Leaves developed at high irradiance (I) often have higher photosynthetic capacity than those developed at low I, while leaves developed at elevated CO2 concentration [CO2] often have reduced photosynthetic capacity compared with leaves developed at lower [CO2]. Because both high I and elevated [CO2] stimulate photosynthesis of developing leaves, their contrasting effects on photosynthetic capacity at maturity suggest that the extra photosynthate may be utilized differently depending on whether I or [CO2] stimulates photosynthesis. These experiments were designed to test whether relationships between photosynthetic income and the net accumulation of soluble protein in developing leaves, or relationships between soluble protein and photosynthetic capacity at full expansion differed depending on whether I or [CO2] was varied during leaf development. Soybean plants were grown initially with a photosynthetic photon flux density (PPFD) of 950 µmol m–2 s–1 and 350 µmol [CO2] mol–1, then exposed to [CO2] ranging from 135 to 1400 µmol mol–1 for the last 3 d of expansion of third trifoliolate leaves. These results were compared with experiments in which I was varied at a constant [CO2] of 350 µmol mol–1 over the same developmental period. Increases in area and dry mass over the 3 d were determined along with daily photosynthesis and respiration. Photosynthetic CO2 exchange characteristics and soluble protein content of leaves were determined at the end of the treatment periods. The increase in leaflet mass was about 28 % of the dry mass income from photosynthesis minus respiration, regardless of whether [CO2] or I was varied, except that very low I or [CO2] increased this percentage. Leaflet soluble protein per unit of area at full expansion had the same positive linear relationship to photosynthetic income whether [CO2] or I was varied. For variation in I, photosynthetic capacity varied directly with soluble protein per unit area. This was not the case for variation in [CO2]. Increasing [CO2] reduced photosynthetic capacity per unit of soluble protein by up to a factor of 2.5, and photosynthetic capacity exhibited an optimum with respect to growth [CO2]. Thus CO2 did not alter the relationship between photosynthetic income and the utilization of photosynthate in the net accumulation of soluble protein, but did alter the relationship between soluble protein content and photosynthetic characteristics in this species.  相似文献   

17.
Enhanced soil respiration in response to elevated atmospheric CO2 has been demonstrated, and ectomycorrhizal (ECM) fungi are of particular interest since they partition host-derived photoassimilates belowground. Although a strong response of ECM fungi to elevated CO2 has been shown, little is still known about the functional diversity among species. We studied carbon (C) partitioning in mycorrhizal Scots pine seedlings in response to short-term CO2 enrichment, using seven ECM species with different ecological strategies. Mycorrhizal associations were synthesised and seedlings grown in large Petri dishes containing peat:vermiculite and nutrient solution for 10–15 weeks, after which half of the microcosms were exposed to elevated CO2 treatment (710 ppm) for 15 days and the other half were kept in ambient CO2 treatment. Partitioning of C was quantified by pulse labelling the seedlings with 14CO2 and examining the distribution of labelled assimilates in shoot, root and extraradical mycelial compartments by destructive harvest and liquid scintillation counting. Fungal biomass was determined with PLFA analysis. The respiratory loss of 14CO2 was on average greater in the elevated CO2 treatment for most species compared to the ambient CO2 treatment. More label was retrieved in the shoots in the ambient CO2 treatment compared to elevated CO2 (significant for P. involutus and P. fallax). Greater amounts of label were found in the extraradical mycelial compartment in all species (except P. involutus) in elevated CO2 compared to ambient CO2 (significant for L. bicolor, P. byssinum, P. fallax and R. roseolus). Fungal biomass production increased significantly with elevated CO2 for two species (H. velutipes and A. muscaria); three species (P. fallax, P. involutus and R. roseolus) showed a similar but non-significant trend, whereas L. bicolor and P. byssinum produced less biomass in elevated CO2 compared to ambient CO2. When 14C in the mycelial compartment and respiration was expressed per unit fungal PLFA the difference between CO2 treatments disappeared. We demonstrated that different ECM fungal isolates respond differently in C partitioning in response to CO2 enrichment. These results suggest that under certain growth conditions, when nutrients are not limiting, ECM fungi respond rapidly to increasing C-availability through changed biomass production and respiration.  相似文献   

18.
The retention of a surrogate pathogenic bacterium, Escherichia coliT , in Pseudomonas aeruginosa biofilms (with various EPS excreting capacities) was investigated using a laboratory flow cell system. The structural characteristics of the biofilm, as well as the quantity of E. coliT retained in the biofilm, were assessed using confocal laser scanning microscopy coupled with image analysis. In addition, the total interaction energy between E. coliT and the P. aeruginosa biofilm was computed with the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory, which provided an additional context to explain the pathogen interaction in aquatic biofilms. The correlations between the quantity of detained E. coliT cells and the structural characteristics of the biofilm were analysed and the results indicated that the heterogeneity of the biofilm could create a quiescent zone leading to temporary retention of E. coliT within the biofilm. Overall, this study provided insights toward understanding the retention of pathogenic bacteria in environmental biofilms.  相似文献   

19.
Seasonal changes in foliage nitrogen (N) and carbon (C) concentrations and δ15N and δ13C ratios were monitored during a year in Erica arborea, Myrtus communis and Juniperus communis co-occurring at a natural CO2 spring (elevated [CO2], about 700 μmol mol−1) and at a nearby control site (ambient [CO2], 360 μmol mol−1) in a Mediterranean environment. Leaf N concentration was lower in elevated [CO2] than in ambient [CO2] for M. communis, higher for J. communis, and dependent on the season for E. arborea. Leaf C concentration was negatively affected by atmospheric CO2 enrichment, regardless of the species. C/N ratio varied concomitantly to N. Leaves in elevated [CO2] showed lower δ13C, and therefore likely lower water use efficiencies than leaves at the control site, regardless of the species, suggesting substantial photosynthetic acclimation under long-term CO2-enriched atmosphere. Leaves of E. arborea showed lower values of δ15N under elevated [CO2], but this was not the case of M. communis and J. communis foliage. The use of the resources and leaf chemical composition are affected by elevated [CO2], but such an effect varies during the year, and is species-dependent. The seasonal dependency and species specificity suggest that plants are able to exploit different available water and N resources within Mediterranean sites. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
On reaching the respiratory compensation point (RCP) during rapidly increasing incremental exercise, the ratio of minute ventilation (VE) to CO2 output (VCO2) rises, which coincides with changes of arterial partial pressure of carbon dioxide (P aCO2). Since P aCO2 changes can be monitored by transcutaneous partial pressure of carbon dioxide (PCO2,tc) RCP may be estimated by PCO2,tc measurement. Few available studies, however, have dealt with comparisons between PCO2,tc threshold (T AT) and lactic, ventilatory or gas exchange threshold (V AT), and the results have been conflicting. This study was designed to examine whether this threshold represents RCP rather than V AT. A group of 11 male athletes performed incremental excercise (25 W · min–1) on a cycle ergometer. The PCO2,tc at (44°C) was continuously measured. Gas exchange was computed breath-by-breath, and hyperaemized capillary blood for lactate concentration ([la]b) and P aCO2 measurements was sampled each 2 min. The T AT was determined at the deflection point of PCO2,tc curve where PCO2,tc began to decrease continuously. The V AT and RCP were evaluated with VCO2 compared with oxygen uptake (VO2) and VE compared with the VCO2 method, respectively. The PCO2,tc correlated with P aCO2 and end-tidal PCO2. At T AT, power output [P, 294 (SD 40) W], VO2 [4.18 (SD 0.57)l · min–1] and [la] [4.40 (SD 0.64) mmol · l–1] were significantly higher than those at V AT[P 242 (SD 26) W, VO2 3.56 (SD 0.53) l · min–1 and [la]b 3.52 (SD 0.75), mmol · l–1 respectively], but close to those at RCP [P 289 (SD 37) W; VO2 3.97 (SD 0.43) l · min and [la]b 4.19 (SD 0.62) mmol · l–1, respectively]. Accordingly, linear correlation and regression analyses showed that P, VO2 and [la]b at T AT were closer to those at RCP than at V AT. In conclusion, the T AT reflected the RCP rather than V AT during rapidly increasing incremental exercise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号