首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The metamorphic response of pediveliger larvae of Mytilus galloprovincialis to the neurotransmitter blockers chlorpromazine, amitriptyline, rauwolscine, idazoxan, atenolol and butoxamine, and to tetraethylammonium chloride (TEA) was investigated through a series of bioassays. Chlorpromazine, amitriptyline and idazoxin inhibited larval metamorphosis induced by 10?4 M epinephrine. The concentration that inhibited metamorphosis by 50% (IC50) for chlorpromazine and amitriptyline was 1.6 × 10?6 M and 6.6 × 10?5 M, respectively. Idazoxan was less effective with an IC50 of 4.4 × 1013 M. Moreover, these three inhibitors showed no toxicity at any of the concentrations tested. The larval metamorphic response to K+ was not inhibited by 10?3 M tetraethylammonium chloride after 96 h. Thus, the neurotransmitter blockers chlorpromazine and amitriptyline are inhibitors of larval metamorphosis, and will be useful tools for antifouling studies.  相似文献   

2.
3.
Yang JL  Satuito CG  Bao WY  Kitamura H 《Biofouling》2008,24(6):461-470
Pediveliger larvae of Mytilus galloprovincialis were subjected to a series of bioassays to investigate the induction of metamorphosis using neuroactive compounds, K(+), NH(4)(+) and organic solvents. Growth and survival of post-larvae obtained using ethanol and methanol were also observed. Epinephrine, phenylephrine, clonidine and metanephrine induced larval metamorphosis at 10(-6) to 10(-4) M in both 24-h and continuous exposure assays. In 24-h exposure assays, alpha-methyldopa at 5 x 10(-5) M and methoxyphenamine at 5 x 10(-5)-10(-4) M induced 55-94% metamorphosis. Similarly, excess K(+) at 3 x 10(-2) M induced 39% metamorphosis and NH(4)(+) at 1-5 x 10(-2) M induced 63-78% metamorphosis. The EC50s of seven organic solvents ranged from 0.04 to 0.82 M. Post-larvae that metamorphosed using ethanol and methanol survived as juveniles and grew at the same rate as those from microbial biofilm. Thus, the above compounds can be useful inducers of metamorphosis for antifouling studies using larvae and juveniles of M. galloprovincialis.  相似文献   

4.
Competent larvae of the marine gastropod Crepidula fornicata (L.) were induced to metamorphose (i.e., lose the velum) by elevating sea-water [KCl] by 5–50 mM. The response was optimal at 15–20-mM elevations, at which 50% metamorphosis was obtained in <4 h. Larvae that did not metamorphose during brief exposures (1–5 h) to elevated [KCl] generally maintained the larval form following transfer to control sea water, suggesting that competent larvae must be continuously immersed in the test solutions for metamorphosis to occur. The smallest larvae to respond to elevated [KCl] had shell lengths of ≈700–800 μm, the range of shell lengths within which larvae of this species become responsive to natural inducers. All larvae >≈1125 μm shell length metamorphosed in response to increased [KCl]. Rearing temperature may affect the size at which larvae of this species become responsive to K+. CaCl2 (20-mM concentration elevations), GABA (4×10−7, 4×10−6 M), and NaCl (10–20-mM concentration elevations) generally failed to trigger metamorphosis. Twenty-mM elevations of [RbCl] and [CsCl] induced 100% metamorphosis but the juveniles were immobile and died after several days. Elevating [KCl] appears to be a reliable way to assess competence and trigger metamorphosis in larvae of C. fornicata.  相似文献   

5.
The early effects of penconazole (PCZ) at relatively high concentration (10?4 to 5 × 10?4 M) on changes in pH and in titratable acidity of the medium, transmembrane electrical potential difference (Em), electrolyte leakage and cell morphology were investigated in Egeria densa leaves. At the lowest (10?4 M) concentration and in the presence of a very low (10 μM) K+ concentration, triazole induced an early, moderate hyperpolarization of Em, associated with a decrease of net K+ uptake, suggesting some increase in the passive permeability to K+. This Em hyperpolarization was no longer detectable at high (2 mM) K+out concentration. At high PCZ concentrations (3 × 10?4 M and 5 × 10?4 M) the early hyperpolarization detectable in the presence of a low K+out concentration became transient, and was followed by a marked depolarization. PCZ, at these concentrations, suppressed acidification of the medium, stimulated electrolyte leakage and, in the mesophyll cells, induced some shrinking of the cytoplasm and its disconnection from the cell walls. These results are interpreted as due to an early effect of this triazole leading to the disorganization of the plasma membrane.  相似文献   

6.
Summary In most sessile marine invertebrates, metamorphosis is dependent on environmental cues. Here we report that heat stress is capable of inducing metamorphosis in the hydroid Hydractinia echinata. The onset of heat-induced metamorphosis is correlated with the appearance of heat-shock proteins. Larvae treated with the metamorphosis-inducing agents Cs+ or NH4 + also synthesize heat-shock proteins. In heat-shocked larvae, the internal NH4 +-concentration increases. This fits the hypothesis that methylation plays a central role in control of metamorphosis. In the tunicate Ciona intestinalis, a heat shock is able to induce metamorphosis too. Offprint requests to: M. Walther  相似文献   

7.
Cell-free extracts of mycelial mats of Pgrenochaeta terrestris grown in stationary culture on synthetic glucose or sucrose - salts liquid media contained D-mannitol-1-Phosphate:NAD oxidoreductase (EC 1.1.1.17) activity. Greatest activity occurred early in the growth period. The optimum pH for the reduction of NAD+ in the presence of Fru-6-P was 7.4–7.5 while the optimum pH for the oxidation of NADH in the presence of Mtl-1-P was 8.1–8.2. The enzyme was stabilized to some extent in Tris-maleate buffer, pH 7.5, and by the addition of 10% (NH4)2SO4, to this buffer. A 10- to 16-fold purification was attained by a combination of (NH4)2SO4 fractionation and gel filtration on Sephadex G-100. The enzyme was relatively specific in its substrate and coenzyme requirements. The Km values were determined as: Fru-6-P - 3 × 10?4 M, Mtl-1-P - 1 × 10?4 M, and NAD+ and NADH - 3 × 10?5 M.  相似文献   

8.

The blue mussel Mytilus edulis L. is an important aquaculture and fouling species in northern seas. Although the general role of chemical cues for settlement of larvae of the blue mussel has been proposed, few studies have focused on induction of settlement and metamorphosis by pharmacological agents. In this study, the induction of larval settlement of the blue mussel by pharmacological compounds was investigated through a series of laboratory experiments with an aim of identifying artificial cues for laboratory bioassay systems in fouling and antifouling research. Gamma-aminobutiric acid (GABA), dihydroxyphenyl L-alanine (DOPA), isobutyl methylxanthine (IBMX) and acetylcholine chloride (ACH) at 10m 7-10m 2 M as well as KCl at 10-40 mM K+ in excess of the level in normal seawater were tested for their inductive effect on larval settlement. In filtered seawater (FSW) <9% of the larvae settled after 48 h. Elevated K+ and GABA levels had no effect on larval settlement and metamorphosis. DOPA at 10m 5 M and IBMX at 10m 6-10m 4 M induced 41-83% larval settlement and ACH at 10m 7-10m 5 M induced < 40% larval settlement. While the highest settlement rates were observed after 48 h exposure to the chemicals, most of the larvae settled within 24 h. Compounds at concentrations of 10m 3-10m 2 M were either toxic to larvae or retarded the growth of the post-larvae shell. Juveniles resulting from induction by lower concentrations of chemicals had a very high survival rate, completed metamorphosis and grew as well as the juveniles that metamorphosed spontaneously. IBMX at 10m 6-10m 4 M and L-DOPA at 10m 5 M are effective agents for induction of settlement and metamorphosis for future studies using juvenile M. edulis.  相似文献   

9.
Buoyancy of the gas-vacuolate alga Anabaena flosaquae Brébisson was measured under various levels of light, NH4+, and CO2. At high irradiance (50 μE · m?2·?1) the alga was non-buoyant regardless of the availability of CO2 and NH4+. At low irradiance (≤10 μE · m ?2· s?1) buoyancy was controlled by the availability of NH4+ and CO2. When NH4+ was abundant, algal buoyancy was high over a wide range of CO2 concentrations. In the absence of NH4+, algal buoyancy was reduced at high CO2 concentrations, however as the CO2 concentration declined below about 5 μmol · L?1, algal buoyancy increased. These results help explain why gas vacuolate, nitrogen-fixing blue-green algae often form surface blooms in eutrophic lakes.  相似文献   

10.
A laboratory-scale study was conducted in a 20.0-L sequencing batch reactor (SBR) to explore the feasibility of simultaneous removal of organic carbon and nitrogen from abattoir wastewater. The reactor was operated under three different combinations of aerobic-anoxic sequence, viz., (4+4), (5+3), and (5+4) h of total react period, with influent soluble chemical oxygen demand (SCOD) and ammonia nitrogen (NH4+-N) level of 2200 ± 50 and 125 ± 5 mg L?1, respectively. In (5+4) h cycle, a maximum 90.27% of ammonia reduction corresponding to initial NH4+-N value of 122.25 mg L?1 and 91.36% of organic carbon removal corresponding to initial SCOD value of 2215.25 mg L?1 have been achieved, respectively. The biokinetic parameters such as yield coefficient (Y), endogenous decay constant (kd), and half-velocity constant (Ks) were also determined to improve the design and operation of package effluent treatment plants comprising SBR units. The specific denitrification rate (qDN) during anoxic condition was estimated as 6.135 mg N/g mixed liquor volatile suspended solid (MLVSS)·h on 4-h average contact period. The value of Y, kd and Ks for carbon oxidation and nitrification were found to be in the range of 0.6225–0.6952 mg VSS/mg SCOD, 0.0481–0.0588 day?1, and 306.56–320.51 mg L?1, and 0.2461–0.2541 mg VSS/mg NH4+-N, 0.0324–0.0565 day?1, and 38.28–50.08 mg L?1, respectively, for different combinations of react periods.  相似文献   

11.
Competent larvae of different marine bivalve species were treated with GABA and epinephrine at different concentrations and times of exposure to test the ability of the drugs to induce settlement and metamorphosis. GABA induced both settlement and metamorphosis in the mussel Mytilus galloprovincialis, the clams Venerupis pullastra and Ruditapes philippinarum and the oyster Ostrea edulis. Maximum induction of settlement (>39%) was achieved after exposure of V. pullastra larvae to 10−4 M GABA; this concentration of GABA also induced the highest percentages of metamorphosis in the four species studied. Epinephrine was identified as an active inducer of settlement and metamorphosis in bivalve molluscs. Exposure to 10−5 M epinephrine induced significant levels of settlement in Mytilus, Venerupis and Ostrea. In contrast, epinephrine failed to induce settlement behaviour in Ruditapes. Maximum induction of metamorphosis was produced by 10−5 M epinephrine in mussels, clams and oysters; Ruditapes showed the highest percentage of metamorphosis (>78%). This is the first report in which the involvement of GABA in the settlement and metamorphosis of bivalve molluscan larvae is demonstrated. It was also recognised that epinephrine plays a role not only in inducing metamorphosis but also in initiating settlement.  相似文献   

12.
Nerve ganglia of third-instar larvae were treated with various doses of caffeine (5×10?4, 10?3, 5×10?3, 10?2 and 2×10?2 M) for 2 h at 25±1°C. The ganglia were fixed at set time intervals after treatment so that the effect of caffeine in different stages of the cell cycle could be observed. Chromatid aberrations were induced only when the caffeine was administered in G2 or approaching mitosis. No aberrations were observed after treatment in S or early G2. In relation to the different doses administered, a threshold effect was evidenced, the number of aberrations increasing in a marked way at doses exceeding 5×10?3 M. These data indicate, that the effect observed in Drosophila melanogaster is similar to that described by Kihlman in animals and plants treated with caffeine at temperatures below 30°C.Results obtained in non-cytological tests (non-disjunction, chromosome loss, lethal recessives, dominant lethals) have so far given incomplete indications as to the mutagenicity of caffeine in Drosophila. The results we have obtained with the cytological test seem to contribute to a better definition of the mutagenecity.  相似文献   

13.
Multiphasic Uptake of Ammonium by Soybean Roots   总被引:1,自引:0,他引:1  
Uptake of ammonium by intact soybean (Glycine max Merr. cv. Amsoy) plants can be represented by 3 phases of a single, multiphasic mechanism in the range 1.78 × 10-5-3.57 × 10-3M. Each phase covers a limited concentration range and obeys Michaelis-Menten kinetics. The multiphasic pattern of NH4+ uptake is remarkably consistent at all stages of soybean growth (20, 40, 60 and 80 days).  相似文献   

14.
Glucose-6-phosphate dehydrogenase (E.C. 1.1.1.49) was partially purified by fractionation with ammonium sulfate and phosphocellulose chromatography. The Km value for glucose-6-phosphate is 1.6 × 10?4 and 6.3 × 10?4M at low (1.0–6.0 × 10?4M) and high (6.0–30.0 × 10?4M) concentrations of the substrate, respectively. The Km value for NADP+ is 1.4 × 10?5M. The enzyme is inhibited by NADPH, 5-phosphoribosyl-1-pyrophosphate, and ATP, and it is activated by Mg2+, and Mn2+. In the presence of NADPH, the plot of activity vs. NADP+ concentration gave a sigmoidal curve. Inhibition of 5-phosphoribosyl-1-pyrophosphate and ATP is reversed by Mg2+ or a high pH. It is suggested that black gram glucose-6-phosphate dehydrogenase is a regulatory enzyme of the pentose phosphate pathway.  相似文献   

15.
Growth kinetics were evaluated for three yeast strains of the genus Saccharomyces. Two topfloating strains, SF 115 and SF 116 and one flocculant yeast SF 104 were analyzed in pure and mixed cultures in 1-liter continuous fermentation experiments in a chemostat. Growth was monitored for 72 h at 30°C in a medium containing sugarbeet molasses and 1.0 g/liter each of NH4H2PO4 and urea. SF 115 and SF 116 were found to have lower μmax values of 0.290 and 0.296 h?1, respectively, than SF 104, which had a μmax of 0.364 h?1. The two top-floating yeasts (SF 115 and SF 116) demonstrated greater affinity for the substrate and utilized substrates at a greater rate. They have K8 values of 4.03 × 10?3 M and 3.798 × 10?3 M, respectively, compared to 9.06 × 10?3 M for SF 104. A mixed culture of SF 116 and SF and SF 104 was found to have a μmax of 0.426 h?1 with a Ks of 6.924 × 10?3 M. SF 115 grown in mixed culture with SF 104 exhibited a μmax of 0.473 h?1 with a Ks of 7.975 × 10?3 M. In both cases, the SF 104 was the dominant microbe in mixed culture systems.  相似文献   

16.
Summary In Hydractinia metamorphosis from the swimming larval stage to the sessile polyp stage has been found to be inducible by several agents, including Li+, K+, Cs+, Rb+, diacylglycerol (DG), tetradecanoyl-phorbol-acetate (TPA) and some other tumour-promoting phorbol esters. Induction is antagonized by ouabain and compounds which are able to increase the internal level of S-adenosylmethionine (SAM). Based on the finding that Hydractinia larvae contain such compounds in a stored form, including N-methylpicolinic acid, N-methylnicotinic acid and N-trimethylglycine, as well as on the results of experiments with antagonists of SAM production and transmethylation, it has been argued that regulation of the internal SAM level plays a key role in the control of metamorphosis. However, it remains to be clarified whether the inducing agents act by decreasing the SAM level or by via different pathways. In the present study, substances chemically related to the substances known to induce or inhibit metamorphosis were tested for their metamorphosis-inducing abilities. Some were found to be effective, including NH4 +, methylamine, tetraethylammonium ions (TEA+), ethanolamine, Ba2+, Sr2+ and the diuretic, amiloride. It is of particular interest that in many organisms TPA and DG increase cytoplasmic pH while amiloride prevents a rise in pHi. Several of the substances known to trigger metamorphosis may increase the internal NH4 + concentration by hindering the export of the constantly produced NH4 + through K+ channels or through the Na+-H+ antiport. Treatment with Cs+ for 1 h increases the internal level of NH4 +. Produced and applied ammonia, as well as applied methylamine and ethanolamine, may act by accepting methyl groups, thus reducing the SAM level.  相似文献   

17.
The polyphenol oxidase (LsPPO) from a wild edible mushroom Lactarius salmonicolor was purified using a Sepharose 4B-L-tyrosine-p-amino benzoic acid affinity column. At the optimum pH and temperature, the KM and VMax values of LsPPO towards catechol, 4-methylcatechol and pyrogallol were determined as 0.025 M & 0.748 EU/mL, 1.809 × 10? 3 M & 0.723 EU/mL and 9.465 × 10? 3 M & 0.722 EU/mL, respectively.

Optimum pH and temperature values of LsPPO for the three substrates above ranged between the pH 4.5–11.0 and 5–50°C. Enzyme activity decreased due to heat denaturation with increasing temperature. Effects of a variety of classical PPO inhibitors were investigated opon the activity of LsPPO using catechol as the substrate. IC50 values for glutathione, p-aminobenzenesulfonamide, L-cysteine, L-tyrosine, oxalic acid, β-mercaptoethanol and syringic acid were determined as 9.1 × 10? 4, 2.3 × 10? 4 M, 1.5 × 10? 4 M, 3.8 × 10? 7 M, 1.2 × 10? 4 M, 4.9 × 10? 4 M, and 4 × 10? 4 M respectively. Thus L-tyrosine was by far the most effective inhibitor. Interestingly, sulfosalicylic acid behaved as an activator of LsPPO in this study.  相似文献   

18.
The effects of 5-HT and glutamate on dopamine synthesis and release by striatal synaptosomes were investigated and compared with the action of acetylcholine, which acts presynaptically on this system. 5-HT inhibited (28%) synthesis of [14C]dopamine from L-[U-14C]tyrosine, at 10-5M and above. This contrasts with the action of acetylcholine, which stimulated [14C]-dopamine synthesis by 24% at 10-4 M. Tissue levels of GABA were unaffected by either 5-HT or acetylcholine up to concentrations of 10-4 M. The inhibitory action of 5-HT (5 × 10?5 M and 2 × 10?4 M) on [19C]dopamine synthesis was completely abolished by methysergide (2 × 10?6 M). Higher concentrations of methysergide (10?4 M) or cyproheptadine (10?5 M) inhibited [14C]dopamine synthesis by 28% and 25%, respectively, when added alone to synaptosomes. However, only methysergide prevented the further inhibition of synthesis caused by 5-HT. At concentrations of 2 × 10?5 M and above, 5-HT stimulated [14C]dopamine release. This releasing action differed from that of acetylcholine, which occurred at lower concentrations (e.g., 10?6 M). Methysergide (up to 10?4 M) or cyproheptadine (2 × 10?4 M) did not reduce the 5-HT (5 × 10?5 M)-induced release of [14C]dopamine, but methysergide (10?4 M) showed a potentiation (49%) of this increased release. The stimulatory effects of 5-HT (2 × 10?5 M) and K+ (56 mM) on [14C]dopamine release were additive, indicating that two separate mechanisms were involved. However, when both agents were present the stimulatory effect of K+ (56 mM) on [14C]dopamine synthesis was not seen above the inhibitory effect of 5-HT. Glutamate (0.1-5 mM) did not affect [4C]dopamine release or its synthesis from L-[U-14C]tyrosine. It is concluded that 5-HT modulates the synthesis of dopamine in striatal nerve terminals through a presynaptic receptor mechanism, an action antagonised by methysergide. The releasing action of 5-HT apparently occurs through a separate mechanism which is also distinct from that involved in the response to K+ depolarisation.  相似文献   

19.
Both myoblasts and myotubes in cultures of clonal rat muscle cells have action potential Na+ ionophore activity. The ionophore is activated by batrachotoxin (K0.5 = 3 to 5 × 10?7 M) and veratridine (K0.5 = 4 to 6 × 10?5 M) which compete for the same activation site. As in denervated rat muscle, the ionophore of cultured muscle is 100 fold more resistant to inhibition by tetrodotoxin (K0.5 = 1.5 to 3 × 10?6 M) and 20 fold more resistant to inhibition by saxitoxin (K0.5 = 1.5 to 3 × 10?7 M) than in nerve, innervated muscle, or cultured neuroblastoma cells.  相似文献   

20.
Larvae of cnidarians need an external cue for metamorphosis to start. The larvae of various hydrozoa, in particular of Hydractinia echinata, respond to Cs+, Li+, NH4 + and seawater in which the concentration of Mg2+ ions is reduced. They further respond to the phorbolester, tetradecanoyl-phorbol-13-acetate (TPA) and the diacylglycerol (DAG) diC8, which both are argued to stimulate a protein kinase C. The only well-studied scyphozoa, Cassiopea spp., respond differently, i.e. to TPA and diC8 only. We found that larvae of the scyphozoa Aurelia aurita, Chrysaora hysoscella and Cyanea lamarckii respond to all the compounds mentioned. Trigonelline (N-methylnicotinic acid), a metamorphosis inhibitor found in Hydractinia larvae, is assumed to act by delivering a methyl group for transmethylation processes antagonising metamorphosis induction in Chrysaora hysoscella and Cyanea lamarckii. The three species tested are scyphozoa belonging to the subgroup of semaeostomeae, while Cassiopea spp. belong to the rhizostomeae. The results obtained may contribute to the discussion concerning the evolution of cnidarians and may help to clarify whether the way metamorphosis can be induced in rhizostomeae as a whole is different from that in hydrozoa and those scyphozoa belonging to the subgroup semaeostomeae. Electronic Publication  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号