首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Formation of microbial biofilms and slimes is a general and serious problem in the operation of paper machines. Studies of microbial populations in paper machine-derived biofilms have been conducted using standard microbiological procedures; however, the bacterial genera present in this type of samples as well as their diversity are quite poorly known. Here, the bacterial diversity of 38 process water and 22 biofilm samples from four different Finnish paper machines were analyzed by length heterogeneity analysis of PCR-amplified 16S ribosomal DNA (LH-PCR). In addition, sequencing of the amplified 16S rRNA gene from 69 clones was conducted for characterization of the bacterial genera present in biofilm and slime samples. The LH-PCR profiles of both the free-living (process waters) and immobilized (biofilms) bacteria were diverse at all stages of the papermaking process. Out of the 69 sequenced clones, 44 belonged to alpha-Proteobacteria, most of which were close to the nitrogen-fixing root nodule genera Sinorhizobium, Rhizobium and Azorhizobium. Other clones were assigned to beta- and gamma-Proteobacteria and the phylum Bacteroidetes. In addition, eight of the clones were assigned to a yet uncultivated phylum, TM7. Finally, epifluorescence microscopy revealed that Gram-negative bacteria were predominant in both the biofilm (65%) and process water (54%) samples and a small coccoid cell morphology was most common in all samples. Together, our results show that the analysis of microbial samples from paper machines using modern molecular biology techniques adds valuable information and should, therefore, be useful as a more specific and sensitive microbiological method for the paper industry. This information could further be applied, e.g., in the development of more specific and environmental friendly antimicrobial agents for paper mills.  相似文献   

2.
Early succession of bacterial biofilms in paper machines   总被引:1,自引:0,他引:1  
Formation of biofilms causes severe problems in paper machines, and hence financial costs. It would be preferable to prevent attachment of the primary-colonizing bacteria than to control the growth of secondary communities, which are sheltered by exopolysaccharide slime layers. We have therefore investigated the early succession of paper-machine biofilms by incubating stainless-steel test coupons in the process water-flow lines in two paper machines operating in slightly alkaline conditions in temperatures (45 and 49°C) supporting thermophilic microbes. Microbial succession was profiled using length heterogeneity analysis of PCR-amplified 16S rRNA genes (LH-PCR) and linking the sequence data of the created 16S rRNA gene libraries to the dominant LH-PCR peaks. Although the bacterial fingerprints obtained from the attached surface communities varied slightly in different samples, the biomarker signals of the dominating primary-colonizing bacterial groups remained high over time in each paper machine. Most of the 16S rRNA gene copies in the early biofilms were assigned to the genera Rhodobacter, Tepidimonas, and Cloacibacterium. The dominance of these sequence types decreased in the developing biofilms. Finally, as phylogenetically identical primary-colonizers were detected in the two different paper mills, the machines evidently had similar environmental conditions for bacterial growth and potentially a common source of contamination.  相似文献   

3.
Forty-one bacterial strains isolated from the headbox water of two machines in a Canadian paper mill were associated with the genera Asticcacaulis, Acidovorax, Bacillus, Exiguobacterium, Hydrogenophaga, Pseudomonas, Pseudoxanthomonas, Staphylococcus, Stenotrophomonas based on the sequence of their 16S rRNA genes. The metabolic profile of these strains were determined using Biolog EcoPlate, and the bacteria were divided into four metabolic groups. Metabolic profiles of the bacterial communities colonizing the headbox water of two paper machines was also determined weekly over a 1 year period. The only compound that was not reduced by the bacterial community was 2-hydroxybenzoic acid. Utilization frequency of the other carbon sources in the Biolog EcoPlate ranged from 3 to 100%. The metabolic profiles of the bacterial community did not vary considerably between the two paper machines. However, the metabolic profile varied among the sampling dates.  相似文献   

4.
The bacterial core communities of bulk water and corresponding biofilms of a more than 20-year-old drinking water network were compared using 16S rRNA single-strand confirmation polymorphism (SSCP) fingerprints based on extracted DNA and RNA. The structure and composition of the bacterial core community in the bulk water was highly similar (>70%) across the city of Braunschweig, Germany, whereas all biofilm samples contained a unique community with no overlapping phylotypes from bulk water. Biofilm samples consisted mainly of Alphaproteobacteria (26% of all phylotypes), Gammaproteobacteria (11%), candidate division TM6 (11%), Chlamydiales (9%), and Betaproteobacteria (9%). The bulk water community consisted primarily of Bacteroidetes (25%), Betaproteobacteria (20%), Actinobacteria (16%), and Alphaproteobacteria (11%). All biofilm communities showed higher relative abundances of single phylotypes and a reduced richness compared to bulk water. Only biofilm communities sampled at nearby sampling points showed similar communities irrespective of support materials. In all of our bulk water studies, the community composition determined from 16S rRNA was completely different from the 16S rRNA gene-based community composition, whereas in biofilms both molecular fractions resulted in community compositions that were similar to each other. We hypothesize that a higher fraction of active bacterial phylotypes and a better protection from oxidative stress in drinking water biofilms are responsible for this higher similarity.  相似文献   

5.
This paper is a brief review of data on bacterial biofilms that occur inside and outside of host organisms. Such biofilms are of great ecological and clinical importance. The role of interspecies communications in the development of bacterial biofilms and infectious diseases is particularly emphasized. Considerable attention is given to the electron microscopic study of biofilms formed by Salmonella typhimurium cells incubated as a broth culture in microtubes without aeration. Bacterial samples taken from the biofilm and planktonic culture grown in the same microtube were comparatively investigated by transmission electron microscopy.  相似文献   

6.
The success of invasive plant species is driven, in part, by feedback with soil ecosystems. Yet, how variation in belowground communities across latitudinal gradients affects invader distributions remains poorly understood. To determine the effect of soil communities on the performance of the noxious weed Cirsium arvense across its invaded range, we grew seedlings for 40 days in soils collected across a 699 km linear distance from both inside and outside established populations. We also described the mesofaunal and bacterial communities across all soil samples. We found that C. arvense typically performed better when grown in soils sourced from northern populations than from southern locations where it has a longer invasion history. We also found evidence that C. arvense performed best in soils sourced from outside invaded patches, although this was not consistent across all sites. The bacterial community showed a significant increase in the magnitude of compositional change in invaded sites at higher latitudes, while the mesofaunal community showed the opposite pattern. Bacterial community composition was significantly correlated with C. arvense performance, although mesofaunal community composition was not. Our results demonstrate that the interactions between an invasive plant and associated soil communities change across the invaded range, and the bacterial community in particular may affect variation in plant performance. Observed patterns may be caused by C.arvense presence and time since invasion allowing for an accumulation of species‐specific pathogens in southern soils, while the naïveté of northern soils to invasion results in a more responsive bacterial community. Although these interactions are difficult to predict, such effects could possibly facilitate the establishment of this exotic species to novel locations.  相似文献   

7.
This paper presents a protocol for quantitative analysis of microbial communities by reverse sample genome probing is presented in which (i) whole community DNA is isolated and labeled in the presence of a known amount of an added internal standard and (ii) the resulting spiked reverse genome probe is hybridized with a master filter on which denatured genomic DNAs from bacterial standards isolated from the target environment were spotted in large amounts (up to 1,500 ng) in order to improve detection sensitivity. This protocol allowed reproducible fingerprinting of the microbial community in oil field production waters at 19 sites from which water and biofilm samples were collected. It appeared that selected sulfate-reducing bacteria were significantly enhanced in biofilms covering the metal surfaces in contact with the production waters.  相似文献   

8.

Epilithic phototrophic biofilms develop inside Roman Necropolis and Catacombs on rock surfaces exposed to artificial light sources and are composed by a microbial consortium dominated by cyanobacteria. In this work, six non-axenic cultures of Leptolyngbya sp. strains isolated from biofilms from different Roman hypogea and maintained in cultures from 11 to 20 years were analysed along with their associated bacteria isolated in culture. The employment of PCR-fingerprinting techniques, using HIP1 and ERIC derived primers, allowed the clustering in three groups of the six Leptolyngbya strains and the typing of their isolated bacteria. The bacterial fingerprinting patterns were in agreement with the 16S rRNA gene sequencing and showed the presence in Leptolyngbya isolates of Pseudomonas, Stenotrophomonas, Agrobacterium and Bacillus representatives that were detected also in biofilms sampled from catacombs.  相似文献   

9.
This paper is a brief review of data on bacterial biofilms that occur inside and outside of host organisms. Such biofilms are of great ecological and clinical importance. The role of interspecies communications in the development of bacterial biofilms and infectious diseases is particularly emphasized. Considerable attention is given to the electron microscopic study of biofilms formed by Salmonella typhimurium cells incubated as a broth culture in microtubes without aeration. Bacterial samples taken from the biofilm and planktonic culture grown in the same microtube were comparatively investigated by transmission electron microscopy.  相似文献   

10.
In this study, to give insight into the bacterial diversity of biofilms from full-scale drinking water distribution systems (DWDSs), the bacterial community compositions of biofilms from two urban DWDSs (Guangzhou and Beijing, China) were determined using a 16S rRNA gene library technique. Meanwhile, the occurrence and diversity of mycobacteria were also analyzed by a Mycobacterium -specific hsp gene assay. The biofilms from the full-scale DWDSs have complex bacterial populations. Proteobacteria was the common and predominant group in all biofilm samples, in agreement with previous reports. The community structures of bacteria at the three sites in Guangzhou DWDS were significantly different, despite the similar physicochemical properties of portable water. Some abundant and peculiar bacterial phylotypes were noteworthy, including Methylophilus , Massilia, and Planomicrobium , members of which are rarely found in DWDSs and their roles in DWDS biofilms are still unclear. The diversity of Mycobacterium species in biofilm samples was rather low. Mycobacterium arupense and Mycobacterium gordonae were the primary Mycobacterium species in Guangzhou and Beijing biofilms, respectively, indicating that M. arupense may be more resistant to chloride than M. gordonae.  相似文献   

11.
Deinococcus geothermalis has frequently been isolated from pink colored deposits of paper industry processes. Laboratory studies have shown that D. geothermalis is capable of forming on nonliving surfaces patchy biofilms that are resistant to adverse agents such as extreme pH, desiccation, solubilising detergents and biocides. This study was done to quantitatively assess the role of D. geothermalis as a biofouler in paper industry. Colored deposits were collected from 24 European and North American paper and board machines and the densities of the bacterial 16S rRNA genes and those of the red slime producers D. geothermalis and Meiothermus spp. were measured by QPCR (quantitative real time PCR). D. geothermalis was found at nine machines, usually from splash area deposits, but its contribution was minor, 0.001–1%, to the total bacterial burden of 8.3 to log 10.5 log units per gram wet-weight of the deposits. When D. geothermalis was found in a measurable quantity, Meiothermus spp. also was found, often in bulk quantity (7–100% of the total bacteria). The data are in line with the properties of D. geothermalis known from laboratory biofilm studies, indicating this species is a pioneer coloniser of machine surfaces and may help other bacteria to adhere and grown into biofilms, rather than competing with them.  相似文献   

12.
In order to save natural resources and supply good fishes, it is important to improve fish‐farming techniques. The survival rate of fish fry appears to become higher when powders of foraminifer limestone are submerged at the bottom of fish‐farming fields, where bacterial biofilms often grow. The observations suggest that forming biofilms can benefit to keep health status of breeding fishes. We employed culture‐based methods for the identification and characterization of biofilm‐forming bacteria and assessed the application of their properties for fish farming. Fifteen bacterial strains were isolated from the biofilm samples collected from fish farm sediments. The 16S rRNA gene sequences indicated that these bacteria belonged to the genera, Pseudoalteromonas (seven strains), Vibrio (seven strains) and Halomonas (one strain). It was found that Pseudoalteromonas strains generally formed robust biofilms in a laboratory condition and produced extracellular proteases in a biofilm‐dependent manner. The results suggest that Pseudoalteromonas bacteria, living in the biofilm community, contribute in part to remove excess proteineous matters from the sediment sludge of fish farms.  相似文献   

13.
This study identified the bacterial community composition associated with Barbour's seahorses (Hippocampus barbouri). Seahorses and samples from the surrounding environment (sediment and water) were collected from Cantiasay Island in Surigao del Norte, Philippines. Genomic DNA was isolated from these samples, and the V1–V3 region of the 16S rRNA gene was amplified and sequenced on the Illumina MiSeq platform. There were 929 803 sequence reads corresponding to 859 operational taxonomic units (OTUs), which were obtained from the six genomic libraries. The results showed that the most abundant OTUs were affiliated to the phylum Proteobacteria, particularly those belonging to the genera Shewanella, Pseudomonas, Acinetobacter and Aeromonas, which were found to be dominant in seahorse gut samples. The only exception was for the skin of male seahorses, which was dominated by members belonging to the genus Bacillus (phylum Firmicutes). These findings on bacterial community structure and composition may shed light on therapeutic claims of Barbour's seahorses and help in the conservation of this species.  相似文献   

14.
Paper mills processing recycled paper suffer from biofouling causing problems both in the mill and final product. The total bacterial community composition and identification of specific taxa in the process water and biofilms at the stock preparation and paper machine areas in a mill with recycled paper pulp was described by using a DNA-based approach. Process water in a similar mill was also analyzed to investigate if general trends can be found between mills and over time. Bacterial community profiles, analyzed by terminal-restriction fragment length polymorphism (T-RFLP), in process water showed that the dominant peaks in the profiles were similar between the two mills, although the overall composition was unique for each mill. When comparing process water and biofilm at different locations within one of the mills, we observed a separation according to location and sample type, with the biofilm from the paper machine being most different. 16S rRNA gene clone libraries were generated and 404 clones were screened by RFLP analysis. Grouping of RFLP patterns confirmed that the biofilm from the paper machine was most different. A total of 99 clones representing all RFLP patterns were analyzed, resulting in sequences recovered from nine bacterial phyla, including two candidate phyla. Bacteroidetes represented 45% and Actinobacteria 23% of all the clones. Sequences with similarity to organisms implicated in biofouling, like Chryseobacterium spp. and Brevundimonas spp., were recovered from all samples even though the mill had no process problems during sampling, suggesting that they are part of the natural paper mill community. Moreover, many sequences showed little homology to as yet uncultivated bacteria implying that paper mills are interesting for isolation of new organisms, as well as for bioprospecting.  相似文献   

15.
This study examined bacterial community structure of biofilms on stainless steel and polycarbonate in seawater from the Delaware Bay. Free-living bacteria in the surrounding seawater were compared to the attached bacteria during the first few weeks of biofilm growth. Surfaces exposed to seawater were analyzed by using 16S rDNA libraries, fluorescence in situ hybridization (FISH), and denaturing gradient gel electrophoresis (DGGE). Community structure of the free-living bacterial community was different from that of the attached bacteria according to FISH and DGGE. In particular, alpha-proteobacteria dominated the attached communities. Libraries of 16S rRNA genes revealed that representatives of the Rhodobacterales clade were the most abundant members of biofilm communities. Changes in community structure during biofilm growth were also examined by DGGE analysis. We hypothesized that bacterial communities on dissimilar surfaces would initially differ and become more similar over time. In contrast, the compositions of stainless steel and polycarbonate biofilms were initially the same, but differed after about 1 week of biofilm growth. These data suggest that the relationship between surface properties and biofilm community structure changes as biofilms grow on surfaces such as stainless steel and polycarbonate in estuarine water.  相似文献   

16.
Clogging of drippers due to the development of biofilms weakens the advantages and impedes the implementation of drip irrigation technology. The objective of this study was to characterise the bacterial community of biofilms that develop in a drip irrigation system supplied with treated wastewater. High-throughput sequencing of 16S rRNA gene amplicons indicated that the bacterial community composition differed between drippers and pipes, mainly due to changes in the abundance of the genus Aquabacterium. Cyanobacteria were found to be involved in the biological fouling of drippers. Moreover, bacterial genera including opportunistic pathogenic bacteria such as Legionella and Pseudomonas were more abundant in dripper and pipe biofilms than in the incoming water. Some genera such as Pseudomonas were mostly recovered from drippers, while others (ie Bacillus, Brevundimonas) mainly occurred in pipes. Variations in the hydraulic conditions and properties of the materials likely explain the shift in bacterial communities observed between pipes and drippers.  相似文献   

17.
In the current study, five phototrophic biofilms from different Southern Europe limestone monuments were characterised by molecular techniques and cultivated under laboratory conditions. Phototrophic biofilms were collected from Orologio Tower in Martano (Italy), Santa Clara-a-Velha Monastery and Ajuda National Palace, both in Portugal, and Seville and Granada Cathedrals from Spain. The biofilms were grown under laboratory conditions and periodically sampled in order to monitor their evolution over a three-month period. Prokaryotic communities from natural samples and cultivated biofilms were monitored using denaturing gradient gel electrophoresis (DGGE) of PCR-amplified 16S rRNA gene fragments in conjunction with clone sequencing and phylogenetic analysis. DNA-based molecular analysis of 16S rRNA gene fragments from the natural green biofilms revealed complex and different communities composition with respect to phototrophic microorganisms. The biofilms from Orologio Tower (Martano, Italy) and Santa Clara-a-Velha Monastery (Coimbra, Portugal) were dominated by the microalga Chlorella. The cyanobacterium Chroococcidiopsis was the dominating genus from Ajuda National Palace biofilm (Lisbon, Portugal). The biofilms from Seville and Granada Cathedrals (Spain) were both dominated by the cyanobacterium Pleurocapsa. The DGGE analysis of the cultivated biofilms showed that the communities developed differently in terms of species establishment and community composition during the three-month incubation period. The biofilm culture from Coimbra (Portugal) showed a remarkable stability of the microbial components of the natural community in laboratory conditions. With this work, a multiple-species community assemblage was obtained for further stone colonisation experiments.  相似文献   

18.
Aim: To determine the microbial composition of biofilms in domestic toilets by molecular means. Methods and Results: Genomic DNA was extracted from six biofilm samples originating from households around Düsseldorf, Germany. While no archaeal 16S rRNA or fungal ITS genes were detected by PCR, fingerprinting of bacterial 16S rRNA genes revealed a diverse community in all samples. These communities also differed considerably between the six biofilms. Using the Ribosomal Database Project (RDP) classifier tool, 275 cloned 16S rRNA gene sequences were assigned to 11 bacterial phyla and 104 bacterial genera. Only 15 genera (representing 121 sequences affiliated with Acidobacteria, Actinobacteria, Bacteroidetes, Planctomycetes and Proteobacteria) occurred in at least half of the samples or contributed at least 10% of the sequences in a single biofilm. These sequences were defined as ‘typical’ for toilet biofilms, and they were examined in more detail. On a 97% sequence similarity level, these sequences represented 56 species. Twelve of these were closely related to well‐described bacterial species, and only two of them were categorized as belonging to risk group 2. No 16S rRNA genes of typical faecal bacteria were detected in any sample. Virtually all ‘typical’ clones were found to be closely related to bacteria or to sequences obtained from environmental sources, implicating that the flushing water is the main source of recruitment. Conclusion: In view of the great diversity of mostly yet‐uncultured bacteria and the considerable differences between individual toilets, very general strategies appear to be most suited for the removal and prevention of toilet biofilms. Significance and Impact of the Study: For the first time, a molecular fingerprinting and cloning approach was used to monitor the species composition in biofilm samples taken from domestic toilets. Knowledge about the microbial composition of biofilms in domestic toilets is a prerequisite for developing and evaluating strategies for their removal and prevention.  相似文献   

19.
Aims: The aim of the present work was to characterize the heterotrophic bacterial community of a marine recirculating aquaculture system (RAS). Methods and Results: An experimental RAS was sampled for the rearing water (RW) and inside the biofilter. Samples were analysed for bacterial abundances, community structure and composition by using a combination of culture‐dependent and ‐independent techniques. The most represented species detected among biofilter clones was Pseudomonas stutzeri, while Ruegeria spp. and Roseobacter spp. were more abundant among isolates. In comparison, the genera Roseobacter and Ruegeria were well represented in both the biofilter and the RW samples. A variety of possible bacterial pathogens (e.g. Vibrio spp., Erwinia spp. and Coxiella spp.) were also identified in this study. Conclusions: Results revealed that the bacterial community in the RW was quite different to that associated with the biofilter. Moreover, data obtained suggest that the whole bacterial community can be involved in maintaining an effective and a stable rearing environment (shelter effect). Significance and Impact of the Study: Improving the reliability and the sustainability of RAS depends on the correct management of the bacterial populations inside it. This study furnishes more accurate information on the bacterial populations and better clarifies the existing relationships between the bacterial flora in the RW and that associated with the biofilter.  相似文献   

20.
R. Gasca 《Hydrobiologia》2003,510(1-3):115-124
The species composition, distribution, and abundance of the hyperiid amphipods collected in March 1993 across a Gulf of Mexico cold-core ring (CCR) were analyzed. Day and night samples were collected by oblique tows (100 m to surface) with a plankton net. Hyperiids were represented by 56 species, 21 of which have not been recorded previously in gulf waters. The local oceanic community differs from that reported from adjacent neritic and neritic-oceanic areas of the Northwestern Tropical Atlantic. Overall, hyperiids were more abundant within (59% of total catch in org./1000 m3) than outside the CCR (41%). All inside CCR stations were sampled at night. Night outside vs. night inside CCR hyperiid faunas showed important differences in terms of species richness, composition and density. Cluster analysis indicated that day sta. 5 on the edge but outside the CCR was more similar to those stations inside the CCR (nighttime samples) than to the other daytime samples. Moreover, all the stations outside the CCR were clustered together independently of their day or night origin. It is suggested that the differences found were more related to differential conditions related to the CCR than to diel vertical migration. The analysis of three congeneric pairs with inverse CCR-related abundance and with known or inferred migratory patterns strengthened the idea that these pairs are probably separated by thermal preferences; also, their vertical migratory patterns seem to be abnormal inside the CCR. A relatively higher concentration of immature stages inside the CCR supports the idea that the enriched CCR waters constitute areas of increased production. Furthermore, this higher productivity enhances the chances of hyperiids to find their hosts, the gelatinous zooplankters, which are also more abundant inside the CCR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号