首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We report molecular dynamics simulations of cyclohenicosakis-[(1-->2)-beta-D-gluco-henicosapyranosyl], termed 'cyclosophohenicosamer', a member of a class of cyclic (1-->2)-beta-D-glucans ('cyclosophoraoses'). Our goals were to provide insights into the conformational preferences of these cyclosophoraoses. Simulated annealing and constant-temperature molecular dynamics calculations were performed on the DP 21 cyclosophohenicosamer. The radius of gyration (R(G)) of the molecule and the conformation of glycosidic dihedral angles were used to analyze the result of computational studies. Most glycosidic linkages were concentrated in the lowest-energy region of the phi-psi energy map, and the values of radius of gyration from our simulations were consistent with the reported experimental value. The simulations produced various types of compact and asymmetric conformations within reasonable ranges of the glycosidic linkage conformation and radius of gyration. The results indicate the presence of a high degree of molecular flexibility of cyclosophohenicosamer and suggest the uniqueness of inclusion complexation with other molecules through this molecular flexibility.  相似文献   

2.
Fulle S  Gohlke H 《Biophysical journal》2008,94(11):4202-4219
RNA requires conformational dynamics to undergo its diverse functional roles. Here, a new topological network representation of RNA structures is presented that allows analyzing RNA flexibility/rigidity based on constraint counting. The method extends the FIRST approach, which identifies flexible and rigid regions in atomic detail in a single, static, three-dimensional molecular framework. Initially, the network rigidity of a canonical A-form RNA is analyzed by counting on constraints of network elements of increasing size. These considerations demonstrate that it is the inclusion of hydrophobic contacts into the RNA topological network that is crucial for an accurate flexibility prediction. The counting also explains why a protein-based parameterization results in overly rigid RNA structures. The new network representation is then validated on a tRNAASP structure and all NMR-derived ensembles of RNA structures currently available in the Protein Data Bank (with chain length ≥40). The flexibility predictions demonstrate good agreement with experimental mobility data, and the results are superior compared to predictions based on two previously used network representations. Encouragingly, this holds for flexibility predictions as well as mobility predictions obtained by constrained geometric simulations on these networks. Potential applications of the approach to analyzing the flexibility of DNA and RNA/protein complexes are discussed.  相似文献   

3.
The determination of conformational preferences of oligosaccharides is best approached by describing their preferred conformations on potential energy surfaces as a function of the glycosidic linkage φ, ψ torsional angles. For proper molecular mechanics modelling the flexibility of the rotatable pendant groups must also be considered. The so called adiabatic maps partially mimic the flexibility within the 10 dimensional conformational space of the pendant groups of the given disaccharide. These molecular mechanics maps are considered to be the state-of-the art of the φ, ψ potential energy surface of disaccharides recently calculated. The RAMM (RAndom Molecular Mechanics) method was shown to be able to calculate such profiles automatically. Additionally, based on the continuum solvent approach, RAMM allows the calculation of the effects of solvent on conformational energy profiles. Molecular dynamics simulations are also useful tools to study the influence of solvent on conformational behaviour of oligosaccharides. The capability of the RAMM calculational protocol to locate low-energy conformers on the multidimensional potential energy hypersurfaces of disaccharides is illustrated and compared with molecular dynamics simulations with and without inclusion of the solvent. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

4.
Computational docking methods are valuable tools aimed to simplify the costly process of drug development and improvement. Most current approaches assume a rigid receptor structure to allow virtual screening of large numbers of possible ligands and putative binding sites on a receptor molecule. However, inclusion of receptor flexibility can be of critical importance since binding of a ligand can lead to changes in the receptor protein conformation that are sterically necessary to accommodate a ligand. Recent approaches to efficiently account for receptor flexibility during docking simulations are reviewed. In particular, accounting efficiently for global conformational changes of the protein backbone during docking is a still challenging unsolved problem. An approximate method has recently been suggested that is based on relaxing the receptor conformation during docking in pre-calculated soft collective degrees of freedom (M. Zacharias, Rapid protein-ligand docking using soft modes from molecular dynamics simulations to account for protein deformability: binding of FK506 to FKBP, Proteins: Struct., Funct., Genet. 54 (2004) 759-767). Test applications on protein-protein docking and on docking the inhibitor staurosporine to the apo-form of cAMP-dependent protein kinase A catalytic domain indicate significant improvement of docking results compared to rigid docking at a very modest computational demand. Accounting for receptor conformational changes in pre-calculated global degrees of freedom might offer a promising route to improve systematic docking screening simulations.  相似文献   

5.
State of the art molecular dynamics simulations are used to study the structure, dynamics, molecular interaction properties and flexibility of DNA and RNA duplexes in aqueous solution. Special attention is paid to the deformability of both types of structures, revisiting concepts on the relative flexibility of DNA and RNA duplexes. Our simulations strongly suggest that the concepts of flexibility, rigidity and deformability are much more complex than usually believed, and that it is not always true that DNA is more flexible than RNA.  相似文献   

6.
Spectrin is an ubiquitous protein in metazoan cells, and its flexibility is one of the keys to maintaining cellular structure and organization. Both alpha-spectrin and beta-spectrin polypeptides consist primarily of triple coiled-coil modular repeat units, and two important factors that determine spectrin flexibility are the bending flexibility between two consecutive repeat units and the conformational flexibility of individual repeat units. Atomistic molecular dynamics (MD) simulations are used here to study double spectrin repeat units (DSRUs) from the human erythrocyte beta-spectrin (HEbeta89) and the chicken brain alpha-spectrin (CBalpha1617). From the results of MD simulations, a highly conserved Trp residue in the A-helix of most repeat units that has been suggested to be important in conferring stability to the coiled-coil structures is found not to have a significant effect on the conformational flexibility of individual repeat units. Characterization of the bending flexibility for two consecutive repeats of spectrin via atomistic simulations and coarse-grained (CG) modeling indicate that the bending flexibility is governed by the interactions between the AB-loop of the first repeat unit, the BC-loop of the second repeat unit and the linker region. Specifically, interactions between residues in these regions can lead to a strong directionality in the bending behavior of two repeat units. The biological implications of these finding are discussed.  相似文献   

7.
A computer-modeled hydrated bilayer model of the lipid 2,3-dimyristoyl-D-glycero-1-phosphorylcholine in the L alpha phase was built. Particular care was taken in building the starting structure with the inclusion of structural detail reported in experiments on the L alpha phase. Molecular dynamics simulations using the molecular dynamics and energy refinement program AMBER 3.1 force field with an optimized parameters for liquid simulation parameter set were run to study the motions and conformations of the lipid molecules and characterize the behavior and structure of the head groups and the hydrocarbon lipid chains. Although the head groups were observed to show great flexibility, certain head-group torsion combinations appeared favored. The observed tilt of the lipid chains is discussed and is consistent with previous experimental findings. Motion of the lipid chains is shown to be correlated with those chains immediately surrounding, but correlation with chains more distant varies with time.  相似文献   

8.
CheY is a response regulator protein involved in bacterial chemotaxis. Much is known about its active and inactive conformations, but little is known about the mechanisms underlying long-range interactions or correlated motions. To investigate these events, molecular dynamics simulations were performed on the unphosphorylated, inactive structure from Salmonella typhimurium and the CheY-BeF(3)(-) active mimic structure (with BeF(3)(-) removed) from Escherichia coli. Simulations utilized both sequences in each conformation to discriminate sequence- and structure-specific behavior. The previously identified conformational differences between the inactive and active conformations of the strand-4-helix-4 loop, which are present in these simulations, arise from the structural, and not the sequence, differences. The simulations identify previously unreported structure-specific flexibility features in this loop and sequence-specific flexibility features in other regions of the protein. Both structure- and sequence-specific long-range interactions are observed in the active and inactive ensembles. In the inactive ensemble, two distinct mechanisms based on Thr-87 or Ile-95 rotameric forms, are observed for the previously identified g+ and g- rotamer sampling by Tyr-106. These molecular dynamics simulations have thus identified both sequence- and structure-specific differences in flexibility, long-range interactions, and rotameric form of key residues. Potential biological consequences of differential flexibility and long-range correlated motion are discussed.  相似文献   

9.
Towards a molecular dynamics consensus view of B-DNA flexibility   总被引:1,自引:1,他引:0       下载免费PDF全文
We present a systematic study of B-DNA flexibility in aqueous solution using long-scale molecular dynamics simulations with the two more recent versions of nucleic acids force fields (CHARMM27 and parmbsc0) using four long duplexes designed to contain several copies of each individual base pair step. Our study highlights some differences between pambsc0 and CHARMM27 families of simulations, but also extensive agreement in the representation of DNA flexibility. We also performed additional simulations with the older AMBER force fields parm94 and parm99, corrected for non-canonical backbone flips. Taken together, the results allow us to draw for the first time a consensus molecular dynamics picture of B-DNA flexibility.  相似文献   

10.
11.
12.
Tropomyosin (Tm) is a coiled-coil protein that binds to filamentous actin (F-actin) and regulates its interactions with actin-binding proteins like myosin by moving between three positions on F-actin (the blocked, closed, and open positions). To elucidate the molecular details of Tm flexibility in relation to its binding to F-actin, we conducted extensive molecular dynamics simulations for both Tm alone and Tm-F-actin complex in the presence of explicit solvent (total simulation time >400 ns). Based on the simulations, we systematically analyzed the local flexibility of the Tm coiled coil using multiple parameters. We found a good correlation between the regions with high local flexibility and a number of destabilizing regions in Tm, including six clusters of core alanines. Despite the stabilization by F-actin binding, the distribution of local flexibility in Tm is largely unchanged in the absence and presence of F-actin. Our simulations showed variable fluctuations of individual Tm periods from the closed position toward the open position. In addition, we performed Tm-F-actin binding calculations based on the simulation trajectories, which support the importance of Tm flexibility to Tm-F-actin binding. We identified key residues of Tm involved in its dynamic interactions with F-actin, many of which have been found in recent mutational studies to be functionally important, and the rest of which will make promising targets for future mutational experiments.  相似文献   

13.
Wong SE  Sellers BD  Jacobson MP 《Proteins》2011,79(3):821-829
Prior studies suggest that antibody affinity maturation is achieved, in part, via prearranging the CDRs for binding. The implication is that the entropy cost of binding is reduced and that this rigidification occurs as a consequence of somatic mutations during maturation. However, how these mutations modulate CDR flexibility is unclear. Here, molecular dynamics simulations captured CDR flexibility differences between four mature antibodies (7G12, AZ28, 28B4, and 48G7) and their germline predecessors. Analysis of their trajectories: (1) rationalized how mutations during affinity maturation restrict CDR motility, (2) captured the equilibrium between bound and unbound conformations for the H3 loop of unliganded 7G12, and (3) predicted a set of new mutations that, according to our simulations, should diminish binding by increasing flexibility.  相似文献   

14.
We used cyclization kinetics experiments and Monte Carlo simulations to determine a structural model for a DNA decamer containing the EcoRI restriction site. Our findings agree well with recent crystal and NMR structures of the EcoRI dodecamer, where an overall bend of seven degrees is distributed symmetrically over the molecule. Monte Carlo simulations indicate that the sequence has a higher flexibility, assumed to be isotropic, compared to that of a "generic" DNA sequence. This model was used as a starting point for the investigation of the effect of cytosine methylation on DNA bending and flexibility. While methylation did not affect bend magnitude or direction, it resulted in a reduction in bending flexibility and under-winding of the methylated nucleotides. We demonstrate that our approach can augment the understanding of DNA structure and dynamics by adding information about the global structure and flexibility of the sequence. We also show that cyclization kinetics can be used to study the properties of modified nucleotides.  相似文献   

15.
The bacterial chaperone trigger factor (TF) is the first chaperone to be encountered by a nascent protein chain as it emerges from the ribosome exit tunnel. Experimental results suggest that TF possesses considerable conformational flexibility, and in an attempt to provide an atomic-level view of this flexibility, we have performed independent 1.5-μs molecular dynamics simulations of TF in explicit solvent using two different simulation force fields (OPLS-AA/L and AMBER ff99SB-ILDN). Both simulations indicate that TF possesses tremendous flexibility, with huge excursions from the crystallographic conformation caused by reorientations of the protein’s constituent domains; both simulations also predict the formation of extensive contacts between TF’s PPIase domain and the Arm 1 domain that is involved in nascent-chain binding. In the OPLS simulation, however, TF rapidly settles into a very compact conformation that persists for at least 1 μs, whereas in the AMBER simulation, it remains highly dynamic; additional simulations in which the two force fields were swapped suggest that these differences are at least partly attributable to sampling issues. The simulation results provide potential rationalizations of a number of experimental observations regarding TF’s conformational behavior and have implications for using simulations to model TF’s function on translating ribosomes.  相似文献   

16.
Relationship between stability and activity of enzymes is maintained by underlying conformational flexibility. In thermophilic enzymes, a decrease in flexibility causes low enzyme activity while in less stable proteins such as mesophiles and psychrophiles, an increase in flexibility is associated with enhanced enzyme activity. Recently, we identified a mutant of a lipase whose stability and activity were enhanced simultaneously. In this work, we probed the conformational dynamics of the mutant and the wild type lipase, particularly flexibility of their active site using molecular dynamic simulations and time-resolved fluorescence techniques. In contrast to the earlier observations, our data show that active site of the mutant is more rigid than wild type enzyme. Further investigation suggests that this lipase needs minimal reorganization/flexibility of active site residues during its catalytic cycle. Molecular dynamic simulations suggest that catalytically competent active site geometry of the mutant is relatively more preserved than wild type lipase, which might have led to its higher enzyme activity. Our study implies that widely accepted positive correlation between conformation flexibility and enzyme activity need not be stringent and draws attention to the possibility that high enzyme activity can still be accomplished in a rigid active site and stable protein structures. This finding has a significant implication towards better understanding of involvement of dynamic motions in enzyme catalysis and enzyme engineering through mutations in active site.  相似文献   

17.
Practical considerations in refolding proteins from inclusion bodies   总被引:13,自引:0,他引:13  
Refolding of proteins from inclusion bodies is affected by several factors, including solubilization of inclusion bodies by denaturants, removal of the denaturant, and assistance of refolding by small molecule additives. We will review key parameters associated with (1) conformation of the protein solubilized from inclusion bodies, (2) change in conformation and flexibility or solubility of proteins during refolding upon reduction of denaturant concentration, and (3) the effect of small molecule additives on refolding and aggregation of the proteins.  相似文献   

18.
Two new methods for the quantification and visualization of the flexibility of molecular surfaces are presented. Both methods rely on results of molecular dynamics (MD) simulations. Whereas method I is based on a simple but fast grid-counting algorithm, method II uses a mapping function that allows for a sharp and clear visualization of atomic RMS fluctuations on a molecular surface. To demonstrate the scope of the methods, MD simulations of two proteins, PTI and ubiquitin, were performed. The flexibility data are mapped onto the molecular surfaces of the proteins and visualized using texture mapping technology available on modern workstations.  相似文献   

19.
Uracil DNA glycosylase (UDG) is a DNA repair enzyme in the base excision repair pathway and removes uracil from the DNA strand. Atlantic cod UDG (cUDG), which is a cold-adapted enzyme, has been found to be up to 10 times more catalytically active in the temperature range 15-37 degrees C as compared with the warm-active human counterpart. The increased catalytic activity of cold-adapted enzymes as compared with their mesophilic homologues are partly believed to be caused by an increase in the structural flexibility. However, no direct experimental evidence supports the proposal of increased flexibility of cold-adapted enzymes. We have used molecular dynamics simulations to gain insight into the structural flexibility of UDG. The results from these simulations show that an important loop involved in DNA recognition (the Leu(272) loop) is the most flexible part of the cUDG structure and that the human counterpart has much lower flexibility in the Leu(272) loop. The flexibility in this loop correlates well with the experimental k(cat)/K(m) values. Thus, the data presented here add strong support to the idea that flexibility plays a central role in adaptation to cold environments.  相似文献   

20.
The bacterial chaperone trigger factor (TF) is the first chaperone to be encountered by a nascent protein chain as it emerges from the ribosome exit tunnel. Experimental results suggest that TF possesses considerable conformational flexibility, and in an attempt to provide an atomic-level view of this flexibility, we have performed independent 1.5-μs molecular dynamics simulations of TF in explicit solvent using two different simulation force fields (OPLS-AA/L and AMBER ff99SB-ILDN). Both simulations indicate that TF possesses tremendous flexibility, with huge excursions from the crystallographic conformation caused by reorientations of the protein’s constituent domains; both simulations also predict the formation of extensive contacts between TF’s PPIase domain and the Arm 1 domain that is involved in nascent-chain binding. In the OPLS simulation, however, TF rapidly settles into a very compact conformation that persists for at least 1 μs, whereas in the AMBER simulation, it remains highly dynamic; additional simulations in which the two force fields were swapped suggest that these differences are at least partly attributable to sampling issues. The simulation results provide potential rationalizations of a number of experimental observations regarding TF’s conformational behavior and have implications for using simulations to model TF’s function on translating ribosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号