首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Some new structural type inhibitors of urease, i.e. 2,5-disubstituted-1,3,4-oxadiazoles (4a–e) and 4,5-disubstituted-1,2,4-triazole-3-thiones (5a–e) were synthesized in two steps from mandelic acid hydrazides (2a–e) and aryl isothiocyantes. The hydrazides in turn were synthesized from mandelic acid via esterification. Compounds 4a–e and 5a–e were evaluated against jack bean urease. Compounds 4d, 5b, and 5d were found to be more potent, with IC50 values of 16.1?±?0.12?µM, 18.9?±?0.188?µM, and 16.7?±?0.178?µM, respectively, when compared to the standard (thiourea; IC50?=?21.0?±?0.011?µM). These compounds may be subjected to further investigations for the development of antiulcer drugs.  相似文献   

2.
A series of benzoic acid derivatives 110 have been synthesised by two different methods. Compounds 16 were synthesised by a facile procedure for esterification using N,N’-dicyclohexylcarbodiimide (DCC) as a coupling agent, methylene chloride as a solvent system and dimethylaminopyridine (DMAP). While 710 were synthesised by converting benzoic acid into benzoyl chloride by treating with thionyl chloride in the presence of benzene and performing a further reaction with amine in dried benzene. The structures of all the synthesised derivatives of benzoic acid (110) were assigned on the basis of extensive NMR studies. All of them showed inhibitory potential against tyrosinase. Among them, compound 7 was found to be the most potent (1.09 μM) when compared with the standard tyrosinase inhibitors of kojic acid (16.67 μM) and L-mimosine (3.68 μM). Finally in this paper, we have discussed the structure–activity relationships of the synthesised molecules.  相似文献   

3.
Abstract

A novel proton transfer compound (HABT)+(Hdipic)? (1) obtained from ABT and H2dipic and its metal complexes (25) have been prepared and characterized by spectroscopic techniques. Single crystal X-ray diffraction method has also been applied to 2 and 5. While complex 2 has a distorted octahedral conformation, 5 exhibits a distorted square pyramidal structure. The structures of 3 and 4 might be proposed as octahedral according to experimental data. All compounds were also evaluated for their in vitro inhibition effects on hCA I and II for their hydratase and esterase activities. Although there is no inhibition for hydratase activities, all compounds have inhibited the esterase activities of hCA I and II. The comparison of the inhibition studies of 15 to parent compounds indicates that 15 have superior inhibitory effects. The inhibition effects of 25 are also compared to inhibitory properties of the metal complexes of ABT and H2dipic, revealing an improved transfection profile.  相似文献   

4.
ObjectiveTo determine the effect of phytic acid, tannic acid and pectin on fasting non-heme iron bioavailability in both the presence and absence of calcium.Research methodsTwenty-eight apparently healthy adult females participated in two iron absorption studies using radioactive iron isotopes (59Fe and 55Fe). One group received 5 mg of iron (as FeSO4) alone (control), together with 10 mg of phytic acid, 100 mg of tannic acid and 250 mg of pectin (study A), on different days. The second group received the same iron doses and compounds as the other group, plus 800 mg of calcium (CaCl2) (study B). The compounds were administered after an overnight fast, and no food or beverages were consumed for the following 3 h. Iron status and circulating radioactivity were measured in venous blood samples.ResultsThe geometric means of iron bioavailability (range ± 1SD) for iron alone, iron with phytic acid, iron with tannic acid, and iron with citrus pectin were 25.0% (11.9–52.0); 18.9% (9.9–35.8); 16.8% (8.7–32.3); and 21.1% (10.2–43.9), respectively (repeated-measures ANOVA, p < 0.02 (Dunnett's post hoc: control vs tannic acid p < 0.05). When 800 mg of calcium was added (study B), iron bioavailability was 16.7% (10.1–27.5); 13.2% (7.1–24.6); 14.8% (8.8–25.1); and 12.6% (5.5–28.8), respectively (repeated-measures ANOVA, NS).ConclusionsTannic acid decreases the fasting bioavailability of non-heme iron, however this effect did not exist in the presence of calcium. No effect was observed by phytic acid or citrus pectin on fasting non-heme iron bioavailability in both the presence and absence of calcium.  相似文献   

5.
In the present investigation, 48 new tertiary amine derivatives of cinnamic acid, phenylpropionic acid, sorbic acid and hexanoic acid (4d6g, 10d12g, 16d18g and 22d24g) were designed, synthesized and evaluated for the effect on AChE and BChE in vitro. The results revealed that the alteration of aminoalkyl types and substituted positions markedly influences the effects in inhibiting AChE. Almost of all cinnamic acid derivatives had the most potent inhibitory activity than that of other acid derivatives with the same aminoalkyl side chain. Unsaturated bond and benzene ring in cinnamic acid scaffold seems important for the inhibitory activity against AChE. Among them, compound 6g revealed the most potent AChE inhibitory activity (IC50 value: 3.64?µmol/L) and highest selectivity over BChE (ratio: 28.6). Enzyme kinetic study showed that it present a mixed-type inhibition against AChE. The molecular docking study suggested that it can bind with the catalytic site and peripheral site of AChE.  相似文献   

6.
Terephthalic acid based derivatives containing β- and γ-amino acid residues were prepared as antagonists of the leukocyte cell adhesion process that is mediated through the interaction of the very late antigen 4 (VLA-4) and the vascular cell adhesion molecule 1 (VCAM-1). The compounds 2, 1012, 14, and 1617 inhibited the adhesion in a cell based assay in the low and sub micromolar range.  相似文献   

7.
Abstract

A novel proton transfer compound (HMeOABT)?+?(HDPC)? (1) and its Fe(III), Co(II), Ni(II) and Cu(II) complexes (25) have been prepared and characterized by spectroscopic techniques. Complex 4 has distorted octahedral conformation revealed by single crystal X-ray diffraction method. Structures of the other complexes might be proposed as octahedral according to experimental data. All compounds were also evaluated for their in vitro inhibition effects on hCA I and II for their hydratase and esterase activities. Although there is no inhibition for hydratase activities, all compounds have inhibited the esterase activities of hCA I and II. Data have been analyzed by using a one-way analysis of variance. The comparison of the inhibition studies of 15 to parent compounds indicates that 15 have superior inhibitory effects. The inhibition effects of 25 are also compared to inhibitory properties of the metal complexes of MeOABT and H2DPC, revealing an improved transfection profile.  相似文献   

8.
A series of novel Mannich bases of chlorokojic acid (2-chloromethyl-5-hydroxy-4H-pyran-4-one) were synthesized and their biological activities were investigated. Anticonvulsant activity results according to phase-I tests of Antiepileptic Drug Development (ADD) Program revealed that compound 13 was the most effective one at 4?h against subcutaneous pentylenetetrazole (scPTZ)-induced seizure test. Antimicrobial activities were evaluated in vitro against bacteria and fungi by using broth microdilution method. The antitubercular activities against Mycobacterium tuberculosis and M. avium were discussed with Resazurin microplate assay (REMA). The antimicrobial activity results indicated that compounds 1 and 12 (MIC: 8–16 µg/mL) showed higher activity against Gram negative bacteria while compound 12 had MIC: 4–16 µg/mL against Gram positive bacteria. Compound 1 was the most active one with MIC values of 8–32 µg/mL against fungi. Mannich bases also exhibit significant antitubercular activity in a MIC range of 4 to 32 µg/mL, especially compound 18 against M. avium.  相似文献   

9.
A series of novel substituted 1-benzhydryl-piperazine sulfonamide 8(a–f) and benzamides 9(a–h) were synthesized and their antimicrobial activities evaluated in vitro by paper disc diffusion and micro dilution method against standard strains of Gram-positive (Staphylococcus aureus ATCC 25953, Staphylococcus epidermis 25212, Bacillus cereus 11778, Bacillus substilis 6051) and Gram-negative (Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 2853, Proteus vulgaris ATCC 2853 and Salmonella typhi ATCC 9484) bacteria. Among the synthesized new compounds 8d, 8e, 9c, 9e, 9f and 9 h showed potent antimicrobial activities compared to the standard drug streptomycin.  相似文献   

10.
Abstract

The inhibition of two human cytosolic carbonic anhydrase (hCA, EC 4.2.1.1) isozymes I and II, with some 3,4-dihydroxypyrrolidine-2,5-dione and 3,5-dihydroxybenzoic acid derivatives, were investigated by using the esterase assay, with 4-nitrophenyl acetate (4-NPA) as substrate. Compounds 1013 showed KI values in the range of 112.7–441.5?μM for hCA I and of 3.5–10.76?μM against hCA II, respectively. These hydroxyl group containing compounds generally were competitive inhibitors. Some hydroxyl group containing compounds investigated here showed effective hCA II inhibitory effects, in the same range as the clinically used sulfonamide acetazolamide, and might be used as leads for generating enzyme inhibitors possibly targeting other CA isoforms which have not been yet assayed for their interactions with such agents.  相似文献   

11.
A novel proton transfer compound (SMHABT)+(HDPC)? (1) obtained from 2-amino-6-sulfamoylbenzothiazole (SMABT) and 2,6-pyridinedicarboxylic acid (H2DPC) and its Fe(III), Co(II), Ni(II) complexes (24), and Fe(II) complex of SMABT (5) have been prepared and characterized by spectroscopic techniques. Additionally, single crystal X-ray diffraction techniques were applied to complexes (24). All complexes (24) have distorted octahedral conformations and the structure of 5 might be proposed as octahedral according to spectral and analytical results. All compounds, including acetazolamide (AAZ) as the control compound, were also evaluated for their in vitro inhibition effects on human hCA I and hCA II for their hydratase and esterase activities. The synthesized compounds have remarkable inhibitory activities on hCA I and hCA II. Especially, the inhibition potentials of the salt and the metal complexes (15) are comparable with AAZ. Inhibition data have been analyzed by using a one-way analysis of variance for multiple comparisons (p?相似文献   

12.
Abstract

Alkylation of 6-chloropurine and 2-amino-6-chloropurine with bromoacetaldehyde diethyl acetal afforded 6-chloro-9-(2,2-diethoxyethyl)purine (3a) and its 2-amino congener (3b). Treatment of compounds 3 with primary and secondary amines gave the N6-substituted adenines (5a–5c) and 2,6-diaminopurines (5d–5f). Hydrolysis of 3 resulted in hypoxanthine (6a) and guanine (6b) derivatives, while their reaction with thiourea led to 6-sulfanylpurine (7a) and 2-amino-6-sulfanylpurine (7b) compounds. Treatment with diluted acid followed by potassium cyanide treatment and acid hydrolysis afforded 6-substituted 3-(purin-9-yl)- and 3-(2-aminopurin-9-yl)-2-hydroxypropanoic acids (8–10). Reaction of compounds 3 with malonic acid in aqueous solution gave exclusively the product of isomerisation, 6-substituted 4-(purin-9-yl)-3-butenoic acids (15).  相似文献   

13.
Abstract

A structural similarity of several monobactams (2–4), 3-aminonocardicinic acid (6), 6-aminopenicillanic acid (7), 7-aminocephalosporanic acid (8), and 7-aminodesacetoxycephalosporanic acids (9, 10) to γ-aminobutyric acid (GABA) and to known inhibitors and substrates of GABA aminotransferase is described. Because of this, the above-mentioned compounds were tested as competitive inhibitors and as inactivators of pig brain GABA aminotransferase. All of the compounds were competitive inhibitors of GABA aminotransferase. On the basis of the inhibitory potency of these conformationally-rigid GABA analogues it is hypothesized that GABA is bound at the active site with its amino and carboxylate groups in a syn orientation. None of the compounds inactivates GABA aminotransferase. These β-lactam analogues represent the first examples of a new class of inhibitors of GABA aminotransferase.  相似文献   

14.
A series of pyrimido[5,4-c]quinoline-2,4-dione derivatives 5a–k were synthesized in moderate yields via a thermolysis reaction of equimolar ratio of 5-arylidine-1,3-dimethylbarbituric acid derivatives 3a–d with aniline derivatives 4a–d at 150–180 °C for 1–2?h. Eight of the synthesized compounds were chosen for a primary in vitro one-dose anticancer assay performed using the full NCI 60 cell panel. Only compound 5b showed moderate GI% at the used dose (10 μM) against four of the tested cell lines corresponding to leukemia SR (GI%: 51), non small-cell lung cancer HOP-92 (GI%: 63), melanoma UACC-62 (GI%: 53) and renal cancer UO-31 (GI%: 69). On the other hand, antimicrobial screening of the whole set of the synthesized compounds was performed against three Gram +ve and two Gram ?ve bacterial strains. Results of the antimicrobial screening showed that compounds 5d, 5e, 5f, 5h and 5k have broad-spectrum antibacterial efficacy being moderately active against all the tested Gram +ve and two Gram ?ve bacteria. Also, compound 5a showed interesting results being only active against Streptococcus faecalis and both tested Gram ?ve strains viz. E. coli and P. aeruginosa. In order to compare the binding mode of the most active compounds 5e and 5f along with the inactive compound 5c we docked these compounds into the empty binding site of topoisomerase II DNA gyrase (PDB ID: 1KZN), and results were compared with the bound inhibitor Clorobiocin.  相似文献   

15.
Excessive uric acid production, which causes gout and hyperuricemia, can be blocked by inhibiting xanthine oxidase (XO). However, some agents to block on XO often cause side effects, thereby necessitating the identification of new inhibitors. During the screening of XO inhibitors from various mushroom extracts, we found that a methanolic extract of the fruiting bodies of Tyromyces fissilis, an inedible and non-toxic fungus, showed inhibitory activity. Both n-hexane and ethyl acetate layers, obtained by partitioning this extract exhibited XO inhibitory activity. Subsequently, using an activity-guided separation method, eight active compounds (1–8) were isolated. The structures of five of the new compounds, 24, 6, and 7, were elucidated by spectral analysis and chemical derivatization. All compounds had a salicylic acid moiety with an aliphatic group at the C-6 position. Notably, 2-hydroxy-6-pentadecylbenzoic acid (1) showed the highest level of XO noncompetitive inhibition (58.9 ± 2.2% at 25 µM).  相似文献   

16.
Condensation of 1,3‐dihydro‐2,3‐dioxo‐2H‐indoles (1a–c) with galactaric acid bis hydrazide (2) gave the corresponding galactaric acid bis[2‐(1,2‐dihydro‐2‐oxo‐3H‐indol‐3‐ylidene)hydrazides] (3a–c). Acetylation of the latter compounds with acetic anhydride in the presence of pyridine at ambient temperature gave the 2,3,4,5‐tetra‐O‐acetylgalactaric acid bis[2‐(1,2‐dihydro‐2‐oxo‐1‐substituted‐3H‐indol‐3‐ylidene)hydrazides] (4b–d). Heterocyclization of the tetra‐O‐acetates 4b–d by heating with thionyl chloride afforded the double headed acyclo C‐nucleosides: 1,2,3,4‐tetra‐O‐acetyl‐1,4‐bis{9‐substituted‐1,3,4‐oxadiazino[6,5‐b]indol‐2‐yl‐1‐ium}‐galacto‐tetritol dichlorides (5b–d). Structures of the prepared compounds were elucidated from their spectral properties.  相似文献   

17.
The synthesis of (Z)-4-oxo-4-(arylamino)but-2-enoic acid (4) derivatives containing structural characteristics that can be used for the synthesis of several active molecules, is presented. Some of the butenoic acid derivatives (4a, 4c, 4e, 4i, 4j, 4k) are synthesized following literature procedures and at the end of the reaction. In addition, structures of all synthesized derivatives (4a4m) were determined by 1H-NMR, 13C-NMR and IR spectroscopy. Carbonic anhydrase is a metalloenzyme involved in many crucial physiologic processes as it catalyzes a simple but fundamental reaction, the reversible hydration of carbon dioxide to bicarbonate and protons. Significant results were obtained by evaluating the enzyme inhibitory activities of these derivatives against human carbonic anhydrase hCA I and II isoenzymes (hCA I and II). Butenoic acid derivatives (4a4m) strongly inhibited hCA I and II with Kis in the low nanomolar range of 1.85?±?0.58 to 5.04?±?1.46?nM against hCA I and in the range of 2.01?±?0.52 to 2.94?±?1.31?nM against hCA II.  相似文献   

18.
Abstract

Objective: To investigate the clinical features and imaging characteristics of mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes (MELAS).

Methods: Seventeen patients with MELAS diagnosed in the Affiliated Hospital of Xuzhou Medical University from July 2014 to August 2018 were enrolled in this study and their clinical manifestations, imaging and histopathological features were retrospectively analysed. We also discussed and summarised the related literature.

Results: All of the 12 patients had seizures; stroke-like episodes in 12 cases; audio-visual impairment in 12 cases; headache in six cases; dysplasia in four cases; mental retardation in three cases; ataxia in two cases. On cranial magnetic resonance (MR) scans, the most common manifestations were in temporal–occipital–parietal lobe, cortical or subcortical areas as well as frontal lobe, thalamus, and basal ganglia showing long or equal T1 signals, long T2 signals, and hyperintense or iso-intense diffusion-weighted imaging (DWI) signals accompanied by ventricular enlargement and brain atrophy. MR spectroscopy showed that lactic acid peaks could be found in lesion sites, normal brain tissues, and cerebrospinal fluid. Muscle biopsy and genetic testing are the gold standard for diagnosing MELAS, muscle biopsy revealed COX-negative muscle fibres and SDH-stained red ragged fibres (RRF) under the sarcolemma. Mutations of mtDNA A3243G locus were common on gene testing. Improvement of mitochondrial function was observed after symptomatic and supportive treatment.

Conclusion: MELAS should be considered for patients with epileptic seizures, headache, stroke-like episodes, extraocular palsy, cognitive decline and other clinical manifestations with the lesion located in the temporal–occipital–parietal lobe regardless of the distribution of blood vessels, and further examinations including muscle biopsy and gene testing should be performed to confirm the diagnosis.  相似文献   

19.
A series of novel substituted 1-(4-methoxybenzyl)-3-cyclopropyl-1H-pyrazol-5-amine benzamides 9(a–h) were synthesized to determine their antibacterial and antifungal activities as well as possible structure–activity relationships (SARs) to improve therapeutic efficacy. The pyrazol-5-amine benzamides were screened for their antibacterial activity against standard strains of Gram-positive (Streptococcus pyogenes NCIM 2608, Staphylococcus aureus ATCC 29737, Bacillus subtilis NCIM 2010) and Gram-negative (Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 20852, Klebsiella pneumoniae MTCC 618) bacteria by using streptomycin as positive control. They were also tested for their antifungal activities against mycotoxic strains of Fusarium verticillioides, Aspergillus ochraceous, Aspergillus flavus, Alternaria alternata, and Penicillium chrysogenum using nystatin as positive control. Among the synthesized compounds, 9d, 9g, and 9h showed potent antimicrobial activities.  相似文献   

20.
The rhodium-catalysed hydroacylation of alkene is one of the most useful C–H bond activation processes. The C–C bond-forming reactions via C–H bond activation have extensively been the focus of study in the fields of organic and organometallic chemistry. In this work, density functional theory has been used to study Rh(I)-catalysed hydroacylation and hydrogenation of ethene with formic acid. All the intermediates and the transition states were optimised completely at the B3LYP/6-311++G(d,p) level (LANL2DZ(d) for Rh, P). Calculation results confirm that Rh(I)-catalysed hydroacylation of ethene is exothermic and the released Gibbs free energy is ? 60.39 kJ/mol. Rh(I)-catalysed hydrogenation of ethene is also exothermic and the released Gibbs free energy is ? 150.97 kJ/mol. Rh(I)-catalysed hydroacylation of ethene is the dominant reaction mode for Rh(I)-catalysed hydroacylation and hydrogenation of ethene with formic acid. In Rh(I)-catalysed hydroacylation of ethene, the H-transfer reaction is prior to the C–C bond-forming reaction. Therefore, the reaction mode ‘a’ (i.e. ca → M1 → TS1 → M2 → TS2a → M3a → TS3a → M4 → P1) is the dominant reaction pathway for Rh(I)-catalysed hydroacylation and hydrogenation of ethene. The theoretically predicted dominant product is propane acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号