首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, molecular dynamics simulation was carried out to investigate the thermomechanical properties of cross-linked epoxy resin. The glass transition temperature, coefficients of thermal and moisture expansion, mechanical property parameters and so on are studied with the influence of temperature, water concentration and polymer conversion taken into account. The simulation results were in good agreement with existing experimental data.  相似文献   

2.
Molecular dynamics method is employed to simulate the compression deformation of the polymer materials for electronic packaging. The effects of moisture content, conversion degree, strain rate and temperature on the mechanical properties of epoxy resin are investigated. The stress–strain curves, Young's modulus and Poisson ratio are compared with existing experimental data. The results show that mechanical properties of epoxy resin decrease obviously with increasing moisture content and temperature. However, the high cross-linking conversion and strain rate enhance the mechanical properties of resin.  相似文献   

3.
The effect of moisture content and temperature on water diffusion into a modified high amylose (< or = 90%) maize thermoplastic starch blend was investigated. Gravimetric and magnetic resonance imaging (MRI) studies were conducted to elucidate the diffusion mechanism and diffusion coefficients for this system. The diffusion coefficient data demonstrated that the rate of water diffusion into this blend was significantly dependent upon temperature and moisture content. Water diffusion was faster at higher temperatures and generally for samples stored at higher relative humidity environments. It was revealed from the gravimetric data that water diffusion into this starch blend was Fickian; however, further analysis of the MRI images found that the water diffusion mechanism was exponentially dependent on the concentration. This result was determined by comparing experimental water concentration profiles to a theoretical model calculated using the implicit Crank-Nicolson finite difference method.  相似文献   

4.
The diffusion of small molecules through polymers is important in many areas of polymer science, such as gas barrier and separation membrane materials, polymeric foams, and in the processing and properties of polymers. Molecular simulation techniques have been applied to study the diffusion of oxygen and carbon dioxide as small molecule penetrants in models of bulk amorphous poly(ethylene terephthalate) (PET) and related alkylene and isomeric polyesters. A bulk amorphous configuration with periodic boundary conditions made into a unit cell whose dimensions were determined for each of the simulated polyesters in the cell having the experimental density. The diffusion coefficients for O 2 and CO 2 were determined via NVE molecular dynamics simulations using the Dreiding 2.21 molecular mechanics force field over a range of temperatures (300, 500 and 600 K) using up to 3 ns simulation time. We have focussed on the influence of the temperature, polymer dynamics, number of CH 2 groups, density and free volume distribution on the diffusion properties. Correlation of diffusion coefficients with free volume and number of CH 2 groups was found.  相似文献   

5.
The robust structural integrity of the epoxy plays an important role in ensuring the long-term service life of its applications, which is affected by the absorbed moisture. In order to understand the mechanism of the moisture effect, the knowledge of the interaction and dynamics of the water molecules inside the epoxy is of great interest. Molecular dynamics simulation is used in this work to investigate the structure and bonding behaviour of the water molecules in the highly cross-linked epoxy network. When the moisture concentration is low, the water molecules are well dispersed in the cross-linked structure and located in the vicinity of the epoxy functional groups, which predominantly form the hydrogen bond (H-bond) with the epoxy network, resulting in the low water mobility in the epoxy. At the high concentration, the water favourably forms the large cluster due to the predominant water–water H-bond interaction, and the water molecules diffuse primarily inside the cluster, which leads to the high water mobility and the accelerated H-bond dynamics. The variation of the bonding behaviour and dynamics of the water molecules reported here could be exploited to understand the material change and predict the long-term performance of the epoxy-based products during the intended service life.  相似文献   

6.
In this paper, water diffusion coefficients were measured using NMR pulsed field gradient, on a variety of paper materials made from predominantly cellulose fibre and nanofibres, derived from wood, with different dimensions, internal porosity, and chemical composition. The moisture content ranged from 0.2 to 1.2 g of water/g of dry fibre. Diffusion measurements were made both in the plane and through the thickness of the sheet. All data was generally well fitted by a simple two component diffusion model. For moisture contents less than 0.55 and 0.85 g/g for measurements in the plane and through the thickness, respectively, it was found that both diffusion components increased approximately linearly with moisture content, with the faster diffusion coefficient being approximately five times larger than the smaller. The water appeared, within errors, to be evenly split between two components. The measured diffusion coefficients were not affected by fibre dimensions, internal structure or chemical composition, but were consistently higher when measured in the plane.  相似文献   

7.
Summary Using isolated cuticular membranes from ten woody and herbaceous plant species, permeance and diffusion coefficients for water were measured, and partition coefficients were calculated. The cuticular membranes of fruit had much higher permeance and diffusion coefficients than leaf cuticular membranes from either trees or herbs. Both diffusion and partition coefficients increased with increasing membrane thickness. Thin cuticles, therefore, tend to be better and more efficient water barriers than thick cuticles. We compared the diffusion coefficients and the water content of cuticles as calculated from transport measurements with those obtained from water vapor sorption. There is good to fair agreement for cuticular membranes with a low water content, but large discrepancies appear for polymer matrix membranes with high permeance. This is probably due to the fact that diffusion coefficients obtained from transport measurements on membranes with high permeance and water content are underestimated. Water permeabilities of polyethylene and polypropylene membranes are similar to those of leaf cuticular membranes. However, leaf cuticles have much lower diffusion coefficients and a much greater water content than these synthetic polymers. This suggests that cuticles are primarily mobility barriers as far as water transport is concerned.  相似文献   

8.
Diffusion coefficient and its dependency on some biochemical factors   总被引:1,自引:0,他引:1  
The diffusion coefficients for glucose and oxygen through the microbial aggregate were measured, and then the dependency on the biochemical factors was investigated. Kinetic and diffusion studies were carried out experimentally for this purpose. Both coefficients were found to be dependent not only on the bacteria concentration but also on the C/N ratio of microbial aggregate at the high bacteria concentration, when the temperature was 20 +/- 2 degrees C. On the other hand, these values were considered to be independent of both factors at the low bacteria concentration, when the temperature was 20 +/- 2 degrees C. In other words, both coefficients were approximately 86-95% of the values in water at the high bacteria concentration and nearly 100% of the values in water at the low bacteria concentration. It was also found that they were dependent on the temperature.  相似文献   

9.
Pulsed field gradient (PFG) nuclear magnetic resonance (NMR) was used to investigate the self-diffusion behaviour of polymers in cartilage. Polyethylene glycol and dextran with different molecular weights and in different concentrations were used as model compounds to mimic the diffusion behaviour of metabolites of cartilage. The polymer self-diffusion depends extremely on the observation time: The short-time self-diffusion coefficients (diffusion time Delta approximately 15 ms) are subjected to a rather non-specific obstruction effect that depends mainly on the molecular weights of the applied polymers as well as on the water content of the cartilage. The observed self-diffusion coefficients decrease with increasing molecular weights of the polymers and with a decreasing water content of the cartilage. In contrast, the long-time self-diffusion coefficients of the polymers in cartilage (diffusion time Delta approximately 600 ms) reflect the structural properties of the tissue. Measurements at different water contents, different molecular weights of the polymers and varying observation times suggest that primarily the collagenous network of cartilage but also the entanglements of the polymer chains themselves are responsible for the observed restricted diffusion. Additionally, anomalous restricted diffusion was shown to occur already in concentrated polymer solutions.  相似文献   

10.
A membrane-covered polarographic oxygen electrode was used to measure oxygen diffusion coefficients in aqueous polyelectrolyte solutions of xanthan gum, sodium alginate, and sodium carboxymethylcellulose (CMC). In sodium alginate solutions, dilute xanthan solutions, and solutions containing more than 0.3 wt % CMC, oxygen diffusion coefficients decrease with increasing polymer concentrations. Interestingly, in dilute CMC solutions and concentrate xanthan solutions containing more than 0.5 wt % xanthan gum, oxygen diffusion coefficients increase with increasing polymer concentrations, and values exceeding that in pure water are generally observed.  相似文献   

11.
We performed a molecular dynamics simulation to calculate the self-diffusion coefficients of 1-Butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide and water in a water–ionic liquid mixture. We then compared the simulated self-diffusion coefficients of cation, anion and water molecules with experimental data and with simulated data from the literature. Although the simulation overestimated the self-diffusion coefficients of ions, the simulated results qualitatively reproduced the enhancement of the self-diffusion coefficients of water as the water molar fraction increased. We also calculated the radial distribution functions to investigate the solution structure, i.e. the clustering of water molecules. The clustering of water in ionic liquid was found to play an important role in the enhancement of the diffusion of water molecules in the ionic liquid.  相似文献   

12.
Magnetic resonance imaging has been used to monitor the diffusion of water at 310 K into a series of semi-IPNs of poly(ethyl methacrylate), PEM, and copolymers of 2-hydroxyethyl methacrylate, HEMA, and tetrahydrofurfuryl methacrylate, THFMA. The diffusion was found to be well described by a Fickian kinetic model in the early stages of the water sorption process, and the diffusion coefficients were found to be slightly smaller than those for the copolymers of HEMA and THFMA, P(HEMA-co-THFMA), containing the same mole fraction of HEMA in the matrix. A second stage sorption process was identified in the later stage of water sorption by the PEM/PTHFMA semi-IPN and for the systems containing a P(HEMA-co-THFMA) component with a mole fraction HEMA of 0.6 or less. This was characterized by the presence of water near the surface of the cylinders with a longer NMR T(2) relaxation time, which would be characteristic of mobile water, such as water present in large pores or surface fissures. The presence of the drug chlorhexidine in the polymer matrixes at a concentration of 5.625 wt % was found not to modify the properties significantly, but the diffusion coefficients for the water sorption were systematically smaller when the drug was present.  相似文献   

13.
气候变化对不同水分条件下柿幼树光合作用的影响   总被引:1,自引:0,他引:1  
以两年生柿树为试材,研究了高浓度CO2处理(700 μmol·mol-1)、高温处理(日平均温度高于正常日平均温度约5 ℃)、高温和高浓度CO2复合处理及对照(温度为外界环境温度,CO2浓度380 μmol·mol-1)对不同水分条件下柿树净光合速率(Pn)、蒸腾速率(Tr)、气孔导度(Gs)、水分利用效率(WUE)、叶绿素含量和叶绿素荧光参数Fv/Fm、Fv/Fo的影响.结果表明:高温和高浓度CO2复合处理使处于各水分条件下的柿树Tr、Gs减小,WUE增大;在高、中水分条件(分别为田间持水量的75%~85%和55%~65%)下高温和高浓度CO2复合处理使柿树Pn增大,在低水分条件(为田间持水量的35%~45%)下使柿树Pn减小.高浓度CO2处理使处于各水分条件下的柿树Pn、WUE增大,Gs、T减小.高温及高温和高浓度CO2复合处理下WUE均受土壤水分状况的影响,并随土壤含水量的升高而升高.与对照相比,高浓度CO2处理还提高了各水分条件下植株叶片水平的水分利用效率、叶绿素a、叶绿素b、叶绿素(a+b)、类胡萝卜素含量及Fv/Fm和Fv/Fo,缓解了水分胁迫,提高了柿树的抗逆能力.  相似文献   

14.
To better understand the relation between recrystallization rate and water mobility in freeze-concentrated matrix, isothermal ice recrystallization rates in several sugar aqueous solutions and self-diffusion coefficients of water component in corresponding freeze-concentrated matrix were measured. The sugars used were fructose, glucose, maltose, and sucrose. The sugar concentrations and temperature were varied so that ice contents for all samples were almost equal. Neither recrystallization rates nor diffusion coefficients depended uniformly on temperature. The recrystallization rates increased with increasing the diffusion coefficients, and a direct relationship was found between recrystallization rate and diffusion coefficient. This indicated that self-diffusion coefficient of water component in freeze-concentrated matrix is a useful parameter for predicting and controlling recrystallization rate in sugar solutions relevant to frozen desserts.  相似文献   

15.
Self-diffusion coefficients for both components are reported for the highly concentrated aqueous solutions of some disaccharides and fructose as a function of temperature and concentration. These data are complemented by viscosity measurements. The disaccharides studied are sucrose, alpha,alpha-trehalose, allosucrose, and leucrose. Up to a sugar concentration of approximately 30% w/w the viscosity and the self diffusion coefficients of the four disaccharides are identical within experimental error for a given concentration and temperature. Water diffusion shows no differences in the four systems studied under these conditions. At higher concentrations significant differences are observed that become more pronounced with increasing temperature. Analysis of the data by the VTF equation yields the result that at a given concentration the self diffusion coefficients of the sugar Dc and the viscosity eta are described by identical ideal glass transition temperatures T0, while the diffusion of the water D(W) molecule decouples from these properties. T0(W) is always lower than T0(c,eta).  相似文献   

16.
The aim of this study was to demonstrate the potential for holographic interferometry to be used for diffusion studies of large molecules in gels. The diffusion and partitioning of BSA (67,000 g/mol) and pullulans (5,900-112,000 g/mol) in agarose gel were investigated. The gel diffusion coefficients obtained for BSA were higher when distilled water was used as a solvent compared to those obtained with 0.1 M NaCl as the solvent. Furthermore, the gel diffusion coefficient increased with increasing BSA concentration. The same trend was found for liquid BSA diffusion coefficients obtained by DLS. BSA partition coefficients obtained at different agarose gel concentrations (2-6%, w/w) decreased slightly with increasing gel concentration. However, all BSA gel diffusion coefficients measured were significantly lower than those in pure solvent and they decreased with increasing agarose concentration. The gel diffusion coefficients obtained for pullulans decreased with increasing pullulan molecular weight. The same effect from increased molecular weight was seen in the liquid diffusion coefficients measured by DLS. The pullulan partition coefficients obtained decreased with increasing molecular weight. However, pullulans with a larger Stokes' radius than BSA had partition coefficients that were higher or approximately the same as BSA. This implied that the pullulan molecules were more flexible than the BSA molecules. The results obtained for BSA in this study agreed well with other experimental studies. In addition, the magnitude of the relative standard deviation was acceptable and in the same range as for many other methods. The results thereby obtained showed that holographic interferometry is a suitable method for studying diffusion of macromolecules in gels.  相似文献   

17.
The dynamics of water molecules near the protein surface are different from those of bulk water and influence the structure and dynamics of the protein itself. To elucidate the temperature dependence hydration dynamics of water molecules, we present results from the molecular dynamic simulation of the water molecules surrounding two proteins (Carboxypeptidase inhibitor and Ovomucoid) at seven different temperatures (T=273 to 303 K, in increments of 5 K). Translational diffusion coefficients of the surface water and bulk water molecules were estimated from 2 ns molecular dynamics simulation trajectories. Temperature dependence of the estimated bulk water diffusion closely reflects the experimental values, while hydration water diffusion is retarded significantly due to the protein. Protein surface induced scaling of translational dynamics of the hydration waters is uniform over the temperature range studied, suggesting the importance protein-water interactions.  相似文献   

18.
An important class of thermoplastic elastomers involves polystyrene and polyisobutylene blocks (SIBS). Sulfonated SIBS Triblock Copolymers (S-SIBS) are of particular interest because of potential applications for fuel cell and textile applications, where breathable, protective clothing is required. We have used multiscale modeling to gain an understanding of the static and dynamic properties of these polymer systems at detailed atomistic levels. Quantum chemistry tools were used to elucidate the bonding of water molecules and sulfonate groups. In addition, molecular dynamics was applied to calculate the polymer density at various levels of sulfonation. The structures of polymer with hydronium ions and also water were studied and the mechanism of water self-diffusion was proposed. It was found that with increase of water content the hydronium ions move further away from sulfonate groups. The self-diffusion coefficients of water were found to reproduce well experimental trends. Two different distributions of sulfonate groups were studied: one blocky and another perfectly dispersed. In the case of the blocky architecture, the water clusters are connected at a lower sulfonation level, leading to increased water diffusion coefficients as compared to the dispersed architecture.  相似文献   

19.
The temperature dependence of the coefficient of water self-diffusion through plane-parallel lipid multilayers of the phospholipid dioleoylphosphatidylcholine oriented on a glass support has been studied in the temperature range of 20-60 degrees C by the method of NMR with magnetic field pulse gradient. The values of the coefficients of transbilayer water diffusion are by four orders of magnitude less than for bulky water and ten times less than the coefficients of lateral diffusion of the lipid under the same conditions. The temperature dependence of the coefficient of water diffusion is described by the Arrhenius law with an apparent activation energy of about 41 kJ/mol, which far exceeds the activation energy for the diffusion of bulky water (18 kJ/mol). The experimental data were analyzed using a "dissolving-diffusion" model, by simulating the passage of water through membrane channels, and by analyzing the exchange of water molecules in states with different modes of translation mobility, including pore channels and bilayer "defects". Each of the approaches used made it possible to take the significance of bilayer permeability for the apparent energy of activation of water diffusion into account and estimate the energies of activation of water diffusion in the hydrophobic moiety of the bilayer, which were found to be close to the values for bulky water. The coefficients of water diffusion in the system under examination and the coefficients of permeation of water through the bilayer were estimated, and the effect of bilayer "defects" on the coefficients of water diffusion along and across bilayers was studied.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号