首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rui Shi  Yanting Wang 《Molecular simulation》2017,43(13-16):1295-1299
Abstract

Surface structure and properties play an important role in many applications of ionic liquids (ILs). ILs can form unique surface structures that are very different from the bulk. In imidazolium-based ILs, for example, polar groups form ordered layer structure, while cationic alkyl chains are bundled together and point out from the surface. In many applications, ILs work under an external electric field. However, the effect of external electric field on the surface structure of ILs is still not clear. Here by using coarse-grained molecular dynamics simulation, we found that an electric field as strong as 1 V/nm is required to alter the surface structure of 1-dodecyl-3-methylimidazolium nitrate. Under a strong external electric field, layered structure disappears, and instead a sparser, more homogeneous and less orientationally ordered surface develops.  相似文献   

2.
3.
4.
We apply a newly parameterized central force field to highlight the problem of proton transport in fuel cell membranes and show that central force fields are potential candidates to describe chemical reactions on a classical level. After a short sketch of the parameterization of the force field, we validate the obtained force field for several properties of water. The experimental and simulated radial distribution functions are reproduced very accurately as a consequence of the applied parameterization procedure. Further properties, geometry, coordination, diffusion coefficient and density, are simulated adequately for our purposes. Afterwards we use the new force field for the molecular dynamics simulation of a swollen polyelectrolyte membrane similar to the widespread Nafion 117. We investigate the equilibrated structures, proton transfer, lifetimes of hydronium ions, the diffusion coefficients, and the conductivity in dependence of water content. In a short movie we demonstrate the ability of the obtained force field to describe the bond breaking/formation, and conclude that this force field can be considered as a kind of a reactive force field. The investigations of the lifetimes of hydronium ions give us the information about the kinetics of the proton transfer in a membrane with low water content. We found the evidence for the second order reaction. Finally, we demonstrate that the model is simple enough to handle the large systems sufficient to calculate the conductivity from molecular dynamics simulations. The detailed analysis of the conductivity reveals the importance of the collective moving of hydronium ions in membrane, which might give an interesting encouragement for further development of membranes. Figure: The structure of water in one pore of the highly hydrated Nafion membranes. Figure The structure of water in one of pore of the highly hydrated Nafion membrane Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

5.
ABSTRACT

Removal of undesired substances from water is a field of investigation recently focused at the nanoscale. Towards this direction, molecular dynamics simulations are conducted in this paper to investigate unwanted ion removal in nanochannel flows. The simulation method incorporates a Poiseuille-like water/ion flow system at the nanoscale where an electric field, of various magnitudes in the range of E?=?0.25–1.5?V/Å, is applied perpendicular to the flow, leading anions and cations close to the wall regions, similar to the Capacitive De-Ionization method. The time needed for ions to reach equilibrium, i.e. to flow in the region near the walls while pure water flows in the channel interior, is t?=?1.3?ns when E?=?1.5?V/Å and t?=?4.0?ns when E?=?0.25?V/Å, showing a dependency on the value of the electric field. Calculations on density, velocity, and temperature values report on fluid properties to be used in the proposed desalination configuration and could act as a basis to guide novel technological applications and extend to higher scales.  相似文献   

6.
The effects of a static electric field on the dynamics of lysozyme and its hydration water are investigated by means of incoherent quasi-elastic neutron scattering (QENS). Measurements were performed on lysozyme samples, hydrated respectively with heavy water (D 2O) to capture the protein dynamics and with light water (H 2O), to probe the dynamics of the hydration shell, in the temperature range from 210 < T < 260 K. The hydration fraction in both cases was about ~ 0.38 gram of water per gram of dry protein. The field strengths investigated were respectively 0 kV/mm and 2 kV/mm ( ~2 × 10 6 V/m) for the protein hydrated with D 2O and 0 kV and 1 kV/mm for the H 2O-hydrated counterpart. While the overall internal protons dynamics of the protein appears to be unaffected by the application of an electric field up to 2 kV/mm, likely due to the stronger intra-molecular interactions, there is also no appreciable quantitative enhancement of the diffusive dynamics of the hydration water, as would be anticipated based on our recent observations in water confined in silica pores under field values of 2.5 kV/mm. This may be due to the difference in surface interactions between water and the two adsorption hosts (silica and protein), or to the existence of a critical threshold field value E c ~2–3 kV/mm for increased molecular diffusion, for which electrical breakdown is a limitation for our sample.  相似文献   

7.
Summary Although the structure of glasses is not really accessible by experimental methods, molecular dynamics is a very useful alternative, as we have tried to demonstrate in this chapter. The simulations reproduce the broad macroscopic features found in these glasses, both structural and transport-related, providing a basis for the more detailed atomic scale features found in the simulated structures. An understanding of important aspects of alkali ion transport, such as the mixed alkali effect and anomalous behaviour in some alumino-silicates, can thus be approached from the atomistic pictures of the glasses produced by the simulations. Although there is room for improvements to the potential models available, it should be clear that the further application of computer simulation methods, such as molecular dynamics, promises to provide much needed advances in glass science and engineering.  相似文献   

8.
By the quantum-molecular dynamics (QMD) technique based on the Roothaan–Hall equation and the Newton motion law, geometrical deformation and failure behavior of C60 fullerene dimer (2C60) as well as single C60 fullerene under applied external electric field are simulated. Further, the effects of the electric field direction on the electric field-induced deformation, polarization-charge distribution and dipole moment of the fullerene molecules are discussed systemically. It is found that the geometrical configuration and failure behavior of the 2C60 molecule are sensitive to the electric field direction, that when the electric field direction is parallel to the bridging C–C bonds of the 2C60 molecule the 2C60 fails easily, and that when the electric field direction is perpendicular to the 2C60 fails difficultly and has the same polarization and failure mechanism as the single C60.  相似文献   

9.
Molecular dynamic simulations of systems of single-walled carbon nanotubes (CNTs) in liquid crystalline solvents were performed, in order to investigate the effect of the molecular structure and phase of the liquid crystal (LC) on the interactions between the CNTs. Three different LC molecules (5CB, 8CB and 5CF) were considered in our study. Our results with 5CB and 8CB suggest that increasing the chain length of the hydrophobic part of the LC molecule by three carbon atoms is insufficient to decrease the tendency for the CNTs to aggregate in the LCs. Additionally, varying the phase of the LC is also insufficient to decrease the aggregation tendency of the CNTs. However, simulations with 5CF (which has fluorine atoms in the head group of the LC molecule) suggest that this LC solvent can decrease the tendency of the CNTs to aggregate. This study is relevant to assist experimentalists with the development of high-quality dispersions of large concentrations of CNTs in the LCs.  相似文献   

10.
Molecular dynamics simulations were used to study the thermal conductivity of liquid argon ultra thin films confined between two plates spaced several nanometres apart. The research focused on the dependence of the liquid argon thermal conductivity on the liquid layer thickness and the interaction between liquid and solid. The results show that the thermal conductivity of liquid argon ultra thin films confined between two plates depends on the distance between the two plates and the existence of solid-like liquid layering at the liquid–solid interface and the average migration frequency of all liquid molecules. Stronger interactions between the liquid and the solid resulted in a larger number of atoms in the solid-like liquid layer along the surface and hence smaller thermal resistance between the liquid and the solid. However, as the strength of the interaction with the solid increased, the thermal conductivity was reduced due to fewer atoms near the hot solid boundary and less molecular migration.  相似文献   

11.
This study was carried out to evaluate the stability of the 89 bound water molecules that were observed in the neutron diffraction study of CO myoglobin. The myoglobin structure derived from the neutron analysis was used as the starting point in the molecular dynamics simulation using the software package CHARMM. After solvation of the protein, energy minimization and equilibration of the system, 50 ps of Newtonian dynamics was performed. This data showed that only 4 water molecules are continously bound during the length of this simulation while the other solvent molecules exhibit considerable mobility and are breaking and reforming hydrogen bonds with the protein. At any instant during the simulation, 73 of the hydration sites observed in the neutron structure are occupied by water. © 1995 Wiley-Liss, Inc.  相似文献   

12.
Myosins are typical molecular motor proteins, which convert the chemical energy of ATP into mechanical work. The fundamental mechanism of this energy conversion is still unknown. To explain the experimental results observed in molecular motors, Masuda has proposed a theory called the “Driven by Detachment (DbD)” mechanism for the working principle of myosins. Based on this theory, the energy used during the power stroke of the myosins originates from the attractive force between a detached myosin head and an actin filament, and does not directly arise from the energy of ATP. According to this theory, every step in the myosin working process may be reproduced by molecular dynamics (MD) simulations, except for the ATP hydrolysis step. Therefore, MD simulations were conducted to reproduce the docking process of a myosin subfragment-1 (S1) against an actin filament. A myosin S1 directed toward the barbed end of an actin filament was placed at three different positions by shifting it away from the filament axis. After 30 ns of MD simulations, in three cases out of ten trials on average, the myosin made a close contact with two actin monomers by changing the positions and the orientation of both the myosin and the actin as predicted in previous studies. Once the docking was achieved, the distance between the myosin and the actin showed smaller fluctuations, indicating that the docking is stable over time. If the docking was not achieved, the myosin moved randomly around the initial position or moved away from the actin filament. MD simulations thus successfully reproduced the docking of a myosin S1 with an actin filament. By extending the similar MD simulations to the other steps of the myosin working process, the validity of the DbD theory may be computationally demonstrated.  相似文献   

13.
Numerical simulation of the dynamics of charged cylindrical macroparticles confined in an external electric field is carried out. The orientation of two identical cylindrical grains in the field of the trap is considered. The conditions for the onset of a new layer in an extended quasi-two-dimensional system of such grains are analyzed.  相似文献   

14.
We present the results of molecular dynamics (MD) simulations of a phospholipid membrane in water, including full atomic detail. The goal of the simulations was twofold: first we wanted to set up a simulation system which is able to reproduce experimental results and can serve as a model membrane in future simulations. This goal being reached it is then further possible to gain insight in to those properties that are experimentally more difficult to access. The system studied is dipalmitoylphosphatidylcholine/water, consisting of 5408 atoms. Using original force field parameters the membrane turned out to approach a gel-like state. With slight changes of the parameters, the system adopted a liquid-crystalline state. Separate 80 ps runs were performed on both the gel and liquid-crystalline systems. Comparison of MD results with reliable experimental data (bilayer repeat distance, surface area per lipid, tail order parameters, atom distributions) showed that our simulations, especially the one in the liquid-crystalline phase, can serve as a realistic model for a phospholipid membrane. Further analysis of the trajectories revealed valuable information on various properties. In the liquid-crystalline phase, the interface turns out to be quite diffuse, with water molecules penetrating into the bilayer to the position of the carbonyl groups. The 10–90% width of the interface turns out to be 1.3 nm and the width of the hydrocarbon interior 3.0 nm. The headgroup dipoles are oriented at a small angle with respect to the bilayer plane. The resulting charge distribution is almost completely cancelled by the water molecules. The electron density distribution shows a large dip in the middle of the membrane. In this part the tails are more flexible. The mean life time between dihedral transitions is 20 ps. The average number of gauche angles per tail is 3.5. The occurrence of kinks is not a significant feature.Abbreviations MD molecular dynamics - DPPC dipalmitoylphosphatidylcholine - SPC simple point charges - DPPE dipalmitoylphosphatidylethanolamine Correspondence to: H. J. C. Berendsen  相似文献   

15.
The purpose of this investigation is to clarify the dynamical process of reorientation of a polyethylene chains under high magnetic fields. Molecular dynamics (MD) simulations at constant temperature and pressure are carried out to study the reorientation of two polyethylene chains with different configurations. We utilized static homogeneous external magnetic fields of 25 T into the velocity Verlet integration algorithm through a suitable Taylor expansion.

Simulations reveal that the gained potential energy through magnetic annealing facilitated the reorganization of the polyethylene chains closer to the direction of the applied magnetic field. The current study offer an alternative explanation for the orientation that was not available through the hydrodynamics continuum approach based on the diamagnetic susceptibilities as the driving force for reorientation.  相似文献   

16.
In this study, theoretical analysis on the geometries and electronic properties of various conjugated oligomers based on thiophene (Th) or bicyclic non-classical Th units is reported. The dihedral angle, bond length, bond-length alternation, bond critical point (BCP) properties, nucleus-independent chemical shift (NICS) and Wiberg bond index (WBIs) are analysed and correlated with conduction properties. The changes of bond length, BCP properties, NICS and WBIs all show that the conjugational degree is increased systematically with main chain extension. As a result, the highest occupied molecular orbital–lowest unoccupied molecular orbital energy separation (E g) is decreased upon chain elongation. The E g of oligomers based on bicyclic non-classical Th unit is much lower than that of Th-based oligomers due to the narrower E g of bicyclic non-classical Ths compared to Th, which indicates that the narrow E g of the bicyclic non-classical Ths can be carried over to their polymers by using them as building blocks for the polymers. The band structures and density of states analysis show that the four polymers all have small band gap ( < 0.9 eV), wide highest occupied bandwidth and relatively small effective mass of hole, which indicate that those proposed polymers may be potential conductors.  相似文献   

17.
The analysis of crack growth in titanium was performed using molecular dynamics simulation with Embedded Atom Method potentials. The effect of temperature and strain rate on the mechanism of crack growth and the change of microstructure were discussed. After setting an initial crack, the specimen was subjected to uniaxial tension strain up to the total strain level of 0.2 with a constant strain rate. During the period, the shape and the microstructure of crack tip as well as the stress–strain curves were monitored. In the simulation, the gather of voids and stress concentration leading to the crack growth occurred, which are in agreement with experimental results observed by transmission electron microscopy. The transformation from HCP to BCC also occurred at crack tip. The remarkable effect of temperature and strain rate on the growth direction and rate of stacking fault of crack tip was observed. Moreover, initial crack greatly lowered the tension yield point of pure titanium. In the stage of deformation, simulation results showed that loading strain rate and temperature strongly influenced peak stress point, which was increased by the low temperature and high strain, whereas the initial slope of the stress strain curve was independent of loading strain rate.  相似文献   

18.
Various mechanical properties of single-walled carbon nanotubes (SWCNT) and double-walled carbon nanotubes (DWCNT) are evaluated using molecular dynamics (MD) simulations. A tensioning process was first performed on a SWCNT whose interaction is based on the Brenner’s ‘second generation’ potential under varying length–diameter ratios and strain rates, in order to understand the SWCNT’s behaviour under axial tension. The results showed an increase in the SWCNT’s ultimate tensile strength and a decrease in critical strain given the conditions of increasing strain rate and a decreasing length–diameter ratio. Comparison was done with previous studies on axial tensioning of SWCNT to validate the results obtained from the set-up, based on the general stress–strain relationship and key mechanical properties such as the strain at failure and the Young’s modulus. A DWCNT was then constructed, and Lennard-Jones ‘12-6’ potential was used to describe the energy present between the nanotube layers. Extraction of the inner tube in a DWCNT was performed using two inner wall tubings of different diameters to draw comparison to the energies needed to separate fully the outer and inner tubing. Finally, a bending test was performed on two DWCNTs with different intertube separations. Insights into the entire bending process were obtained through analyses of the variations in the strain energy characteristic of the surface atoms near the bending site, as the DWCNT is gradually bent until failure.  相似文献   

19.
《Proteins》2018,86(4):414-422
CaV channels are transmembrane proteins that mediate and regulate ion fluxes across cell membranes, and they are activated in response to action potentials to allow Ca2+ influx. Since ion channels are composed of charge or polar groups, an external alternating electric field may affect the ion‐selective membrane transport and the performance of the channel. In this article, we have investigated the effect of an external GHz electric field on the dynamics of calcium ions in the selectivity filter of the CaVAb channel. Molecular dynamics (MD) simulations and the potential of mean force (PMF) calculations were carried out, via the umbrella sampling method, to determine the free energy profile of Ca2+ ions in the CaVAb channels in presence and absence of an external field. Exposing CaVAb channel to 1, 2, 3, 4, and 5 GHz electric fields increases the depth of the potential energy well and this may result in an increase in the affinity and strength of Ca2+ ions to binding sites in the selectivity filter the channel. This increase of strength of Ca2+ ions binding in the selectivity filter may interrupt the mechanism of Ca2+ ion conduction, and leads to a reduction of Ca2+ ion permeation through the CaVAb channel.  相似文献   

20.
In this paper, the hydrodynamics of streamwise wall oscillations on a Couette flow are studied using the molecular dynamics method. Firstly, based on the two-dimensional Couette flow model which is made up of copper wall and argon fluid, the characters of the fluid near the streamwise oscillation wall are simulated under the condition of varied oscillating parameters. By scrupulous data processing, some significative results such as the velocity distribution, the density distribution, the potential energy curves of the flow field and the frictional force of the wall are obtained. Secondly, the mechanism how the wall oscillation brings about change to the frictional drag at liquid–solid interface is investigated. And the results indicate that the frictional drag can be reduced significantly by applying appropriate streamwise oscillation to the solid wall. The drag reduction rate mainly depends on the oscillation parameters. In addition, the decrease in the fluid’s density near the wall is another important reason behind the frictional drag reduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号