首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Scher K  Kesselman E  Shimoni E  Yaron S 《Biofouling》2007,23(5-6):385-394
A wide variety of microorganisms are able to form biofilms at the interface between air and liquid (pellicles). In this study changes during the maturation of the pellicle of Salmonella Typhimurium were analysed and the role of cellulose in the pellicle structure and morphology evaluated. The morphology of both sides of the pellicle was characterised using atomic force microscopy and scanning electron microscopy. Overall, there was a marked difference in the morphology of the water-facing (WF) and air-facing (AF) biofilm surfaces. While the AF side appeared to be uniform, and extensively covered with an exocellular coating, cells in the WF side were distributed into clusters and were less covered. However, the similarity in size and shape of single cells from both sides of the pellicle may indicate that the bacterial cells across the pellicle have a similar physiological status. During maturation, porous structures with multiple cracks and channels were created in the pellicle, leading to disintegration. By comparison with the structure of pellicles of a cellulose-deficient mutant, it was demonstrated that the observed disintegration of mature pellicles probably occurred in part by self-hydrolysis of components of the matrix.  相似文献   

2.
The colonization of liquid surfaces as floating biofilms or pellicles is a bacterial adaptation to optimally occupy the airliquid (A-L) niche. In aerobic heterotrophs, pellicle formation is beneficial for the utilization of O2 and nonpolar organic compounds. Pseudomonas alkylphenolica KL28, an alkylphenol degrader, forms flat circular pellicles that are 0.3–0.5 mm in diameter. In this study, we first monitored the pellicle developmental patterns of multicellular organization from the initial settlement stage. The pellicles developed by clonal growth and mutants for flagella and pilus formation established normal pellicles. In contrast, the mutants of an epm gene cluster for biosynthesis of alginate-like polymer were incompetent in cell alignment for initial two-dimensional (2D) pellicle growth, suggesting the role of the Epm polymer as a structural scaffold for pellicle biofilms. Microscopic observation revealed that the initial 2D growth transited to multilayers by an accumulated self-produced extracellular polymeric substance that may exert a constraint force. Electron microscopy and confocal laser scanning microscopy revealed that the fully matured pellicle structures were densly packed with matrix-encased cells displaying distinct arrangements. The cells on the surface of the pellicle were relatively flat, and those inside were longitudinally cross-packed. The extracellular polysaccharide stained by Congo red was denser on the pellicle rim and a thin film was observed in the open spaces, indicative of its role in pellicle flotation. Our results demonstrate that P. alkylphenolica KL28 coordinately dictates the cell arrangements of pellicle biofilms by the controlled growth of constituent cells that accumulate extracellular polymeric substances.  相似文献   

3.
Cellulose, whose production is controlled by c-di-GMP, is a commonly found exopolysaccharide in bacterial biofilms. Pseudomonas syringae pv. tomato (Pto) DC3000, a model organism for molecular studies of plant–pathogen interactions, carries the wssABCDEFGHI operon for the synthesis of acetylated cellulose. The high intracellular levels of the second messenger c-di-GMP induced by the overexpression of the heterologous diguanylate cyclase PleD stimulate cellulose production and enhance air–liquid biofilm (pellicle) formation. To characterize the mechanisms involved in Pto DC3000 pellicle formation, we studied this process using mutants lacking flagella, biosurfactant or different extracellular matrix components, and compared the pellicles produced in the absence and in the presence of PleD. We have discovered that neither alginate nor the biosurfactant syringafactin are needed for their formation, whereas cellulose and flagella are important but not essential. We have also observed that the high c-di-GMP levels conferred more cohesion to Pto cells within the pellicle and induced the formation of intracellular inclusion bodies and extracellular fibres and vesicles. Since the pellicles were very labile and this greatly hindered their handling and processing for microscopy, we have also developed new methods to collect and process them for scanning and transmission electron microscopy. These techniques open up new perspectives for the analysis of fragile biofilms in other bacterial strains.  相似文献   

4.
SYNOPSIS. The suctorian Heliophrya erhardi (Rieder) Matthes is attached to the substrate by the flattened ventral side of the cell body. The dorsal is covered by a pellicle composed of 3 unit membranes. Below the pellicle is a 0.4–0.8-μm thick epiplasm composed of 6–8-nm thick fibrils. Microtubules form a network beneath the epiplasm. The epipalsm is penetrated by tube-like pellicular pits, which are lined by the cell membrane and end beneath the epiplasm in a saccule-like enlargement. During conjugation, 2 neighboring organisms form cytoplasmic processes which come into contact and fuse, thus forming a cytoplasmic bridge between the 2 cells. Around the bridge the pellicles of both organisms fuse, and the partners become united by a continuous common membrane system. Across the entire conjugation bridge the 2 fused epiplasms form a septum. Tube-like structures can be seen lying partly in the epiplasmic septum and partly in the adjacent cytoplasm. These structures are open at both ends and represent remnants of the pellicular pits. No trace of the original pellicular membranes can be found at the fusion area within the epiplasmic septum. The cytoplasm of the conjugation partners is separated only by the fused epiplasms forming the epiplasmic septum.  相似文献   

5.
Biofilm formation increases both the survival and infectivity of Vibrio cholerae, the causative agent of cholera. V. cholerae is capable of forming biofilms on solid surfaces and at the air-liquid interface, termed pellicles. Known components of the extracellular matrix include the matrix proteins Bap1, RbmA, and RbmC, an exopolysaccharide termed Vibrio polysaccharide, and DNA. In this work, we examined a rugose strain of V. cholerae and its mutants unable to produce matrix proteins by interfacial rheology to compare the evolution of pellicle elasticity in real time to understand the molecular basis of matrix protein contributions to pellicle integrity and elasticity. Together with electron micrographs, visual inspection, and contact angle measurements of the pellicles, we defined distinct contributions of the matrix proteins to pellicle morphology, microscale architecture, and mechanical properties. Furthermore, we discovered that Bap1 is uniquely required for the maintenance of the mechanical strength of the pellicle over time and contributes to the hydrophobicity of the pellicle. Thus, Bap1 presents an important matrix component to target in the prevention and dispersal of V. cholerae biofilms.  相似文献   

6.
The molecular organization of the Sarcocystis muris cystozoite pellicle has been investigated by freeze-fracture electron microscopy and by electrophoresis of the proteins of isolated pellicles. Freeze-fracture revealed a highly ordered organization of the inner membrane complex similar to the one described in other coccidian zoites. Purification of pellicles was achieved by French Press homogenization followed by sucrose gradient floatation. Electron microscopy of the pellicle fraction demonstrated the partial preservation of the triple-membrane structure whereas freeze-fracture showed the disorganization of the particle arrangements of the inner membrane complex. The SDS-PAGE of the fraction revealed a complex protein composition with one major protein of 31,000 daltons, not labeled by lactoperoxidase-catalyzed surface iodination of living cystozoites.  相似文献   

7.
The structure of the pellicles and cells of the cellulose-producing bacteria, Acetobacter xylinum and Acetobacter acetigenus, was studied by transmission electron microscopy of thin sections and freeze-etch replicas of glucose-stimulated cell suspensions, quiescent cell suspensions, and discrete pellicles. These bacteria have a relatively thin cell wall in section, with several irregular features superimposed on an otherwise simple, Gram-negative morphology. There are no flagella or pili. Unfixed, unextracted cells, viewed as whole mounts, show spherical or ellipsoidal bodies of undetermined composition which disappear after extraction with water or ethanol and propylene oxide. For both species, there are several kinds of cell surface irregularities, some of which are localized protrusions of the cell envelope. A variety of irregularities is seen frequently on cells in the first minutes of glucose incubation, on cells in a discrete pellicle, on quiescent cells, and on starved cells. Immediately after the addition of glucose to cellulose-free cells in suspension culture, fine fibrils appear on and (or) near the cell envelope. The fine fibrils are frequently as small as 3 nm in diameter in both freeze-etch and thin-section preparations and are frequently associated with freshly synthesized cellulose fibrils. Starved cells in suspensions free of (classical) microfibrils sometimes reveal stubs of an extracellular structure whose morphology resembles that of a nascent cellulose fibril.  相似文献   

8.

Background

Bacteria adopt a variety of lifestyles in their natural habitats and can alternate among different lifestyles in response to environmental changes. At high cell densities, bacteria can form extracellular matrix encased cell population on submerged tangible surfaces (biofilms), or at the air–liquid interface (pellicles). Compared to biofilm, pellicle lifestyle allows for better oxygen access, but is metabolically more costly to maintain. Further understanding of pellicle formation and environmental cues that influence cellular choices between these lifestyles will definitely improve our appreciation of bacterial interaction with their environments.

Methods

Shewanella oneidensis cells were cultured in 24-well plates with supplementation of varied divalent cations, and pellicles formed under such conditions were evaluated. Mutants defective in respiration of divalent cations were used to further characterize and confirm unique impacts of iron.

Results and conclusions

Small amount of Fe2 + was essential for pellicle formation, but presence of over-abundant iron (0.3 mM Fe2 + or Fe3 +) led to pellicle disassociation without impairing growth. Such impacts were found due to S. oneidensis-mediated formation of insoluble alternative electron acceptors (i.e., Fe3O4) under physiologically relevant conditions. Furthermore, we demonstrated that cells preferred a lifestyle of forming biofilm and respiring on such insoluble electron acceptors under tested conditions, even to living in pellicles.

General significance

Our finding suggests that bacterial lifestyle choice involves balanced evaluation of multiple aspects of environmental conditions, and yet-to-be-characterized signaling mechanism is very likely underlying such processes.  相似文献   

9.

Background  

Although solid surface-associated biofilm development of S. oneidensis has been extensively studied in recent years, pellicles formed at the air-liquid interface are largely overlooked. The goal of this work was to understand basic requirements and mechanism of pellicle formation in S. oneidensis.  相似文献   

10.
As biofilms grow, resident cells inevitably face the challenge of resource limitation. In the opportunistic pathogen Pseudomonas aeruginosa PA14, electron acceptor availability affects matrix production and, as a result, biofilm morphogenesis. The secreted matrix polysaccharide Pel is required for pellicle formation and for colony wrinkling, two activities that promote access to O2. We examined the exploitability and evolvability of Pel production at the air-liquid interface (during pellicle formation) and on solid surfaces (during colony formation). Although Pel contributes to the developmental response to electron acceptor limitation in both biofilm formation regimes, we found variation in the exploitability of its production and necessity for competitive fitness between the two systems. The wild type showed a competitive advantage against a non-Pel-producing mutant in pellicles but no advantage in colonies. Adaptation to the pellicle environment selected for mutants with a competitive advantage against the wild type in pellicles but also caused a severe disadvantage in colonies, even in wrinkled colony centers. Evolution in the colony center produced divergent phenotypes, while adaptation to the colony edge produced mutants with clear competitive advantages against the wild type in this O2-replete niche. In general, the structurally heterogeneous colony environment promoted more diversification than the more homogeneous pellicle. These results suggest that the role of Pel in community structure formation in response to electron acceptor limitation is unique to specific biofilm models and that the facultative control of Pel production is required for PA14 to maintain optimum benefit in different types of communities.  相似文献   

11.
The clinical importance of Acinetobacter baumannii is partly due to its natural ability to survive in the hospital environment. This persistence may be explained by its capacity to form biofilms and, interestingly, A. baumannii can form pellicles at the air-liquid interface more readily than other less pathogenic Acinetobacter species. Pellicles from twenty-six strains were morphologically classified into three groups: I) egg-shaped (27%); II) ball-shaped (50%); and III) irregular pellicles (23%). One strain representative of each group was further analysed by Brewster’s Angle Microscopy to follow pellicle development, demonstrating that their formation did not require anchoring to a solid surface. Total carbohydrate analysis of the matrix showed three main components: Glucose, GlcNAc and Kdo. Dispersin B, an enzyme that hydrolyzes poly-N-acetylglucosamine (PNAG) polysaccharide, inhibited A. baumannii pellicle formation, suggesting that this exopolysaccharide contributes to pellicle formation. Also associated with the pellicle matrix were three subunits of pili assembled by chaperon-usher systems: the major CsuA/B, A1S_1510 (presented 45% of identity with the main pilin F17-A from enterotoxigenic Escherichia coli pili) and A1S_2091. The presence of both PNAG polysaccharide and pili systems in matrix of pellicles might contribute to the virulence of this emerging pathogen.  相似文献   

12.
Abstract

Bacterial cellulose (BC) is one of the prominent biopolymers that has been acquiring attention currently due to its distinctive properties and applications in various fields. The current work presents the isolation of Komagataeibacter saccharivorans strain BC1 isolated from rotten green grapes, followed by biochemical and genotypic characterization, which confirmed that the strain is capable of synthesizing cellulose. Further, production media was designed and certain variables such as carbon, nitrogen sources, pH, and temperature were optimized in order to obtain the maximum concentration of cellulose production. We found mannitol to be the ideal carbon source and yeast extract as the ideal nitrogen source with a highest BC dry yield of 1.81?±?0.25?g/100?mL at pH 5.76 for a week at 30?°C.The charcterization of pellicles by FTIR spectrum depicted similar functional groups present in synthesized BC as that of the commercial cellulose. X-ray diffraction revealed that BC showed 82% crystallinity. Surface morphology of the dried pellicle was studied by SEM image which showed that the BC surface was tightly packed with thin fibers with less porosity. Hence the study demonstrates that the isolates of K.saccharivorans could be used to produce a biopolymer in a short period of time using a modified production medium.  相似文献   

13.
Yoon SH  Jin HJ  Kook MC  Pyun YR 《Biomacromolecules》2006,7(4):1280-1284
Electrically conducting polymeric membranes were prepared by incorporating multiwalled carbon nanotubes (MWCNTs) into bacterial cellulose pellicles produced by Gluconacetobacter xylinum. The MWCNTs were dispersed in a surfactant (cationic cetyl trimethylammonium bromide) solution, and cellulose pellicles were dipped into the solution for 6, 12, and 24 h. The surfactants were then extracted in pure water and dried. Electron microscopy showed that the individual MWCNTs were strongly adhered to the surface and the inside of the cellulose pellicle. The conductivity of the MWCNTs-incorporated cellulose pellicle, as measured by a four-probe at room temperature, was 1.4 x 10(-1) S/cm, based on the total cross-sectional area (approximately 9.6 wt % of MWCNTs). This suggests that the MWCNTs were incorporated uniformly and densely into the pellicles.  相似文献   

14.
SYNOPSIS. Pellicles of the ciliate Tetrahymena pyriformis strain GL (phenoset A) were isolated by a new procedure. Oral apparatuses were also purified by a modification of a previous method. Both preparations were characterized by electron microscopy. Proteins of the isolates were separated by analytical SDS polyacrylamide gel electrophoresis. The isolated pellicles, which included oral apparatuses, contained only 6 major proteins (gel bands), designated A through F. Bands A, B, and C, were found in the pellicle fraction, but not in the oral apparatus fraction. Therefore, these proteins are believed to be present in the somatic cortex of Tetrahymena. Bands D and E were greatly enriched in the oral apparatus fraction; these proteins are therefore believed to be present primarily in the oral apparatus. Band F, identified as tubulin, was present in both preparations. Molecular weight determinations and some selective solubilization experiments are also presented.  相似文献   

15.
Acetobacter pasteurianus strains IFO3283, SKU1108, and MSU10 were grown under acetic acid fermentation conditions, and their growth behavior was examined together with their capacity for acetic acid resistance and pellicle formation. In the fermentation process, the cells became aggregated and covered by amorphous materials in the late-log and stationary phases, but dispersed again in the second growth phase (due to overoxidation). The morphological change in the cells was accompanied by changes in sugar contents, which might be related to pellicle polysaccharide formation. To determine the relationship between pellicle formation and acetic acid resistance, a pellicle-forming R strain and a non-forming S strain were isolated, and their fermentation ability and acetic acid diffusion activity were compared. The results suggest that pellicle formation is directly related to acetic acid resistance ability, and thus is important to acetic acid fermentation in these A. pasteurianus strains.  相似文献   

16.
The scale morphology of pleuronectiforms in the Gulf of Oman remains insufficiently known. This study used light microscopy and morphological analysis to examine scale variation across the flank of four Tonguefishes species; Cynoglossus arel, C. bilineatus, C. lingua, and C. puncticeps. Scales were extracted from six flank regions, three on the eyed and blind sides, respectively. The most differentiated species was C. arel, which showed significant differences in four size variables in five regions. In Cynoglossus arel and C. lingua, the scales of the eyed side were ctenoid, and those scales from the blind side were cycloid; C. puncticeps have ctenoid scales on both flank sides and C. bilineatus has cycloid scales on both sides. All species' scales on the blind side have fewer ctenial spines (except in C. bilineatus). This study indicated that scale morphology demonstrated considerable variation among the flank regions of the examined species. As a result, the scales from the head and the trunk regions of the eyed side and the scales from the head region of the blind side have a good power of species separation in this family.  相似文献   

17.
Pellicle formation and lipopeptide production was analysed in standing cultures of different Bacillus subtilis strains producing two or three families of lipopeptides. Despite its ability to produce surfactin, B. Subtilis ATCC 6633 was unable to form stable pellicle at air–water interface. For the ATTC 21332 and ATCC 9943 strains, it was shown for the first time that the lipopeptides were also produced in standing cultures at productivities similar or lower than those obtained when the culture medium is agitated. A differentiated behaviour was observed between these strains in repetitive batch cultures. B. subtilis 9943 formed a wrinkled, thinner and more resistant pellicle than B. subtilis 21332. The structure of the pellicle determined by electron microscopy observations showed that cells of B. subtilis 9943 formed microcolonies whereas those of B. subtilis 21332 rapidly died. Under these conditions, surfactin production by strain 21332 decreased after 2 days whereas it remained stable for B. subtilis 9943 during the 6 days of the cultures. These data indicate that cells of B. subtilis strains growing in pellicle can produce lipopeptides differently depending on their cellular organisation. M. Chollet-Imbert and F. Gancel have contributed equally to the scientific work.  相似文献   

18.
This study utilized two-dimensional gel electrophoresis (2DE) to illustrate the compositional differences between in vitro salivary conditioning films (denoted pellicles) formed on human enamel as well as on the dental materials titanium and poly(methyl methacrylate). The salivary pellicles were formed by immersing each surface in individual tubes containing small volumes of freshly collected whole saliva. Saliva remaining in the tubes after the pellicle formation for 2 h was visualized by means of 2DE and silver staining. The results showed that the protein patterns in 2DE of the liquid phase of saliva left after the exposure to the respective surfaces, regarding proteins <100 kDa in size, were different depending on the surface used. Several protein groups and/or individual proteins were shown to be distinct for each surface used.  相似文献   

19.
20.
The tentacles of the pterobranch Cephalodiscus, a hemisessile ciliary feeder, originate from the lateral aspects of the arms and are covered by an innervated epithelium, the majority of its cells bearing microvilli. Each side of a tentacle has two rows of ciliated cells and additional glandular cells. The coelomic spaces in the tentacles are lined by cross-striated myoepithelial cells, allowing rapid movements of the tentacles. One, possibly two, blood vessels accompany the coelomic canal. On their outer sides the arms are covered by a simple ciliated epithelium with intra-epithelial nerve fibres; the inner side is covered by vacuolar cells. On both sides different types of exocrine cells occur. The collar canals of the mesocoel are of complicated structure. Ventrally their epithelium is pseudostratified and ciliated; dorsally it is lower and forms a fold with specialized cross-striated myoepithelial cells of the coelomic lining. Arms, tentacles, associated coelomic spaces and the collar canal of the mesocoel are considered to be functionally interrelated. It is assumed that rapid regulation of the pore width is possible and even necessary when the tentacular apparatus is retracted, which presumably leads to an increase of hydrostatic pressure in the coelom.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号