首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

The molecular simulation technique of stochastic dynamics (SD) is tested by application to the immunosuppressive drug cyclosporin A (CPA). Two stochastic dynamics simulations are performed, one (SDCCl4 ) with atomic friction coefficients proportional to the viscosity of the nonpolar solvent CCl4, and one (SDH2O) with atomic friction coefficients corresponding to an aqueous solution. The atomic friction coefficients are also taken proportional to an approximate expression for the atomic accessible surface area. The properties of both stochastic dynamics simulations are compared to those of two full molecular dynamics (MD) simulations of cyclosporin A, one in a box with 591 CCl4 molecules, and one in a box with 632 H2O molecules.

The properties of cyclosporin A as found in the molecular dynamics simulation in CCl4 are well reproduced by the SDCCl4 simulation. This indicates that the neglect of a mean force reresenting the average solvent effects on the solute is justified in the case of nonpolar solvents. For polar solvents, like water, this mean force may not be neglected. The SDH2O simulation of cyclosporin A clearly fails to reproduce the amount of hydrogen bonding found in the molecular dynamics stimulation of cyclosporin A in water.

A comparison with a molecular dynamics simulation of cyclosporin A in vacuo shows that both the SDCCl4 and the SDH2O simulation come closer to the properties of the molecular dynamics simulations in CCl4 and in H2O than a molecular dynamics simulation in vacuo.  相似文献   

2.
Abstract

Molecular dynamics simulations of an aqueous solution of adenine have been performed using different methods of charge calculation to evaluate the influence of the values of the atomic charges on the dynamical results and to incorporate new information about the interaction between adenine and water. Four sets of partial charges where computed using ab-initio methods. In all cases the hydration properties of adenine were similar. These results support the view that the simulations by molecular dynamics, at least for the regime of infinite dilution, are not sensitive with respect to the different sets of partial charges used. A net hydrophobic behavior of the adenine molecule, on the water was observed.  相似文献   

3.
Abstract

Several approaches to the treatment of solvent effects based on continuum models are reviewed and a new method based on occupied atomic volumes (occupancies) is proposed and tested. The new method describes protein-water interactions in terms of atomic solvation parameters, which represent the solvation free energy per unit of volume. These parameters were determined for six different atoms types, using experimental free energies of solvation. The method was implemented in the GROMOS and PRESTO molecular simulation program suites. Simulations with the solvation term require 20-50% more CPU time than the corresponding vacuum simulations and are approximately 20 times faster than explicit water simulations. The method and parameters were tested by carrying out 200 ps simulations of BPTI in water, in vacuo, and with the solvation term. The performance of the solvation term was assessed by comparing the structures and energies from the solvation simulations with the equivalent quantities derived from several BPTI crystal structures and from the explicit water and vacuum simulations. The model structures were evaluated in terms of exposed total surface, buried and exposed polar surfaces, secondary structure preservation, number of hydrogen bonds, energy contributions, and positional deviations from BPTI crystal structures. Vacuum simulations produced unrealistic structures with respect to all criteria applied. The structures resulting from the simulations with explicit water were closer to the 5PTI crystal structure, although part of the secondary structure dissolved. The simulations with the effective solvation term produce structures that are normal according to all evaluations and in most respects are remarkably similar to the 5PTI crystal structure despite considerable positional fluctuations during the simulations. The segments where the model and crystal structures differ are known to be flexible and the observed difference may be physically realistic. The effective solvation term based on occupancies is not only very efficient in terms of computer time but also results in meaningful structural properties for BPTI. It may therefore be generally useful in molecular dynamics of macromolecules.  相似文献   

4.
ABSTRACT

Multi-level theory simulations have been performed to model a number of important molecular properties of a bent-core nematic liquid crystal (LC) A131. These important properties include molecular conformations, molecular Raman spectra, differential polarisability ratios, molecular crystals packing, atomic LC structures, order parameters, and Raman depolarisation spectra. The simulations contain four theory levels, involving molecular quantum chemistry, molecular crystal packing, super cell density functional based tight binding optimisation, and super cell molecular dynamics calculations. To heat initial optimised super cell structures, molecular dynamics simulations reveal phase transitions to uniaxial and biaxial nematic phases from molecular crystals. LC atomic structures result in direct calculations on order parameters, which can be further applied to computations on Raman depolarisation spectra with differential polarisability ratios, obtained in the molecular quantum chemistry theory level. The good agreement of simulated Raman depolarisation spectra with the experiment provides a detailed analysis on the unusually low values of experimental uniaxial order parameters.  相似文献   

5.
Molecular dynamics is a rapidly developing field of science and has become an established tool for studying the dynamic behavior of biomolecules. Although several high quality programs for performing molecular dynamic simulations are freely available, only well-trained scientists are currently able to make use of the broad scientific potential that molecular dynamic simulations offer to gain insight into structural questions at an atomic level. The "Dynamic Molecules" approach is the first internet portal that provides an interactive access to set up, perform and analyze molecular dynamic simulations. It is completely based on standard web technologies and uses only publicly available software. The aim is to open molecular dynamics techniques to a broader range of users including undergraduate students, teachers and scientists outside the bioinformatics field. The time-limiting factors are the availability of free capacity on the computing server to run the simulations and the time required to transport the history file through the internet for the animation mode. The interactive access mode of the portal is acceptable for animations of molecules having up to about 500 atoms.Figure Several main menus (see top) are provided to start "New Simulations", to "Display Simulations" and to "Analyze" statistical and geometrical properties of the molecule. Here the "Display Simulation" interface is shown. The Chime plugin is used to visualize molecular 3D structures and motions.  相似文献   

6.
7.
Abstract

The application of Molecular-Dynamics simulation in protein-crystallographic structure refinement has become common practice. In this paper, structure optimizations are described where the driving force is derived only from the crystallographic data and not from any physical potential energy function. Under this extreme condition ab initio structure refinement and the application of structure-factor time averaging was investigated using a small 9 atom test system. Success in ab initio refinement, where the starting atomic positions are randomly distributed, depends on the resolution of the crystallographic data used in the optimization. The presence of high resolution data introduces false minima in the X-ray energy profile, enhancing the search problem significantly. On the same system, we also tested the method of time-averaged crystallographically restrained Molecular Dynamics, again in the absence of a physical force field. In this method, the diffraction data is modelled by an ensemble of structures instead of one single structure. In comparison to conventional single-structure refinement, more reflections were required to determine a correct atomic distribution. A time-averaging simulation at 0.2 nm resolution (40 reflections) yielded an incorrect distribution, although a low R-factor was obtained. Simulations at 0.1 nm resolution (248 reflections) gave both low R-factors, 3 to 4%, and correct atomic distributions. The scale factor between the observed and time-averaged calculated structure factor amplitudes appeared to be unstable, when optimized during a time-averaging simulation. Tests of time-averaged restrained simulations with noise added to the observed structure-factor amplitudes, indicated that noise is modelled when no information in the form of constraints or restraints is available to distinguish it from real data.  相似文献   

8.
Abstract

The structure of liquid methanol at 298.15 K is investigated by performing molecular dynamics (MD) simulations in NVE ensemble using two 3-site force field models. The simulated structural results are compared with the recent neutron diffraction (ND) results obtained at the partial pair distribution function (pdf) level by employing H/D substitution on the hydroxyl hydrogen, Ho. Overall agreement is found between the simulated and experimental total intermolecular radial distribution functions (rdfs). The ability of the 3-site model simulations to satisfactorily reproduce experimental X—X (X = C, O or H- a methyl hydrogen) intermolecular partial distribution function, dominated by contributions from the methyl group. demonstrates that the methyl group does not participate in any bonding in the liquid. However, a comparison between the simulated and experimental Ho—Ho and X—Ho functions reveals that discrepancies still exist at a quantitative level.  相似文献   

9.
Abstract

The promotion of crystal phase transitions in molecular dynamics (MD) simulations was realized by controlling the momentum of the MD cell. It was implemented by increasing the mass or velocity of the MD cell instantaneously during simulations within the framework of the constant-pressure method by Parrinello and Rahman. This method induced phase transitions in benzene crystals which have not been obtained in conventional MD simulations. This method is useful for the global search of stable (and metastable) crystal structures.  相似文献   

10.
Abstract

A two step strategy is proposed to study dynamical properties of a physical system much slower than the time scales accessible by molecular dynamics simulations. The strategy is applied to investigate the slow dynamics of supercooled liquids.  相似文献   

11.
Estimation of structural perturbation induced by S-nitrosation is important to understand the mode of cellular signal transduction mediated by nitric oxide. Crystal structures of S-nitrosated proteins have been solved only for a few cases, however, so that molecular dynamics simulation may provide an alternative tool for probing structural perturbation. In this study AMBER-99 force field parameters for S-nitrosocysteine were developed and applied to molecular dynamics simulations of S-nitrosated thioredoxin. Geometry optimization at the level of HF/6-31G∗ was followed by a restrained electrostatic potential charge-fitting to obtain the atomic charges of S-nitrosocysteine. Force constants for bonds and angles were obtained from generalized AMBER force field. Torsional force constants for CC-SN and CS-NO were determined by fitting the torsional profiles obtained from geometry optimization with those from molecular mechanical energy minimization. Finally molecular dynamics simulations were performed with theses parameters on oxidized and reduced thioredoxin with and without S-nitrosocysteine. In all cases the root-mean-square deviations of α-carbons yielded well-behaved trajectories. The CC-SH dihedral angle which fluctuated severely during the simulation became quiet upon S-nitrosation. In conclusion the force field parameters developed in this study for S-nitrosocysteine appear to be suitable for molecular dynamics simulations of S-nitrosated proteins.  相似文献   

12.
Nuclear magnetic resonance (NMR) spin relaxation experiments currently probe molecular motions on timescales from picoseconds to nanoseconds. The detailed interpretation of these motions in atomic detail benefits from complementarity with the results from molecular dynamics (MD) simulations. In this mini-review, we describe the recent developments in experimental techniques to study the backbone dynamics from 15N relaxation and side-chain dynamics from 13C relaxation, discuss the different analysis approaches from model-free to dynamics detectors, and highlight the many ways that NMR relaxation experiments and MD simulations can be used together to improve the interpretation and gain insights into protein dynamics.  相似文献   

13.
It has been reported recently that classical, isothermal–isobaric molecular dynamics (NTP MD) simulations at a time step of 1.00 fs of the standard-mass time (Δt=1.00 fssmt) and a temperature of ≤340 K using uniformly reduced atomic masses by tenfold offers better configurational sampling than standard-mass NTP MD simulations at the same time step. However, it has long been reported that atomic masses can also be increased to improve configurational sampling because higher atomic masses permit the use of a longer time step. It is worth investigating whether standard-mass NTP MD simulations at Δt=2.00 or 3.16 fssmt can offer better or comparable configurational sampling than low-mass NTP MD simulations at Δt=1.00 fssmt. This article reports folding simulations of two β-hairpins showing that the configurational sampling efficiency of NTP MD simulations using atomic masses uniformly reduced by tenfold at Δt=1.00 fssmt is statistically equivalent to and better than those using standard masses at Δt=3.16 and 2.00 fssmt, respectively. The results confirm that, relative to those using standard masses at routine Δt=2.00 fssmt, the low-mass NTP MD simulations at Δt=1.00 fssmt are a simple and generic technique to enhance configurational sampling at temperatures of ≤340 K.  相似文献   

14.
Abstract

The conformations of the chains constituting the hydrophilic component of alkyl monolayers and bilayers are investigated by performing molecular dynamics atomistic simulations on these systems at different temperatures. Several monitoring techniques are used to reveal the chain conformations, including atom pair radial distribution functions, evolutions of the torsional angles over thousands of timesteps, frequency distributions of the torsionl angles and ‘snapshot’ plots of the atomic configurations. These methods consistently testify to the stability of the trans (fully extended) character of the strain-free alkyl chains up to room temperature. The chains retain much of this conformation even when the layers are compressed by the application of pressure, to which the chains respond by ‘folding’ at the ends attaching them to the substrate planes while maintaining directions which are mainly normal to these planes. A non-zero gap between the layers is also maintained. A pressure of about 50 kbar abruptly causes all motion in the chains to cease, resulting in a highly ordered lattice structure.  相似文献   

15.
Here, we study mechanical properties of eight 3‐helix proteins (four right‐handed and four left‐handed ones), which are similar in size under stretching at a constant speed and at a constant force on the atomic level using molecular dynamics simulations. The analysis of 256 trajectories from molecular dynamics simulations with explicit water showed that the right‐handed three‐helix domains are more mechanically resistant than the left‐handed domains. Such results are observed at different extension velocities studied (192 trajectories obtained at the following conditions: v = 0.1, 0.05, and 0.01 Å ps?1, T = 300 K) and under constant stretching force (64 trajectories, F = 800 pN, T = 300 K). We can explain this by the fact, at least in part, that the right‐handed domains have a larger number of contacts per residue and the radius of cross section than the left‐handed domains. Proteins 2014; 82:90–102. © 2013 Wiley Periodicals, Inc.  相似文献   

16.
ABSTRACT

This review describes recent advances by the authors and others on the topic of incorporating experimental data into molecular simulations through maximum entropy methods. Methods which incorporate experimental data improve accuracy in molecular simulation by minimally modifying the thermodynamic ensemble. This is especially important where force fields are approximate, such as when employing coarse-grain models, or where high accuracy is required, such as when attempting to mimic a multiscale self-assembly process. The authors review here the experiment directed simulation (EDS) and experiment directed metadynamics (EDM) methods that allow matching averages and distributions in simulations, respectively. Important system-specific considerations are discussed such as using enhanced sampling simultaneously, the role of pressure, treating uncertainty, and implementations of these methods. Recent examples of EDS and EDM are reviewed including applications to ab initio molecular dynamics of water, incorporating environmental fluctuations inside of a macromolecular protein complex, improving RNA force fields, and the combination of enhanced sampling with minimal biasing to model peptides  相似文献   

17.
18.
Abstract

A simple classical model is used for the study of the structural transformations of ice under high pressures, such as ice VIII to VII and X, via classical molecular dynamics (MD) simulation. In the present MD simulation, pair potentials of a simple form between pair of atoms and a thee-body potential representing the H-O-H angle dependence, originally developed by Kawamura et al., were used. Starting with a stable ice VIII at low pressure and low temperature, we have carried out two different MD runs, one with increasing pressure keeping the temperature constant (simulation I) and the other with increasing temperature under constant pressure (simulation II). From these MD simulations we have obtained the structural transformations from ice VIII to VII for both simulations; the former was finally transformed into ice X for the simulation I. The present results are compatible with recent experiments on high pressure ices.  相似文献   

19.
Abstract

The current miniaturization of electronic devices raises many questions about the properties of various materials at nanometre-scales. Recent molecular dynamics computer simulations have shown that small finite nanowires of gold exist as multishelled structures of lasting stability. These classical simulations are based on a well-tested embedded atom potential. Molecular dynamics simulation studies of metallic nanowires should help in developing methods for their fabrication, such as electron-beam litography and scanning tunneling microscopy.  相似文献   

20.
Abstract

The Mechanism of atomic intermixing process in crystalline microclusters is studied by molecular dynamics simulation for a two-dimensional system with the Lennard-Jones potential. Temperature is chosen so that a cluster consists of solid-like core region and the region of surface melting. It is found that atomic intermixing in the solid-like core region is caused by the motion of a dislocation through the cluster as well as the random walk of a vacancy in the cluster. Generation of a dislocation or a vacancy occurs at the interfacial region between the liquid-like surface and the solid-like core regions due to large scale fluctuation of the configuration of atoms in the region of surface melting and the opportune collective motion of atoms in the solid-like core region. The rate per atom of atomic intermixing, the basic quantity of our interest (for the definition see the text), in the solid-like core of the microcluster is three to four orders of magnitude larger than that in the bulk crystal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号